Wide Area Detection and Distribution Characteristics of Landslides along Sichuan Expressways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Classification of Landslides
2.3.2. Multi-Temporal Satellite Optical Image Interpretation
2.3.3. InSAR Automatic Landslide Detection
2.3.4. Landslide Identification with Integrated Remote Sensing Techniques
3. Results and Analysis
3.1. Annual Surface Deformation Rate
3.2. Landslide Detection and Mapping
3.3. Inventory of Landslides That Pose a High Risk to Expressways
4. Discussion
4.1. Impact Factors on Results of Landslide Mapping
4.1.1. Effects of Spaceborne SAR Imaging Geometry
4.1.2. Identifying Deformation without Landslides
4.2. Development Characteristics of Landslides along Sichuan Expressways
4.2.1. Distribution Pattern of Detected Landslides with Respect to Topographic Factors
4.2.2. Distribution Pattern of Detected Landslides with Respect to Hydrological Factors
4.2.3. Four General Rules of Landslide Distribution
5. Conclusions
- (1)
- A total of 320 landslides were detected by interpreting GF-2 images and Google Earth historical images. GACOS-assisted InSAR stacking was employed to obtain annual surface displacement rate maps in the radar LOS direction using satellite SAR images from both ascending and descending tracks, which were in turn utilized to automatically detect 109 potential landslides with ground motion using hotspot analysis. The combination of the two techniques resulted in the detection of 413 landslides covering 47.32 km2, of which 371 landslides were actively deforming slopes (I), 23 landslides were reactivated historically deformed slopes (II), and 19 landslides were stabilized historically deformed slopes (III).
- (2)
- Combined observations from Sentinel-1 ascending and descending tracks can effectively increase the visible area from 89.4% and 83.7% to 97.3%, to potentially significantly reduce the number of missed landslides.
- (3)
- According to the statistics of the topographical and hydrological factors of the 413 detected landslides, the main distribution area of landslides have the following characteristics: elevation of 1000–2500 m, relative altitude of 100–400 m, slope angle of 20°–45°, slope aspect of 101°–168° and 191°–281°, and annual rainfall of 950–1050 mm.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Special Report; National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Hungr, O.; Serge, L.; Luciano, P. The Varnes classification of landslide types, an update. Landslides 2013, 11, 167–194. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Chang, K.T.; Monserrat, O.; Martha, T.R.; Manconi, A. Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth Sci. Rev. 2021, 217, 103611. [Google Scholar] [CrossRef]
- Maes, J.; Parra, C.; Mertens, K.; Bwambale, B.; Jacobs, L.; Poesen, J.; Dewitte, O.; Vranken, L.; Hontheim, A.D.; Kabaseke, C.; et al. Questioning network governance for disaster risk management: Lessons learnt from Landslide risk management in Uganda. Environ. Sci. Policy 2018, 85, 163–171. [Google Scholar] [CrossRef]
- Raska, P. Contextualizing community-based landslide risk reduction: An evolutionary perspective. Landslides 2019, 16, 1747–1762. [Google Scholar] [CrossRef]
- Schumm, S.A. Geomorphic Thresholds: The Concept and Its Applications. Trans. Inst. Br. Geogr. 1979, 4, 485–515. [Google Scholar] [CrossRef]
