Analysis of Lava from the Cumbre Vieja Volcano Using Remote Sensing Data from DESIS and Sentinel-2
Abstract
:1. Introduction
2. Optical Remote Sensing Data
Energy Balance Equation
3. Analysis and Results
- 1. Extract the temperature per band. With only one available NIR channel in the case of Sentinel-2 (the SWIR channels were saturated), the emissivity of the hot body at the band central wavelength is assumed and the reflectance is extracted from the adjacent ground. Then, the remaining variable, the temperature of the hot body, can be determined. This approach will be discussed in Section 3.1.
- 2. Model the radiance through a least squares fitting of the unknown variables (, , and T) together. This approach can only be carried out when more than three spectral channels are available. This is the case for hyperspectral sensors (Section 3.2).
3.1. Sentinel-2
3.2. DESIS
3.2.1. Hot Fluid Lava Mask
3.2.2. Model Fit to Hyperspectral Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATCOR | ATmospheric CORrection |
AVHRR | Advanced Very High Resolution Radiometer |
BOA | Bottom-Of-Atmosphere |
DEM | Digital Elevation Model |
DESIS | DLR Earth Sensing Imaging Spectrometer |
DN | Digital Number |
EMIT | Earth Surface Mineral Dust Source Investigation |
EnMAP | Environmental Mapping and Analysis Program |
FWC | Full-Well Capacity |
FWHM | Full Width at Half Maximum |
GRI | Global Reference Image |
GSD | Ground Sampling Distance |
IDL | Interface Definition Language |
ISS | International Space Station |
L1C | Level-1 C products level |
LFWC | Linear Full-Well Capacity |
LUTs | Look-Up Tables |
MIR | Mid-InfraRed |
MIROVA | Middle InfraRed Observation of Volcanic Activity |
MODIS | Moderate Resolution Imaging Spectrometer |
MODTRAN | MODerate resolution atmospheric TRANsmission |
NHI | Normalized Hotspot Index |
NIR | Near InfraRed |
NOAA | National Oceanic and Atmospheric Administration |
PACO | Python-based Atmospheric COrrection |
PRISMA | PRecursore IperSpettrale della Missione Applicativa |
RGB | Red–Green–Blue bands |
RMSE | Root Mean Square Error |
RT | Radiative Transfer |
SLSTR | Sea and Land Surface Temperature Radiometer |
SWIR | Short-Wave InfraRed |
TADR | Time-Averaged Discharge Rate |
TM | Thermatic Mapper |
TOA | Top-Of-Atmosphere |
UTC | Coordinated Universal Time |
VIIRS | Visible Infrared Imaging Radiometer Suite |
VRP | Volcanic Radiative Power |
References
- Oppenheimer, C.; Francis, P.W. Remote Sensing of Heat, Lava and Fumarole Emissions from Erta ‘Ale Volcano, Ethiopia. Int. J. Remote Sens. 1997, 18, 1661–1692. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.P.; Harris, A.J.L. Evolution of Lava Flow-fields at Mount Etna, 27–28 October 1999, Observed by Landsat 7 ETM+. Bull. Volcanol. 2001, 63, 1–7. [Google Scholar] [CrossRef]
- Plank, S.; Shevchenko, A.; d’Angelo, P.; Gstaiger, V.; Gonzalez, P.; Cesca, S.; Martinis, S.; Walter, T. Combining thermal, tri-stereo optical and bi-static InSAR satellite imagery for lava volume estimates: The 2021 Cumbre Vieja eruption. Sci. Rep. 2023, 13, 2057. [Google Scholar] [CrossRef]
- Kaneko, T.; Wooster, M.J.; Nakada, S. Exogenous and Endogenous Growth of the Unzen Lava Dome Examined by Satellite Infrared Image Analysis. J. Volcanol. Geotherm. Res. 2002, 116, 151–160. [Google Scholar] [CrossRef]
- Francis, P.; Rothery, D. Using the Landsat Thematic Mapper to detect and monitor active volcanoes: An example from Lascar volcano, Northern Chile. Geology 1987, 15, 614–617. [Google Scholar] [CrossRef]
- Wiesnet, D.R.; D’Aguanno, J. Thermal imagery of mount Erebus from the NOAA-6 satellite. Antarct. J. United States 1982, 17, 32–34. [Google Scholar]
- Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- Rothery, D.; Francis, P.; Wood, C. Volcano monitoring using short wavelength infrared data from satellites. J. Geophys. Res. 1988, 93, 7993–8008. [Google Scholar] [CrossRef]
- Wooster, M.J.; Kaneko, T. Testing the accuracy of solar-reflected radiation corrections applied during satellite shortwave infrared thermal analysis of active volcanoes. J. Geophys. Res. Solid Earth 2001, 106, 13381–13393. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Blake, S.; Rothery, D.A.; Stevens, N.F. A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: Implications for real-time thermal volcano monitoring. J. Geophys. Res. 1997, 102, 7985–8003. [Google Scholar] [CrossRef]
- Wright, R. MODVOLC: 14 years of autonomous observations of effusive volcanism from space. In Detecting, Modelling and Responding to Effusive Eruptions; Harris, A.J.L., De Groeve, T., Garel, F., Carn, S.A., Eds.; Geological Society: London, UK, 2016; pp. 23–54. [Google Scholar]
- Coppola, D.; Laiolo, M.; Cigolini, C.; Delle Donne, D.; Ripepe, M. Enhanced volcanic hot-spot detection using MODIS IR data: Results from the MIROVA system. In Detecting, Modelling and Responding to Effusive Eruptions; Harris, A.J.L., De Groeve, T., Garel, F., Carn, S.A., Eds.; Geological Society: London, UK, 2016; pp. 181–205. [Google Scholar]
- Wooster, M.J.; Zhukov, B.; Oertel, D. Derivation from the BIRD experimental satellite and comparison to MODIS Fire products. Remote Sens. Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Dehn, J.; Calvari, S. Lava effusion rate definition and measurement: A review. Bull. Volcanol. 2007, 70, 1–22. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Chevrel, M.O.; Coppola, D.; Ramsey, M.S.; Hrysiewicz, A.; Thivet, S.; Villeneuve, N.; Favalli, M.; Peltier, A.; Kowalski, P.; et al. Validation of an integrated satellite-data-driven response to an effusive crisis: The April–May 2018 eruption of Piton De La Fournaise. Ann. Geophys. 2019, 61, 1–18. [Google Scholar] [CrossRef]
- Zakšek, K.; Hort, M.; Lorenz, E. Satellite and Ground Based Thermal Observation of the 2014 Effusive Eruption at Stromboli Volcano. Remote Sens. 2015, 7, 17190–17211. [Google Scholar] [CrossRef]
- Casalbore, D.; Di Traglia, F.; Bosman, A.; Romagnoli, C.; Casagli, N.; Chiocci, F.L. Submarine and Subaerial Morphological Changes Associated with the 2014 Eruption at Stromboli Island. Remote Sens. 2021, 13, 2043. [Google Scholar] [CrossRef]
- Di Traglia, F.; Fornaciai, A.; Casalbore, D.; Favalli, M.; Manzella, I.; Romagnoli, C.; Chiocci, F.L.; Cole, P.; Nolesini, T.; Casagli, N. Subaerial-submarine morphological changes at Stromboli volcano (Italy) induced by the 2019–2020 eruptive activity. Geomorphology 2022, 400, 108093. [Google Scholar] [CrossRef]
- Genzano, N.; Marchese, F.; Plank, S.; Pergola, N. Monitoring the Mauna Loa (Hawaii) eruption of November-December 2022 from space: Results from GOES-R, Sentinel-2 and Landsat-8/9 observations. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103388. [Google Scholar] [CrossRef]
- Civico, R.; Ricci, T.; Scarlato, P.; Taddeucci, J.; Andronico, D.; Del Bello, E.; D’Auria, L.; Hernández, P.A.; Pérez, N.M. High-resolution digital surface model of the 2021 eruption deposit of Cumbre Vieja volcano, La Palma, Spain. Sci. Data 2022, 9, 435. [Google Scholar] [CrossRef]
- Bonadonna, C.; Pistolesi, M.; Biass, S.; Voloschina, M.; Romero, J.; Coppola, D.; Folch, A.; D’Auria, L.; Martin-Lorenzo, A.; Dominguez, L.; et al. Physical Characterization of Long-Lasting Hybrid Eruptions: The 2021 Tajogaite Eruption of Cumbre Vieja (La Palma, Canary Islands). J. Geophys. Res. Solid Earth 2022, 127, e2022JB025302. [Google Scholar] [CrossRef]
