Global Evaluation of SMAP/Sentinel-1 Soil Moisture Products
Abstract
:1. Introduction
2. Study Area and Data
2.1. Validations Sites
2.2. Data
2.2.1. SMAP/Sentinel-1 Soil Moisture
2.2.2. SMAP Enhanced Soil Moisture
2.2.3. CGLS Land Cover
2.2.4. Soil Texture and Vegetation Fraction Map
3. Methodology
3.1. Selecting Reliable Reference Data
3.2. Data Preprocessing
3.2.1. Masking out Unreliable Pixels
3.2.2. Calculating Reference SM within the Grid Pixels
3.3. Statistical Metrics for the Evaluation Process
4. Results
4.1. SMAP/Sentinel-1 Overall Accuracy
4.2. Comparison of SMAP/Sentinel-1 and Enhanced SMAP SM Products
4.3. Impacts of Vegetation Conditions, Land Cover, and Soil Texture on the Accuracy of SMAP/Sentinel-1 SM Products
4.4. Seasonal Assessment of the SMAP/Sentinel-1 Performance
5. Discussions
5.1. SMAP/Sentinel-1 Overall Accuracy
5.2. Comparison of SMAP/Sentinel-1 and Enhanced SMAP SM Products
5.3. Impacts of Various Geographical Parameters on the Accuracy of SMAP/Sentinel-1 SM Products
5.4. Sources of Uncertainty in the Validation of SMAP/Sentinel-1 Product
5.4.1. Distribution of In Situ Stations
5.4.2. Depth of Reference Measurements
5.4.3. In Situ SM Detectors
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jun, I.; Garrett, H.B.; Pich, M.D.S.S.; Evans, R.; Ratliff, M.; Chinn, J. SMAP anomaly and the space environments. In Proceedings of the 2016 Spacecraft Charging Technology Conference, Noordwijk, The Netherlands, 4–8 April 2016. [Google Scholar]
- Entekhabi, D.; Njoku, E.; Houser, P.; Spencer, M.; Doiron, T.; Kim, Y.; Smith, J.; Girard, R.; Belair, S.; Crow, W.; et al. The hydrosphere State (hydros) Satellite mission: An Earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2184–2195. [Google Scholar] [CrossRef]
- Entekhabi, D.; Jackson, T.; Njoku, E.; O’neill, P.; Entin, J. Soil moisture active/passive (SMAP) mission concept. In Atmospheric and Environmental Remote Sensing Data Processing and Utilization IV: Readiness for GEOSS II; International Society for Optics and Photonics: Bellingham, WA, USA, 2008; Volume 7085, p. 70850H. [Google Scholar]
- Brown, M.E.; Escobar, V.; Moran, S.; Entekhabi, D.; O’Neill, P.E.; Njoku, E.G.; Doorn, B.; Entin, J.K. NASA’s Soil Moisture Active Passive (SMAP) Mission and Opportunities for Applications Users. Bull. Am. Meteorol. Soc. 2013, 94, 1125–1128. [Google Scholar] [CrossRef]
- Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.T.; et al. SMAP Handbook–Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space; JPL Publication: Pasadena, CA, USA, 2014. [Google Scholar]
- Mishra, A.; Vu, T.; Veettil, A.V.; Entekhabi, D. Drought monitoring with soil moisture active passive (SMAP) measurements. J. Hydrol. 2017, 552, 620–632. [Google Scholar] [CrossRef]
- Mecklenburg, S.; Drusch, M.; Kaleschke, L.; Rodriguez-Fernandez, N.; Reul, N.; Kerr, Y.; Font, J.; Martin-Neira, M.; Oliva, R.; Daganzo-Eusebio, E.; et al. ESA’s Soil Moisture and Ocean Salinity mission: From science to operational applications. Remote Sens. Environ. 2016, 180, 3–18. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Rodríguez-Fernández, N.; Wigneron, J.P.; Al-Yaari, A.; Al Bitar, A.; Albergel, C.; Calvet, J.-C. Evaluation of SMOS, SMAP, ASCAT and Sentinel-1 Soil Moisture Products at Sites in Southwestern France. Remote Sens. 2018, 10, 569. [Google Scholar] [CrossRef]
- Yee, M.S.; Walker, J.P.; Monerris, A.; Rüdiger, C.; Jackson, T.J. On the identification of representative in situ soil moisture monitoring stations for the validation of SMAP soil moisture products in Australia. J. Hydrol. 2016, 537, 367–381. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Dobson, M.C.; Bradley, G.A. Radar reflectivity of bare and vegetation-covered soil. Adv. Space Res. 1981, 1, 91–104. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Kim, S.-B.; van Zyl, J.J.; Johnson, J.T.; Moghaddam, M.; Tsang, L.; Colliander, A.; Dunbar, R.S.; Jackson, T.J.; Jaruwatanadilok, S.; West, R.; et al. Surface Soil Moisture Retrieval Using the L-Band Synthetic Aperture Radar Onboard the Soil Moisture Active–Passive Satellite and Evaluation at Core Validation Sites. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1897–1914. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Njoku, E.G.; Shi, J.J.C.; Johnson, J.T.; Colliander, A. Tests of the SMAP Combined Radar and Radiometer Algorithm Using Airborne Field Campaign Observations and Simulated Data. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2018–2028. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, S.; Kim, S.B.; Yueh, S.; Colliander, A.; O’Neill, P.; Jackson, T.J.; Jagdhuber, T.; Chen, F.; et al. SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture, Version 2; NASA National Snow and Ice Data Center DAAC: Boulder, CO, USA, 2018. [Google Scholar]
- Poe, G. Optimum interpolation of imaging microwave radiometer data. IEEE Trans. Geosci. Remote Sens. 1990, 28, 800–810. [Google Scholar] [CrossRef]
- Chaubell, J.; Chan, S.; Dunbar, R.; Entekhabi, D.; Peng, J.; Piepmeier, J.; Yueh, S. Backus-gilbert optimal interpoaltion applied to enhance SMAP data: Implementation and assessment. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2531–2534. [Google Scholar] [CrossRef]