- Van, A.; Th, W.J. Creep processes in landslides. Earth Surf. Process. Landf. 1984, 9, 573–583. [Google Scholar] [CrossRef]
- Sauchyn, D.J.; Trench, N.R. Landsat applied to landslide mapping. Photogramm. Eng. Remote Sens. 1978, 44, 735–741. [Google Scholar]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.Y.; Li, W.L.; Xu, Q.; Dong, X.J.; Dai, C.; Wang, D. Early detection of landslides in the upstream and downstream areas of the Baige Landslide, the Jinsha River based on optical remote sensing and InSAR technologies. Geomat. Inform. Sci. Wuhan Univ. 2019, 44, 1342–1354. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, L.; Liao, M.S.; Dong, J.; Xu, Q.; Gong, J.Y. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry–A Case Study of Danba, Sichuan. Geomat. Inform. Sci. Wuhan Univ. 2018, 43, 2039–2049. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.H.; Song, C.; Yu, C.; Xiao, R.Y.; Chen, L.F.; Luo, H.; Dai, K.R.; Ge, D.Q.; Ding, Y.; Zhang, Y.X.; et al. Application of satellite radar remote sensing to landslide detection and monitoring: Challenges and solutions. Geomat. Inform. Sci. Wuhan Univ. 2019, 44, 967–979. (In Chinese) [Google Scholar] [CrossRef]
- Liu, X.J.; Zhao, C.Y.; Zhang, Q.; Lu, Z.; Li, Z.H.; Yang, C.S.; Zhu, W.; Zeng, J.L.; Chen, L.Q.; Liu, C.J. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Eng. Geol. 2021, 284, 106033. [Google Scholar] [CrossRef]
- Zhang, C.L.; Li, Z.H.; Yu, C.; Song, C.; Xiao, R.Y.; Peng, J.B. Landslide Detection of the Jinsha River Region Using GACOS Assisted InSAR Stacking. Geomat. Inform. Sci. Wuhan Univ. 2021, 46, 1649–1657. (In Chinese) [Google Scholar] [CrossRef]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Soldato, M.D.; Solari, L.; Novali, F.; Conte, S.D.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 2018, 8, 7253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, K.; Zhang, L.L.; Song, C.; Li, Z.L.; Zhuo, G.X.; Xu, Q. Quantitative Analysis of Sentinel-1 Imagery Geometric Distortion and Their Suitability along Sichuan-Tibet Railway. Geomat. Inform. Sci. Wuhan Univ. 2021, 46, 1450–1460. (In Chinese) [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellan, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards. Geomat. Inform. Sci. Wuhan Univ. 2020, 45, 4–12. (In Chinese) [Google Scholar] [CrossRef]
- Booth, A.M.; Roering, J.J.; Perron, J.T. Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 2009, 109, 132–147. [Google Scholar] [CrossRef]
- Guo, C.; Xu, Q.; Dong, X.J.; Liu, X.S.; She, J.X. Geohazard Recognition by Airborne LiDAR Technology in Complex Mountain Areas. Geomat. Inform. Sci. Wuhan Univ. 2021, 46, 1538–1547. (In Chinese) [Google Scholar] [CrossRef]
- Xiong, S. The Strategic Consideration of the Development of China’s Airborne Geophysical Technology. Geol. China 2009, 36, 1366–1374. (In Chinese) [Google Scholar]
- Langhammer, L.; Rabenstein, L.; Schmid, L.; Bauder, A.; Grab, M.; Schare, P.; Maurer, H. Glacier Bed Surveying with Helicopter-Borne Dual-polarization Ground-penetrating Radar. J. Glaciol. 2019, 65, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Fu, W.X.; Zhou, H.F.; Liu, Y.; Ba, R.J.; Zheng, S. The “8·21” rainfall-induced Zhonghaicun landslide in Hanyuan County of China: Surface features and genetic mechanisms. Landslides 2021, 18, 3421–3434. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; U.S. Geological Survey: Reston, VA, USA, 2008; pp. 1325–1454.