- Chaubell, J.; Yueh, S.; Entekhabi, D.; Peng, J. Resolution enhancement of SMAP radiometer data using the Backus Gilbert optimum interpolation technique. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 11–15 July 2016; pp. 284–287. [Google Scholar]
- Mironov, V.L.; Kosolapova, L.G.; Fomin, S.V. Physically and Mineralogically Based Spectroscopic Dielectric Model for Moist Soils. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2059–2070. [Google Scholar] [CrossRef]
- Chan, S.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2017, 204, 931–941. [Google Scholar] [CrossRef]
- O’Neill, P.; Bindlish, R.; Chan, S.; Njoku, E.; Jackson, T. Algorithm Theoretical Basis Document: Level 2 & 3 Soil Moisture (Passive) Data Products; Technical Report; Jet Propulsion Laboratory: Pasadena, CA, USA, 2018. [Google Scholar]
- Chen, F.; Crow, W.T.; Bindlish, R.; Colliander, A.; Burgin, M.S.; Asanuma, J.; Aida, K. Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sens. Environ. 2018, 214, 1–13. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Kim, H.; Parinussa, R.; Konings, A.; Wagner, W.; Cosh, M.; Lakshmi, V.; Zohaib, M.; Choi, M. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sens. Environ. 2018, 204, 260–275. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote. Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- Pablos, M.; González-Zamora, Á.; Sánchez, N.; Martínez-Fernández, J. Assessment of root zone soil moisture estimations from SMAP, SMOS and MODIS observations. Remote Sens. 2018, 10, 981. [Google Scholar] [CrossRef]
- Wang, X.; Lü, H.; Crow, W.T.; Zhu, Y.; Wang, Q.; Su, J.; Zheng, J.; Gou, Q. Assessment of SMOS and SMAP soil moisture products against new estimates combining physical model, a statistical model, and in-situ observations: A case study over the Huai River Basin, China. J. Hydrol. 2021, 598, 126468. [Google Scholar] [CrossRef]
- Wu, K.; Nie, L.; Shu, H. A comparison of SMAP and SMOS L-band brightness temperature observations over the global landmass. Int. J. Remote Sens. 2019, 41, 399–419. [Google Scholar] [CrossRef]
- Ebrahimi-Khusfi, M.; Alavipanah, S.K.; Hamzeh, S.; Amiraslani, F.; Samany, N.N.; Wigneron, J.-P. Comparison of soil moisture retrieval algorithms based on the synergy between SMAP and SMOS-IC. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 148–160. [Google Scholar] [CrossRef]
- Miernecki, M.; Wigneron, J.-P.; Lopez-Baeza, E.; Kerr, Y.; De Jeu, R.; De Lannoy, G.J.; Jackson, T.J.; O’Neill, P.; Schwank, M.; Moran, R.F.; et al. Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field. Remote Sens. Environ. 2014, 154, 89–101. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Wigneron, J.-P.; Kerr, Y.; Rodriguez-Fernandez, N.; O’Neill, P.; Jackson, T.; De Lannoy, G.; Al Bitar, A.; Mialon, A.; Richaume, P.; et al. Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets. Remote Sens. Environ. 2017, 193, 257–273. [Google Scholar] [CrossRef]
- Wen, X.; Lu, H.; Li, C.; Koike, T.; Kaihotsu, I. Inter-comparison of soil moisture products from SMOS, AMSR-E, ECWMF and GLDAS over the Mongolia Plateau. In Land Surface Remote Sensing II; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; Volume 9260, p. 92600O. [Google Scholar]
- Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Ardizzone, J.V.; Colliander, A.; Conaty, A.; Crow, W.; Jackson, T.J.; Jones, L.A.; Kimball, J.S.; et al. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements. J. Hydrometeorol. 2017, 18, 2621–2645. [Google Scholar] [CrossRef]
- Zheng, D.; Van Der Velde, R.; Wen, J.; Wang, X.; Ferrazzoli, P.; Schwank, M.; Colliander, A.; Bindlish, R.; Su, Z. Assessment of the SMAP Soil Emission Model and Soil Moisture Retrieval Algorithms for a Tibetan Desert Ecosystem. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3786–3799. [Google Scholar] [CrossRef]
- Kim, Y.; Kimball, J.S.; Xu, X.; Dunbar, R.S.; Colliander, A.; Derksen, C. Global Assessment of the SMAP Freeze/Thaw Data Record and Regional Applications for Detecting Spring Onset and Frost Events. Remote Sens. 2019, 11, 1317. [Google Scholar] [CrossRef]
- Dong, J.; Crow, W.; Reichle, R.; Liu, Q.; Lei, F.; Cosh, M.H. A Global Assessment of Added Value in the SMAP Level 4 Soil Moisture Product Relative to Its Baseline Land Surface Model. Geophys. Res. Lett. 2019, 46, 6604–6613. [Google Scholar] [CrossRef]
- Wang, H.; Magagi, R.; Goita, K. Assessment of the SMAP L3/AP soil moisture product using international ground observation network. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3082–3085. [Google Scholar]
- Zhang, R.; Kim, S.; Sharma, A. A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied climates and landscapes. Remote Sens. Environ. 2019, 223, 82–94. [Google Scholar] [CrossRef]
- Colliander, A.; Cosh, M.H.; Misra, S.; Bourgeau-Chavez, L.; Kelly, V.; Siqueira, P.; Roy, A.; Lakhankar, T.; Kraatz, S.; Konings, A.; et al. SMAP Validation Experiment 2019–2022 (SMAPVEX19-22): Detection of Soil Moisture Under Temperate Forest Canopy. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6992–6995. [Google Scholar] [CrossRef]
- Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Koster, R.D.; Kimball, J.S.; Crow, W.T.; Ardizzone, J.V.; Chakraborty, P.; Collins, D.W.; Conaty, A.L.; et al. Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics. J. Hydrometeorol. 2017, 18, 3217–3237. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, K.-S.; Bi, H.; Chen, Q. A Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product Over United States and Europe Using Ground-Based Measurements. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4929–4940. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Zeng, J.; Chen, K.-S.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales. Remote Sens. 2018, 10, 33. [Google Scholar] [CrossRef]
- Lievens, H.; Reichle, R.H.; Liu, Q.; De Lannoy, G.J.M.; Dunbar, R.S.; Kim, S.B.; Das, N.N.; Cosh, M.; Walker, J.P.; Wagner, W. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates. Geophys. Res. Lett. 2017, 44, 6145–6153. [Google Scholar] [CrossRef] [PubMed]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Njoku, E.G.; Yueh, S.H. Uncertainty Estimates in the SMAP Combined Active–Passive Downscaled Brightness Temperature. IEEE Trans. Geosci. Remote Sens. 2015, 54, 640–650. [Google Scholar] [CrossRef]
- Gao, L.; Sadeghi, M.; Ebtehaj, A. Microwave retrievals of soil moisture and vegetation optical depth with improved resolution using a combined constrained inversion algorithm: Application for SMAP satellite. Remote Sens. Environ. 2020, 239, 111662. [Google Scholar] [CrossRef]
- Jackson, T.; McNairn, H.; Weltz, M.; Brisco, B.; Brown, R. First order surface roughness correction of active microwave observations for estimating soil moisture. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1065–1069. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Chaubell, M.J.; Colliander, A.; Yueh, S.; Jagdhuber, T.; Chen, F.; Crow, W.; O’Neill, P.E.; et al. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sens. Environ. 2019, 233, 111380. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Mohseni, F.; Mokhtarzade, M. A new soil moisture index driven from an adapted long-term temperature-vegetation scatter plot using MODIS data. J. Hydrol. 2019, 581, 124420. [Google Scholar] [CrossRef]
- Galle, S.; Grippa, M.; Peugeot, C.; Moussa, I.B.; Cappelaere, B.; Demarty, J.; Mougin, E.; Panthou, G.; Adjomayi, P.; Agbossou, E.; et al. AMMA-CATCH, a Critical Zone Observatory in West Africa Monitoring a Region in Transition. Vadose Zone J. 2018, 17, 180062-24. [Google Scholar] [CrossRef]
- Ardö, J. A 10-Year Dataset of Basic Meteorology and Soil Properties in Central Sudan. Dataset Pap. Geosci. 2013, 2013, 297973. [Google Scholar] [CrossRef]
- van de Giesen, N.; Hut, R.; Selker, J. The trans-African hydro-meteorological observatory (TAHMO). Wiley Interdiscip. Rev. Water 2014, 1, 341–348. [Google Scholar] [CrossRef]
- Zreda, M.; Shuttleworth, W.J.; Zeng, X.; Zweck, C.; Desilets, D.; Franz, T.; Rosolem, R. COSMOS: The COsmic-ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef]
- Smith, A.B.; Walker, J.; Western, A.W.; Young, R.I.; Ellett, K.M.; Pipunic, R.C.; Grayson, R.B.; Siriwardena, L.; Chiew, F.H.S.; Richter, H.G. The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Hajdu, I.; Yule, I.; Bretherton, M.; Singh, R.; Hedley, C. Field performance assessment and calibration of multi-depth AquaCheck capacitance-based soil moisture probes under permanent pasture for hill country soils. Agric. Water Manag. 2019, 217, 332–345. [Google Scholar] [CrossRef]
- Yang, K. A Multi-Scale Soil Moisture and Freeze-Thaw Monitoring Network on the Tibetan Plateau and Its Applications. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2013; Volume 2013, p. H31F-1237. [Google Scholar]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al. The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. [Google Scholar] [CrossRef]
- Su, Z.; Wen, J.; Dente, L.; van der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. [Google Scholar] [CrossRef]
- Zhao, T.; Shi, J.; Lv, L.; Xu, H.; Chen, D.; Cui, Q.; Jackson, T.J.; Yan, G.; Jia, L.; Chen, L.; et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sens. Environ. 2020, 240, 111680. [Google Scholar] [CrossRef]
- Baldwin, D.; Naithani, K.J.; Lin, H. Combined soil-terrain stratification for characterizing catchment-scale soil moisture variation. Geoderma 2017, 285, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Musial, J.; Dabrowska-Zielinska, K.; Kiryla, W.; Oleszczuk, R.; Gnatowski, T.; Jaszczynski, J. Derivation and validation of the high resolution satellite soil moisture products: A case study of the Biebrza Sentinel-1 validation sites. Geoinf. Issues 2016, 8, 37–53. [Google Scholar]
- Al-Yaari, A.; Dayau, S.; Chipeaux, C.; Aluome, C.; Kruszewski, A.; Loustau, D.; Wigneron, J.-P. The AQUI Soil Moisture Network for Satellite Microwave Remote Sensing Validation in South-Western France. Remote Sens. 2018, 10, 1839. [Google Scholar] [CrossRef]