- Li, Z.H.; Zhang, C.L.; Chen, B.; Zhan, J.W.; Ding, M.T.; Lü, Y.; Li, X.L.; Peng, J.B. A Technical Framework of Landslide Prevention Based on Multi-Source Remote sensing and Its Engineering Application. Earth Sci. 2022, 45, 1901–1916. (In Chinese) [Google Scholar]
- Li, W.L.; Xu, Q.; Lu, H.Y.; Dong, X.J.; Zhu, Y.Q. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment. Geomat. Inform. Sci. Wuhan Univ. 2019, 44, 1043–1053. (In Chinese) [Google Scholar] [CrossRef]
- Zebker, H.A.; Goldstein, R.M. Topographic mapping from interferometric synthetic aperture radar observations. J. Geophysic. Res. 1986, 91, 4993–4999. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Li, Z.H.; Muller, J.P.; Cross, P. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. J. Geophysic. Res. 2005, 110, B03410. [Google Scholar] [CrossRef]
- Li, Z.H.; Fielding, E.J.; Cross, P.; Preusker, R. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int. J. Remote Sens. 2009, 30, 3343–3363. [Google Scholar] [CrossRef]
- Yu, C.; Penna, N.T.; Li, Z.H. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.H.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.H.; Penna, N.T.; Crippa, P. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.H.; Penna, N.T. Triggered afterslip on the southern Hikurangi subduction interface following the 2016 Kaikōura earthquake from the InSAR time series with atmospheric corrections. Remote Sens. Environ. 2020, 251, 112097. [Google Scholar] [CrossRef]
- Xiao, R.Y.; Yu, C.; Li, Z.H.; Song, C.; He, X.F. General Survey of Large-scale Land Subsidence by GACOS-Corrected InSAR Stacking: Case Study in North China Plain. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Sandwell, D.T.; Price, E.J. Phase gradient approach to stacking interferograms. J. Geophys. Res. 1998, 103, 30183–30204. [Google Scholar] [CrossRef] [Green Version]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Zhang, J.M.; Zhu, W.; Cheng, Y.Q.; Li, Z.H. Landslide Detection in the Linzhi-Ya’an Section along the Sichuan-Tibet Railway Based on InSAR and Hot Spot Analysis Methods. Remote Sens. 2021, 13, 3566. [Google Scholar] [CrossRef]
- Xu, Q.; Lu, H.Y.; Li, W.L.; Dong, X.J.; Guo, C. Types of Potential Landslide and Corresponding Identification Technologies. Geomat. Inform. Sci. Wuhan Univ. 2022, 47, 377–387. (In Chinese) [Google Scholar] [CrossRef]
- Dai, K.R.; Tie, Y.B.; Xu, Q.; Feng, Y.; Zhuo, G.C.; Shi, X.L. Early identification of potential landslide geohazards in alpine-canyon terrain based on SAR interferometry–A case study of the middle section of Yalong river. J. Radars 2020, 9, 554–568. (In Chinese) [Google Scholar]
- Wu, C.H.; Peng, C.; Yu, S.L.; Ayala, I.A.; Chao, H.; Jian, Y.S. Seismogenic fault and topography control the spatial patterns of landslides triggered by the 2017 Jiuzhaigou earthquake. J. Mt. Sci. 2018, 15, 793–807. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; Wang, F.W.; Lio, A. Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake, Northern Japan. Landslides 2019, 16, 1691–1708. [Google Scholar] [CrossRef]
- Cui, P.; Ling, Z.X.; Qiang, Z. Risk assessment of highways affected by debris flows in Wenchuan earthquake area. J. Mt. Sci. 2013, 10, 173–189. [Google Scholar] [CrossRef]
- Papathanassiou, G.; Valkaniotis, S.; Ganas, A.; Pavlides, S. GIS-based statistical analysis of the spatial distribution of earthquake-induced landslides in the island of Lefkada, Ionian Islands, Greece. Landslides 2012, 10, 771–783. [Google Scholar] [CrossRef]
- Kamp, U.; Growley, B.J.; Khattak, G.A.; Owen, L.A. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 2008, 101, 631–642. [Google Scholar] [CrossRef]
- Bennett, G.L.; Roering, J.J.; Mackey, B.H.; Handwerger, A.L.; Schmidt, D.A.; Guillod, B.P. Historic drought puts the brakes on earth flows in Northern California. Geophys. Res. Lett. 2016, 43, 5725–5731. [Google Scholar] [CrossRef] [Green Version]
- Handwerger, A.L.; Fielding, E.J.; Huang, M.H.; Bennett, G.L.; Liang, C.; Schulz, W.H. Widespread Initiation, Reactivation, and Acceleration of Landslides in the Northern California Coast Ranges due to Extreme Rainfall. J. Geophys. Res.-Earth. 2019, 124, 1782–1797. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.K.; Kim, J.; George, D.L.; Lu, Z. Characterizing Seasonally Rainfall-Driven Movement of a Translational Landslide using SAR Imagery and SMAP Soil Moisture. Remote Sens. 2019, 11, 2347. [Google Scholar] [CrossRef] [Green Version]
- Roering, J.J.; Mackey, B.H.; Handwerger, A.L.; Booth, A.M.; Schmidt, D.A.; Bennett, G.L.; Darriau, C.C. Beyond the angle of repose: A review and synthesis of landslide processes in response to rapid uplift, Eel River, Northern California. Geomorphology 2015, 236, 109–131. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.K.; Schulz, W.H.; Lu, Z.; Kim, J.; Baxtrom, K. Geologic controls of slow-moving landslides near the US West Coast. Landslides 2021, 18, 3353–3365. [Google Scholar] [CrossRef]
- Su, X.J.; Zhang, Y.; Meng, X.M.; Yue, D.X.; Ma, J.H.; Guo, F.Y.; Zhao, Z.Q.; Rehman, M.U.; Khalid, Z.; Chen, G.; et al. Landslide mapping and analysis along the China-Pakistan Karakoram Highway based on SBAS-InSAR detection in 2017. J. Mt. Sci. 2021, 18, 2540–2564. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, Y.; Su, X.J.; Zhao, F.M.; Liang, Y.W.; Meng, X.M.; Jia, J. Early identification and characteristics of potential landslides in the Bailong River Basin using InSAR technique. Natl. Remote Sens. Bulletin. 2021, 25, 677–690. (In Chinese) [Google Scholar] [CrossRef]
- Ietto, F.; Perri, F.; Cella, F. Weathering Characterization for Landslides Modeling in Granitoid Rock Masses of the Capo Vaticano Promontory (Calabria, Italy). Landslides 2018, 15, 43–62. [Google Scholar] [CrossRef]
- Saha, A.K.; Gupta, R.P.; Arora, M.K. GIS-Based Landslide Hazard Zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J. Remote Sens. 2002, 23, 357–369. [Google Scholar] [CrossRef]
- Conforti, M.; Ietto, F. Influence of Tectonics and Morphometric Features on the Landslide Distribution: A Case Study from the Mesima Basin (Calabria, South Italy). J. Earth Sci. 2019, 32, 393–409. [Google Scholar] [CrossRef]
Satellite | Orbital Direction | Path | Number of Images | Range/Azimuth Pixel Spacing | Temporal Coverage |
---|---|---|---|---|---|
Gaofen-2 | - | - | 28 | 0.8 m | 20180725, 20181125 |
20190422, 20200827 | |||||
20201109, 20210201 | |||||
20210112, 20190207 | |||||
Google Earth | - | - | - | <1 m | 2010–2020 |
Sentinel-1 | Ascending | 26 | 114 | 2.3 m/13.9 m | 20171015–20210726 |
26 | 114 | 20171015–20210726 | |||
128 | 115 | 20171010–20210721 | |||
Descending | 62 | 93 | 2.3 m/13.9 m | 20180602–20210728 | |
135 | 85 | 20180619–20210721 |
Landslide Types | Examples | Features | Identification Methods |
---|---|---|---|
Actively deforming slopes (I) | Deformation, possibly with geomorphological features, e.g., cracks, scarps and collapses | Deformation monitoring techniques including InSAR and SAR/optical pixel offset tracking (POT), assisted by multi-temporal satellite optical image interpretation | |
Reactivated historically deformed slopes (II) | Deformation together with clear geomorphological features, e.g., cracks, scarps and collapses | Deformation monitoring techniques including InSAR and POT, plus multi-temporal satellite optical image interpretation | |
Stabilized historically deformed slopes (III) | Clear geomorphological features, e.g., cracks, scarps and collapses | Multi-temporal satellite optical image interpretation | |