- Xaver, A.; Zappa, L.; Rab, G.; Pfeil, I.; Vreugdenhil, M.; Hemment, D.; Dorigo, W.A. Evaluating the suitability of the consumer low-cost Parrot Flower Power soil moisture sensor for scientific environmental applications. Geosci. Instrum. Methods Data Syst. 2020, 9, 117–139. [Google Scholar] [CrossRef]
- Blöschl, G.; Blaschke, A.P.; Broer, M.; Bucher, C.; Carr, G.; Chen, X.; Eder, A.; Exner-Kittridge, M.; Farnleitner, A.; Flores-Orozco, A.; et al. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: A hypothesis-driven observatory. Hydrol. Earth Syst. Sci. 2016, 20, 227–255. [Google Scholar] [CrossRef]
- Bircher, S.; Skou, N.; Jensen, K.H.; Walker, J.P.; Rasmussen, L. A soil moisture and temperature network for SMOS validation in Western Denmark. Hydrol. Earth Syst. Sci. 2012, 16, 1445–1463. [Google Scholar] [CrossRef]
- Alday, J.G.; Camarero, J.J.; Revilla, J.; De Dios, V.R. Similar diurnal, seasonal and annual rhythms in radial root expansion across two coexisting Mediterranean oak species. Tree Physiol. 2020, 40, 956–968. [Google Scholar] [CrossRef]
- Beyrich, F.; Adam, W.K. Site and Data Report for the Lindenberg Reference Site in CEOP-Phase 1; Deutscher Wetterdienst, Offenbach am Main (Germany): Offenbach, Germany, 2007. [Google Scholar]
- Petrakovic, I.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Goryl, P.; Crapolicchio, R.; Sabia, R.; Dietrich, S.; Dorigo, W.A. The International Soil Moisture Network: An open-source data hosting facility in support of meteorology and climate science. In Proceedings of the Copernicus Meetings 2021, Online, 6–10 September 2021. [Google Scholar]
- Calvet, J.-C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B. In situ soil moisture observations for the CAL/VAL of SMOS: The SMOSMANIA network. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007; pp. 1196–1199. [Google Scholar] [CrossRef]
- Zacharias, S.; Bogena, H.; Samaniego, L.; Mauder, M.; Fuß, R.; Pütz, T.; Frenzel, M.; Schwank, M.; Baessler, C.; Butterbach-Bahl, K.; et al. A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone J. 2010, 10, 955–973. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martínez-Fernández, J.; Llorens, P.; et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Kirchengast, G.; Kabas, T.; Leuprecht, A.; Bichler, C.; Truhetz, H. WegenerNet: A Pioneering High-Resolution Network for Monitoring Weather and Climate. Bull. Am. Meteorol. Soc. 2014, 95, 227–242. [Google Scholar] [CrossRef]
- Mattar, C.; Artigas, A.S.; Durán-Alarcón, C.; Olivera-Guerra, L.; Fuster, R.; Borvarán, D. The LAB-Net Soil Moisture Network: Application to Thermal Remote Sensing and Surface Energy Balance. Data 2016, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.R. Soil Temperature and Moisture Profile (STAMP) System Handbook; DOE Office of Science Atmospheric Radiation Measurement (ARM) Program, Department of Geodesy and Geoinformation: Vienna, Austria, 2016. [Google Scholar]
- Ojo, E.R.; Bullock, P.R.; L’Heureux, J.; Powers, J.; McNairn, H.; Pacheco, A. Calibration and Evaluation of a Frequency Domain Reflectometry Sensor for Real-Time Soil Moisture Monitoring. Vadose Zone J. 2015, 14, 1–12. [Google Scholar] [CrossRef]
- Leavesley, G.H.; David, O.; Garen, D.C.; Lea, J.; Marron, J.K.; Pagano, T.C.; Strobel, M.L. A modeling framework for improved agricultural water supply forecasting. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2008; Volume 2008, p. C21A-0497. [Google Scholar]
- Moghaddam, M.; Silva, A.R.; Clewley, D.; Akbar, R.; Hussaini, S.A.; Whitcomb, J.; Devarakonda, R.; Shrestha, R.; Cook, R.B.; Prakash, G.; et al. Soil Moisture Profiles and Temperature Data from SoilSCAPE Sites, USA; ORNL DAAC: Oak Ridge, TN, USA, 2016. [Google Scholar]
- Colliander, A.; Reichle, R.H.; Crow, W.T.; Cosh, M.H.; Chen, F.; Chan, S.; Das, N.N.; Bindlish, R.; Chaubell, J.; Kim, S.; et al. Validation of soil moisture data products from the NASA SMAP mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 364–392. [Google Scholar] [CrossRef]
- Gruber, A.; Crow, W.T.; Dorigo, W.A. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain. Water Resour. Res. 2018, 54, 1353–1367. [Google Scholar] [CrossRef]
- Quinn, N.W.; Newton, C.; Boorman, D.; Horswell, M.; West, H. Progress in evaluating satellite soil moisture products in Great Britain against COSMOS-UK and in-situ soil moisture measurements. In Proceedings of the EGU General Assembly Conference Abstracts, Online Event, 4–8 May 2020; p. 15831. [Google Scholar]
- Santi, E.; Baroni, F.; Fontanelli, G.; Lapini, A.; Paloscia, S.; Pettinato, S.; Pilia, S.; Ramat, G.; Santurri, L.; Cigna, F.; et al. Soil moisture mapping at high resolution by merging SMAP, Sentinel1 and COSMO SkyMed with the support of machine learning. In Microwave Remote Sensing: Data Processing and Applications; SPIE: Bellingham, WA, USA, 2021; Volume 11861, p. 1186107. [Google Scholar] [CrossRef]
- O’Neill, P.; Chan, S.; Njoku, E.; Jackson, T.; Bindlish, R. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016. [Google Scholar]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus global land cover layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef]
- Nachtergaele, F.; van Velthuizen, H.; Verelst, L.; Batjes, N.H.; Dijkshoorn, K.; van Engelen, V.W.P.; Fischer, G.; Jones, A.; Montanarela, L. The harmonized world soil database. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 34–37. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Long, D.G.; Brodzik, M.J. Optimum Image Formation for Spaceborne Microwave Radiometer Products. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2763–2779. [Google Scholar] [CrossRef]
- Buchhorn, M.; Smets, B.; Bertels, L.; Lesiv, M.; Tsendbazar, N. Copernicus Global Land Operations “Vegetation and Energy” CGLOPS-1. Prod. User Man. 2017. [Google Scholar]
- Pahlevan, N.; Chittimalli, S.K.; Balasubramanian, S.V.; Vellucci, V. Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. Remote Sens. Environ. 2019, 220, 19–29. [Google Scholar] [CrossRef]
- Huang, H.; Roy, D.P.; Boschetti, L.; Zhang, H.K.; Yan, L.; Kumar, S.S.; Gómez-Dans, J.; Li, J. Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination. Remote Sens. 2016, 8, 873. [Google Scholar] [CrossRef]
- Montzka, C.; Cosh, M.; Bayat, B.; Al Bitar, A.; Berg, A.; Bindlish, R.; Bogena, H.R.; Bolten, J.D.; Cabot, F.; Caldwell, T.; et al. Soil Moisture Product Validation Good Practices Protocol Version 1.0. In Good Practices for Satellite Derived Land Product Validation; NASA: Washington, DC, USA, 2020; p. 123. [Google Scholar]
- Beck, H.E.; Pan, M.; Miralles, D.G.; Reichle, R.H.; Dorigo, W.A.; Hahn, S.; Sheffield, J.; Karthikeyan, L.; Balsamo, G.; Parinussa, R.M.; et al. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors. Hydrol. Earth Syst. Sci. 2021, 25, 17–40. [Google Scholar] [CrossRef]
- Bulut, B.; Yilmaz, M.T.; Afshar, M.H.; Şorman, A.Ü.; Yücel, İ.; Cosh, M.H.; Şimşek, O. Evaluation of remotely-sensed and model-based soil moisture products according to different soil type, vegetation cover and climate regime using station-based observations over Turkey. Remote Sens. 2019, 11, 1875. [Google Scholar] [CrossRef]
- McNairn, H.; Jackson, T.J.; Wiseman, G.; Belair, S.; Berg, A.; Bullock, P.; Colliander, A.; Cosh, M.H.; Kim, S.-B.; Magagi, R.; et al. The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch Calibration and Validation of the SMAP Soil Moisture Algorithms. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2784–2801. [Google Scholar] [CrossRef]
- McCabe, M.F.; Gao, H.; Wood, E.F. Evaluation of AMSR-E-Derived Soil Moisture Retrievals Using Ground-Based and PSR Airborne Data during SMEX02. J. Hydrometeorol. 2005, 6, 864–877. [Google Scholar] [CrossRef]
- Albergel, C.; Zakharova, E.; Calvet, J.-C.; Zribi, M.; Pardé, M.; Wigneron, J.-P.; Novello, N.; Kerr, Y.; Mialon, A.; Fritz, N.-E. A first assessment of the SMOS data in southwestern France using in situ and airborne soil moisture estimates: The CAROLS airborne campaign. Remote Sens. Environ. 2011, 115, 2718–2728. [Google Scholar] [CrossRef]
- Colliander, A.; Cosh, M.H.; Misra, S.; Jackson, T.J.; Crow, W.; Chan, S.; Bindlish, R.; Chae, C.; Collins, C.H.; Yueh, S.H. Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15). Remote Sens. Environ. 2017, 196, 101–112. [Google Scholar] [CrossRef]
- Tavakol, A.; Rahmani, V.; Quiring, S.M.; Kumar, S.V. Evaluation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States. Remote Sens. Environ. 2019, 229, 234–246. [Google Scholar] [CrossRef]
- Kim, H.; Wigneron, J.-P.; Kumar, S.; Dong, J.; Wagner, W.; Cosh, M.H.; Bosch, D.D.; Collins, C.H.; Starks, P.J.; Seyfried, M.; et al. Global scale error assessments of soil moisture estimates from microwave-based active and passive satellites and land surface models over forest and mixed irrigated/dryland agriculture regions. Remote Sens. Environ. 2020, 251, 112052. [Google Scholar] [CrossRef]
- Zeng, Y.; Su, Z.; Calvet, J.-C.; Manninen, T.; Swinnen, E.; Schulz, J.; Roebeling, R.; Poli, P.; Tan, D.; Riihelä, A.; et al. Analysis of current validation practices in Europe for space-based climate data records of essential climate variables. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 150–161. [Google Scholar] [CrossRef]
- Su, Z.; Timmermans, W.; Zeng, Y.; Schulz, J.; John, V.; Roebeling, R.A.; Poli, P.; Tan, D.; Kaspar, F.; Kaiser-Weiss, A.K.; et al. An Overview of European Efforts in Generating Climate Data Records. Bull. Am. Meteorol. Soc. 2018, 99, 349–359. [Google Scholar] [CrossRef]
- Friesen, J.; Rodgers, C.; Oguntunde, P.G.; Hendrickx, J.M.H.; van de Giesen, N. Hydrotope-Based Protocol to Determine Average Soil Moisture Over Large Areas for Satellite Calibration and Validation With Results From an Observation Campaign in the Volta Basin, West Africa. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1995–2004. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.; De Lannoy, G.; Albergel, C.; Al-Yaari, A.; Brocca, L.; Calvet, J.-C.; Colliander, A.; Cosh, M.; Crow, W.; Dorigo, W.; et al. Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sens. Environ. 2020, 244, 111806. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- Albergel, C.; Dorigo, W.; Reichle, R.H.; Balsamo, G.; De Rosnay, P.; Munoz-Sabater, J.; Isaksen, L.; De Jeu, R.; Wagner, W. Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing. J. Hydrometeorol. 2013, 14, 1259–1277. [Google Scholar] [CrossRef]