Undeformed but potentially unstable slopes (IV) | No deformation signal or geomorphological feature | Geophysical prospecting technology |
Expressway | No | Landslides | Longitude | Latitude | Length/m | Width/m | Area/km2 | Maximum LOS Rate (mm/a) | Distance from Expressway/km | Comprehensive Judgement |
---|---|---|---|---|---|---|---|---|---|---|
Lushi | 1 | Pangou | 102.3 | 29.8 | 3500 | 2300 | 8.42 | −93 | 5 | This is an old landslide and deformation is visible locally. |
2 | Shanshugang | 102.1 | 29.5 | 1068 | 694 | 0.68 | −84 | 0 | This is an unstable slope, which is in deformation stage at present; the expressway was built in front of this unstable slope. | |
3 | Huangcaoping | 102.2 | 29.5 | 966 | 831 | 0.88 | −83 | 0.3 | This old landslide is currently in deformation stage. | |
Yaxi | 4 | Waduanshan | 102.7 | 29.4 | 890 | 427 | 0.31 | −73 | 0.8 | This unstable slope is currently in deformation stage. |
5 | Jianshibao | 102.4 | 29.2 | 959 | 645 | 0.49 | −56 | 1.5 | This potential landslide was caused by mining; there are continuous cracks in the back wall of the slope and signs of human activity on the front edge of the landslide, which could lead to overall instability. | |
6 | Haizi | 102.6 | 29.4 | 4085 | 1587 | 7.52 | 102 | 0.14 | This is an old landslide. Both the leading edge and trailing edges are deformed, which may happen again. | |
7 | Wazhaping | 102.6 | 29.4 | 2465 | 610 | 1.35 | −91 | 1.0 | This is an old landslide. Both the leading edge and middle edges are deformed, which may happen again. | |
Yakang | 8 | Lianghekou | 102.4 | 30.0 | 381 | 686 | 0.19 | −57 | 0.07 | This is an unstable slope body in deformation stage, caused by human activity. |
9 | Tuanjie | 102.2 | 30 | 178 | 226 | 0.037 | −56 | 0 | This is a deforming landslide, which was locally deformed and eroded by the river; it has the possibility of overall instability. |
Number | Elevation/m | Relative Altitude/m | Slope Angle/° | Slope Aspect/° | Precipitation/mm | Region | Reference Articles |
---|---|---|---|---|---|---|---|
1 | 550–2100 (81.7%) | - | 20–45 (87.7%) | E, SE, S (22%, 20%, 17%) | <400(162–941) (84.3%) | China-Pakistan Karakoram Highway | [52] |
2 | 1000–3000 (69%) | <900 (57%) | 10–45 (83%) | - | - | Jinsha River corridor, China | [13] |
3 | - | <300 (76.3%) | 20–40 (83.3%) | SE, S, SW | - | Bailong River Basin, China | [53] |
4 | 3000–5000 (77%) | 10–40 (83%) | N, NE, E, SE (82%) | No statistically significant relationship | Sichuan–Tibet Railway, China | [39] | |
5 | 2200–3700 (85%) | 200–500 | 10–40 (81.2%) | ENE~SSE (68.8%) | - | Jiuzhaigou, northwest Sichuan Province, China | [42] |
6 | - | 160–320 (75%) | 20–45 (70%) | - | - | Calabria, South Italy | [56] |
7 | - | - | 5–30 (97.1%) | - | >2000(0–4000) (75%) | US West Coast | [51] |
8 | 1000~2500 (80.5%) | <400 (77%) | 20–45 (89.5%) | ESE, SSE, SW | 950~1050 (80%) | Southwest Sichuan Province, China | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Li, Z.; Zhang, C.; Ding, M.; Zhu, W.; Zhang, S.; Han, B.; Du, J.; Cao, Y.; Zhang, C.; et al. Wide Area Detection and Distribution Characteristics of Landslides along Sichuan Expressways. Remote Sens. 2022, 14, 3431. https://doi.org/10.3390/rs14143431
Chen B, Li Z, Zhang C, Ding M, Zhu W, Zhang S, Han B, Du J, Cao Y, Zhang C, et al. Wide Area Detection and Distribution Characteristics of Landslides along Sichuan Expressways. Remote Sensing. 2022; 14(14):3431. https://doi.org/10.3390/rs14143431
Chicago/Turabian StyleChen, Bo, Zhenhong Li, Chenglong Zhang, Mingtao Ding, Wu Zhu, Shuangcheng Zhang, Bingquan Han, Jiantao Du, Yanbo Cao, Chi Zhang, and et al. 2022. "Wide Area Detection and Distribution Characteristics of Landslides along Sichuan Expressways" Remote Sensing 14, no. 14: 3431. https://doi.org/10.3390/rs14143431