- Escorihuela, M.J.; Chanzy, A.; Wigneron, J.-P.; Kerr, Y.H. Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sens. Environ. 2010, 114, 995–1001. [Google Scholar] [CrossRef]
- Shellito, P.J.; Small, E.E.; Colliander, A.; Bindlish, R.; Cosh, M.H.; Berg, A.A.; Bosch, D.D.; Caldwell, T.G.; Goodrich, D.C.; McNairn, H.; et al. SMAP soil moisture drying more rapid than observed in situ following rainfall events. Geophys. Res. Lett. 2016, 43, 8068–8075. [Google Scholar] [CrossRef]
- Mohseni, F.; Mokhtarzade, M. The synergistic use of microwave coarse-scale measurements and two adopted high-resolution indices driven from long-term T-V scatter plot for fine-scale soil moisture estimation. GISci. Remote Sens. 2021, 58, 455–482. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef]
- Wang, Y.; Leng, P.; Peng, J.; Marzahn, P.; Ludwig, R. Global assessments of two blended microwave soil moisture products CCI and SMOPS with in-situ measurements and reanalysis data. Int. J. Appl. Earth Obs. Geoinf. 2020, 94, 102234. [Google Scholar] [CrossRef]
- Pause, M.; Schweitzer, C.; Rosenthal, M.; Keuck, V.; Bumberger, J.; Dietrich, P.; Heurich, M.; Jung, A.; Lausch, A. In Situ/Remote Sensing Integration to Assess Forest Health—A Review. Remote Sens. 2016, 8, 471. [Google Scholar] [CrossRef]
- Guo, L.; Sun, X.; Fu, P.; Shi, T.; Dang, L.; Chen, Y.; Linderman, M.; Zhang, G.; Zhang, Y.; Jiang, Q.; et al. Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas. Geoderma 2021, 398, 115118. [Google Scholar] [CrossRef]
- Hatton, N.M. Use of Small Unmanned Aerial System for Validation of Sudden Death Syndrome in Soybean through Multispectral and Thermal Remote Sensing. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2018. [Google Scholar]
- Jiang, Y.; Wang, J.; Zhang, L.; Zhang, G.; Li, X.; Wu, J. Geometric Processing and Accuracy Verification of Zhuhai-1 Hyperspectral Satellites. Remote Sens. 2019, 11, 996. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sens. Environ. 2019, 237, 111594. [Google Scholar] [CrossRef]
- MirMazloumi, S.M.; Sahebi, M.R. Assessment of Different Backscattering Models for Bare Soil Surface Parameters Estimation from SAR Data in band C, L and P. Eur. J. Remote Sens. 2016, 49, 261–278. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Wigneron, J.-P.; Ducharne, A.; Kerr, Y.; de Rosnay, P.; de Jeu, R.; Govind, A.; Al Bitar, A.; Albergel, C.; Muñoz-Sabater, J.; et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates. Remote Sens. Environ. 2014, 149, 181–195. [Google Scholar] [CrossRef]
- Singh, G.; Das, N.N.; Panda, R.K.; Colliander, A.; Jackson, T.J.; Mohanty, B.P.; Entekhabi, D.; Yueh, S.H. Validation of SMAP Soil Moisture Products Using Ground-Based Observations for the Paddy Dominated Tropical Region of India. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8479–8491. [Google Scholar] [CrossRef]
- Mohseni, F.; Sadr, M.K.; Eslamian, S.; Areffian, A.; Khoshfetrat, A. Spatial and temporal monitoring of drought conditions using the satellite rainfall estimates and remote sensing optical and thermal measurements. Adv. Space Res. 2021, 67, 3942–3959. [Google Scholar] [CrossRef]
- van Leeuwen, P.J. Representation errors and retrievals in linear and nonlinear data assimilation. Q. J. R. Meteorol. Soc. 2015, 141, 1612–1623. [Google Scholar] [CrossRef]
- Gruber, A.; Su, C.-H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 200–211. [Google Scholar] [CrossRef]
- Montzka, C.; Bogena, H.R.; Herbst, M.; Cosh, M.H.; Jagdhuber, T.; Vereecken, H. Estimating the Number of Reference Sites Necessary for the Validation of Global Soil Moisture Products. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1530–1534. [Google Scholar] [CrossRef]
- Corbella, I.; Torres, F.; Camps, A.; Colliander, A.; Martin-Neira, M.; Ribó, S.; Rautiainen, K.; Duffo, N.; Vall-Llossera, M. MIRAS end-to-end calibration: Application to SMOS L1 processor. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1126–1134. [Google Scholar] [CrossRef]
- Colliander, A.; Fisher, J.B.; Halverson, G.; Merlin, O.; Misra, S.; Bindlish, R.; Jackson, T.J.; Yueh, S. Spatial Downscaling of SMAP Soil Moisture Using MODIS Land Surface Temperature and NDVI During SMAPVEX15. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2107–2111. [Google Scholar] [CrossRef]
- Amazirh, A.; Merlin, O.; Er-Raki, S.; Gao, Q.; Rivalland, V.; Malbeteau, Y.; Khabba, S.; Escorihuela, M.J. Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote Sens. Environ. 2018, 211, 321–337. [Google Scholar] [CrossRef]
- Senanayake, I.; Yeo, I.-Y.; Walker, J.; Willgoose, G. Estimating catchment scale soil moisture at a high spatial resolution: Integrating remote sensing and machine learning. Sci. Total Environ. 2021, 776, 145924. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. Quantifying the relative contributions of vegetation and soil moisture conditions to polarimetric C-Band SAR response in a temperate peatland. Remote Sens. Environ. 2018, 206, 123–138. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Sahebi, M.R.; Mohammadzadeh, A. Optimization approach to retrieve soil surface parameters from single-acquisition single-configuration SAR data. C. R. Geosci. 2019, 351, 332–339. [Google Scholar] [CrossRef]
- Ayres, E.; Colliander, A.; Cosh, M.H.; Roberti, J.A.; Simkin, S.; Genazzio, M.A. Validation of SMAP Soil Moisture at Terrestrial National Ecological Observatory Network (NEON) Sites Show Potential for Soil Moisture Retrieval in Forested Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10903–10918. [Google Scholar] [CrossRef]
- Colliander, A.; Cosh, M.H.; Kelly, V.R.; Kraatz, S.; Bourgeau-Chavez, L.; Siqueira, P.; Roy, A.; Konings, A.G.; Holtzman, N.; Misra, S.; et al. SMAP Detects Soil Moisture Under Temperate Forest Canopies. Geophys. Res. Lett. 2020, 47, e2020GL089697. [Google Scholar] [CrossRef]
- Chan, S. Ancillary Data Report: Static Water Fraction. Tech. Rep. JPL D-53059; Jet Propulsion Lab., California Institute of Technology: Pasadena, CA, USA, 2013. [Google Scholar]
- Das, N.N.; Entekhabi, D.; Njoku, E.G. An Algorithm for Merging SMAP Radiometer and Radar Data for High-Resolution Soil-Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1504–1512. [Google Scholar] [CrossRef]
- Dunbar, R. SMAP Ancillary Data Report on Precipitation; JPL D-53063; Jet Propulsion Lab., California Institute of Technology: Pasadena, CA, USA, 2013. [Google Scholar]
- Das, N. SMAP Ancillary Data Report on Soil Attributes; JPL D-53058; Jet Propulsion Lab., California Institute of Technology: Pasadena, CA, USA, 2013. [Google Scholar]
- Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Malbéteau, Y.; Merlin, O.; Molero, B.; Rüdiger, C.; Bacon, S. DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to SMOS and AMSR-E data in Southeastern Australia. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 221–234. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Schaefer, G.L.; Cosh, M.H.; Jackson, T.J. The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Ocean. Technol. 2007, 24, 2073–2077. [Google Scholar] [CrossRef]
ID | Site Name | No. (1) | No. (2) | Data Availability | Sampling Depth (m) | SM Detector | Reference |
---|---|---|---|---|---|---|---|
1 | AMMA-CATCH | 7 | 7 | 01/01/2006–31/12/2018 | 0.05–0.05 | CS616 | [49] |
2 | SD_DEM | 1 | 1 | 08/02/2002–12/11/2020 | 0.05–0.05 | Decagon 5TE | [50] |
3 | TAHMO | 70 | 21 | 17/06/2015–10/12/2021 | 0.05–0.05 | GS1, TEROS10, TEROS12 | [51] |
4 | COSMOS_1 | 8 | 5 | 03/02/2014–06/03/2020 | 00–0.05 | Cosmic-ray Probe | [52] |
5 | OZNET | 38 | 18 | 12/09/2001–27/08/2018 | 00–0.05 | CS615 EnviroSCAN Stevens Hydra Probe CS616 | [53] |
6 | COSMOS_2 | 11 | 2 | 28/11/2010–13/10/2019 | 00–0.17 | Cosmic-ray Probe | [52] |
7 | PTSMN | 20 | 20 | 30/10/2016–15/11/2018 | 0.07–0.13 | AquaCheck | [54] |
8 | CTP_SMTMN | 57 | 54 | 01/08/2010–19/09/2016 | 00–0.05 | EC-TM, 5TM | [55] |
9 | KIHS_CMC | 18 | 18 | 28/03/2018–10/12/2019 | 0.10–0.10 | Soilmoisture Equipment Corp, Buriable Waveguide | [56] |
10 | KIHS_SMC | 19 | 19 | 27/03/2018–05/12/2019 | 0.10–0.10 | Soilmoisture Equipment Corp, Buriable Waveguide, | [56] |
11 | MAQU | 27 | 21 | 13/05/2008–01/06/2019 | 0.05–0.05 | ECH20 EC-TM | [57] |
12 | NAQU | 11 | 9 | 15/06/2010–12/09/2019 | 0.05–0.05 | 5TM | [57] |
13 | NGARI | 23 | 13 | 12/07/2010–10/09/2019 | 0.05–0.05 | 5TM | [57] |
14 | SMN/SDR | 34 | 21 | 25/07/2018–31/12/2019 | 0.03–0.03 | 5TM | [58] |
15 | VDS | 4 | 4 | 01/06/2017–13/02/2021 | 0.01–0.10 | GS1 Port 2–5, TEROS12 | [59] |
16 | BIEBRZA_S-1 | 30 | 18 | 23/04/2015–01/12/2018 | 0.05–0.05 | GS-3 | [60] |
17 | FR_Aqui | 5 | 3 | 01/01/2012–01/01/2021 | 0.01–0.01 | ThetaProbe ML2X | [61] |
18 | GROW | 150 | 37 | 08/02/2017–08/10/2019 | 00–0.10 | Flower Power | [62] |
19 | HOAL | 33 | 32 | 11/07/2013–31/12/2020 | 0.05–0.05 | SPADE Time Domain Transmissivity | [63] |
20 | HOBE | 32 | 29 | 08/09/2009–13/03/2019 | 00–0.05 | Decagon 5TE | [64] |
21 | IPE | 2 | 1 | 03/04/2008–25/03/2020 | 00–0.06 | Campbell Scientific, CS650, | [65] |
22 | MOL/RAO | 2 | 1 | 01/01/2003–30/06/2020 | 0.08–0.08 | TRIME-EZ | [66] |
23 | REMEDHUS | 24 | 20 | 15/03/2005–01/01/2021 | 00–0.05 | Stevens Hydra Probe | [48] |
24 | Ru_CFR | 2 | 2 | 25/05/2015–31/12/2020 | 0.05–0.05 | Hydraprobe II | [67] |
25 | SMOSMANIA | 23 | 7 | 01/01/2007–01/01/2020 | 0.05–0.05 | ThetaProbe ML2X | [68] |
26 | TERENO | 5 | 4 | 31/12/2009–05/08/2021 | 0.05–0.05 | Hydraprobe II Sdi-12 | [69] |
27 | UMBRIA | 17 | 1 | 09/10/2002–31/12/2017 | 0.05–0.15 | EnviroSCAN | [70] |
28 | WEGENERNET | 12 | 12 | 01/01/2007–03/11/2021 | 0.20–0.20 | Hydraprobe II | [71] |
29 | LAB-net | 4 | 2 | 18/07/2014–14/07/2020 | 0.07–0.07 | Campbell Scientific, CS616 | [72] |
30 | ARM | 35 | 10 | 29/06/1993–02/10/2021 | 0.02–0.02 | Hydraprobe II Sdi-12 E | [73] |
31 | COSMOS_3 | 109 | 9 | 28/04/2008–29/03/2020 | 0.00–0.04 | Cosmic-ray Probe | [52] |
32 | FLUXNET/AMERIFLUX | 8 | 4 | 01/01/2000–21/07/2020 | 0.00–00 | ThetaProbe ML2X | [67] |
33 | RISMA | 24 | 21 | 24/04/2013–25/03/2020 | 00–0.05 | Hydraprobe II Sdi-12 | [74] |
34 | SNOTEL | 441 | 85 | 01/10/1980–16/11/2021 | 00–00 | Hydraprobe Analog (2.5 Volt) | [75] |
35 | SOILSCAPE | 171 | 30 | 08/03/2011–29/03/2017 | 0.04–0.04 | EC5 | [76] |
Dataset | Data Type and Description | Spatial Resolution | Revisit Time | Temporal Coverage | Reference |
---|---|---|---|---|---|
L2_ SM _SP (SPL2SMAP_S) | Remotely sensed SM map (L-band, C-band, active/passive) | 3 km × 3 km | 6–12 days | 2015 to present | [14] |
SPL3SMP_E | Remotely sensed SM map (L band, passive) | 9 km × 9 km | 1–2 days | 2015 to present | [81] |
CGLSLC100 | Model-based land-cover product | 100 m | 3 years | 2015 to present | [82] |
HWSD | harmonized soil property dataset | 30 arc-second | - | 2008 to present | [83] |
Sentinel-2A/B | Multispectral/multiresolution remotely sensed image | 10 m to 60 m | ~5 days | 2015 to present | [84] |
Site Name | SM | NDVI | No. of Pixels | No. of Pixels with More Than One Stations | No. of Data | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Overall | Spring | Summer | Fall | Winter | |||
AMMA-CATCH | 0.006 | 0.154 | 0.037 | 0.13 | 0.35 | 0.20 | 6 | 1 (2) | 645 | 150 | 181 | 175 | 139 |
SD_DEM | 0.014 | 0.147 | 0.038 | 0.10 | 0.27 | 0.15 | 1 | _ | 105 | 22 | 28 | 28 | 27 |
TAHMO | 0.014 | 0.418 | 0.236 | 0.20 | 0.46 | 0.34 | 21 | _ | 2369 | 637 | 435 | 581 | 716 |
COSMOS | 0.047 | 0.455 | 0.167 | 0.15 | 0.38 | 0.23 | 5 | _ | 368 | 62 | 106 | 107 | 93 |
OZNET | 0.001 | 0.558 | 0.154 | 0.18 | 0.56 | 0.28 | 18 | _ | 2087 | 649 | 499 | 444 | 495 |
COSMOS_2 | 0.172 | 0.517 | 0.295 | 0.20 | 0.56 | 0.42 | 2 | _ | 147 | 41 | 34 | 35 | 37 |
PTSMN | 0.149 | 0.503 | 0.394 | 0.13 | 0.63 | 0.47 | 4 | 4 (3, 3, 6, 8) | 1458 | 438 | 390 | 294 | 336 |
CTP_SMTMN | 0.023 | 0.568 | 0.204 | 0.20 | 0.62 | 0.27 | 50 | 2 (4, 2) | 172 | 0 | 0 | 172 | 0 |
KIHS_CMC | 0.107 | 0.273 | 0.202 | 0.19 | 0.52 | 0.36 | 18 | 1 (18) | 129 | 25 | 45 | 44 | 15 |
KIHS_SMC | 0.081 | 0.201 | 0.121 | 0.19 | 0.52 | 0.38 | 19 | 1 (19) | 74 | 19 | 24 | 23 | 8 |
MAQU | 0.054 | 0.627 | 0.315 | 0.19 | 0.56 | 0.37 | 19 | 2 (2) | 1941 | 773 | 709 | 374 | 85 |
NAQU | 0.027 | 0.311 | 0.151 | 0.20 | 0.33 | 0.22 | 8 | 1 (2) | 1144 | 426 | 516 | 153 | 49 |
NGARI | 0.025 | 0.331 | 0.102 | 0.11 | 0.25 | 0.18 | 13 | _ | 1103 | 431 | 555 | 82 | 35 |
SMN-SDR | 0.059 | 0.363 | 0.158 | 0.15 | 0.44 | 0.26 | 20 | 1 (2) | 1355 | 240 | 627 | 430 | 58 |
VDS | 0.006 | 0.452 | 0.208 | 0.20 | 0.40 | 0.27 | 4 | _ | 712 | 103 | 171 | 209 | 229 |
BIEBRZA_S-1 | 0.275 | 0.795 | 0.548 | 0.12 | 0.59 | 0.34 | 2 | 2 (9, 9) | 1711 | 455 | 448 | 485 | 323 |
FR_Aqui | 0.031 | 0.389 | 0.144 | 0.12 | 0.59 | 0.31 | 3 | _ | 3283 | 853 | 849 | 869 | 712 |
GROW | 0.001 | 0.448 | 0.254 | 0.07 | 0.55 | 0.24 | 4 | 4 (16, 15, 4, 2) | 1308 | 312 | 348 | 363 | 285 |
HOAL | 0.180 | 0.499 | 0.339 | 0.13 | 0.46 | 0.26 | 1 | 1 (32) | 258 | 54 | 57 | 90 | 57 |
HOBE | 0.017 | 0.758 | 0.207 | 0.08 | 0.56 | 0.34 | 20 | 6 (3, 3, 3, 2, 2, 2) | 5448 | 1362 | 1464 | 1416 | 1206 |
IPE | 0.155 | 0.319 | 0.233 | 0.20 | 0.68 | 0.40 | 1 | _ | 214 | 48 | 57 | 68 | 41 |
MOL-RAO | 0.044 | 0.303 | 0.154 | 0.18 | 0.53 | 0.31 | 1 | _ | 576 | 158 | 137 | 150 | 131 |
REMEDHUS | 0.001 | 0.750 | 0.128 | 0.15 | 0.40 | 0.25 | 20 | _ | 15,813 | 3618 | 3956 | 4499 | 3740 |
Ru_CFR | 0.221 | 0.755 | 0.565 | 0.12 | 0.63 | 0.34 | 1 | 1 (2) | 2404 | 630 | 758 | 633 | 383 |
SMOSMANIA | 0.029 | 0.475 | 0.182 | 0.15 | 0.63 | 0.30 | 7 | _ | 5966 | 1268 | 1437 | 1814 | 1447 |
TERENO | 0.011 | 0.843 | 0.410 | 0.20 | 0.50 | 0.33 | 4 | _ | 5660 | 1362 | 1361 | 1578 | 1359 |
UMBRIA | 0.155 | 0.319 | 0.233 | 0.20 | 0.68 | 0.40 | 1 | _ | 216 | 48 | 57 | 68 | 43 |
WEGENERNET | 0.180 | 0.576 | 0.389 | 0.14 | 0.62 | 0.37 | 8 | 3 (3, 2, 2) | 9799 | 2449 | 2560 | 2528 | 2262 |
LAB-net | 0.172 | 0.510 | 0.283 | 0.07 | 0.14 | 0.10 | 2 | 532 | 106 | 124 | 153 | 149 | |
ARM | 0.015 | 0.469 | 0.264 | 0.15 | 0.20 | 0.18 | 10 | _ | 539 | 106 | 59 | 190 | 184 |
COSMOS | 0.172 | 0.517 | 0.295 | 0.13 | 0.29 | 0.18 | 9 | _ | 978 | 253 | 274 | 235 | 216 |
FLUXNET-AMERIFLUX | 0.004 | 0.520 | 0.266 | 0.13 | 0.46 | 0.26 | 4 | _ | 2196 | 552 | 519 | 551 | 574 |
RISMA | 0.023 | 0.563 | 0.268 | 0.10 | 0.63 | 0.36 | 19 | 2 (2, 2) | 2187 | 804 | 890 | 455 | 38 |
SNOTEL | 0.001 | 0.364 | 0.128 | 0.09 | 0.62 | 0.30 | 85 | _ | 12,917 | 3799 | 2978 | 3199 | 2941 |
SOILSCAPE | 0.049 | 0.340 | 0.216 | 0.20 | 0.41 | 0.25 | 30 | _ | 2479 | 358 | 641 | 755 | 725 |
Overall | 440 | 31 | 88,293 | 22,611 | 23,294 | 23,250 | 19,138 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohseni, F.; Mirmazloumi, S.M.; Mokhtarzade, M.; Jamali, S.; Homayouni, S. Global Evaluation of SMAP/Sentinel-1 Soil Moisture Products. Remote Sens. 2022, 14, 4624. https://doi.org/10.3390/rs14184624
Mohseni F, Mirmazloumi SM, Mokhtarzade M, Jamali S, Homayouni S. Global Evaluation of SMAP/Sentinel-1 Soil Moisture Products. Remote Sensing. 2022; 14(18):4624. https://doi.org/10.3390/rs14184624
Chicago/Turabian StyleMohseni, Farzane, S. Mohammad Mirmazloumi, Mehdi Mokhtarzade, Sadegh Jamali, and Saeid Homayouni. 2022. "Global Evaluation of SMAP/Sentinel-1 Soil Moisture Products" Remote Sensing 14, no. 18: 4624. https://doi.org/10.3390/rs14184624