- Bonadonna, C.; Pistolesi, M.; Dominguez, L.; Freret-Lorgeril, V.; Rossi, E.; Fries, A.; Biass, S.; Voloschina, M.; Lemus, J.; Romero, J.; et al. Tephra sedimentation and grainsize associated with pulsatory activity: The 2021 Tajogaite eruption of Cumbre Vieja (La Palma, Canary Islands, Spain). Front. Earth Sci. 2023, 11. [Google Scholar] [CrossRef]
- Barsi, J.; Lee, K.; Kvaran, G.; Markham, B.; Pedelty, J. The Spectral Response of the Landsat-8 Operational Land Imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Drusch, M.; Bello, U.D.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Storch, T.; Honold, H.P.; Chabrillat, S.; Habermeyer, M.; Tucker, P.; Brell, M.; Ohndorf, A.; Wirth, K.; Betz, M.; Kuchler, M.; et al. The EnMAP imaging spectroscopy mission towards operations. Remote Sens. Environ. 2023, 294, 113632. [Google Scholar] [CrossRef]
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al. The PRISMA imaging spectroscopy mission: Overview and first performance analysis. Remote Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Connelly, D.S.; Thompson, D.R.; Mahowald, N.M.; Li, L.; Carmon, N.; Okin, G.S.; Green, R.O. The EMIT mission information yield for mineral dust radiative forcing. Remote Sens. Environ. 2021, 258, 112380. [Google Scholar] [CrossRef]
- Richter, R. Schläpfer. Atmospheric and Topographic Correction (ATCOR Theoretical Background Document). 2019. Available online: https://www.rese-apps.com/pdf/atcor_atbd.pdf (accessed on 15 January 2024).
- de los Reyes, R.; Langheinrich, M.; Schwind, P.; Richter, R.; Pflug, B.; Bachmann, M.; Müller, R.; Carmona, E.; Zekoll, V.; Reinartz, P. PACO: Python-Based Atmospheric Correction. Sensors 2020, 20, 1428. [Google Scholar] [CrossRef]
- Li, H.; Andújar, J.; Slodczyk, A.; De Sousa Meneses, D.; Scaillet, B.; Echegut, P.; Biren, J.; Oppenheimer, C. Spectral Emissivity of Phonolite Lava at High Temperature. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Biren, J.; Cosson, L.; del Campo, L.; Genevois, C.; Veron, E.; Ory, S.; Li, H.; Slodczyk, A.; Andújar, J. Exploring the in situ high temperature emissivity of 2014–2015 Bardarbunga magmas. In Proceedings of the vEGU21, Gather Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The Shuttle Radar Topography Mission—A New Class of Digital Elevation Models Acquired by Spaceborne Radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Sentinel-2 MSI Technical Guide: Radiometric Performance. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/mission-performance (accessed on 15 January 2024).
- Alonso, K.; Bachmann, M.; Burch, K.; Carmona, E.; Cerra, D.; de los Reyes, R.; Dietrich, D.; Heiden, U.; Hölderlin, A.; Ickes, J.; et al. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019, 19, 4471. [Google Scholar] [CrossRef] [PubMed]
- Marchese, F.; Genzano, N.; Neri, M.; Falconieri, A.; Mazzeo, G.; Pergola, N. A Multi-channel algorithm for mapping volcanic thermal anomalies by means of Sentinel-2 MSI and Landsat-8 OLI data. Remote Sens. 2019, 11, 2876. [Google Scholar] [CrossRef]
- Corradino, C.; Amato, E.; Torrisi, F.; Del Negro, C. Data-Driven Random Forest Models for Detecting Volcanic Hot Spots in Sentinel-2 MSI Images. Remote Sens. 2022, 14, 4370. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.J.; Adler-Golden, S.M.; Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN 5: A Reformulated Atmospheric Band Model with Auxiliary Species and Practical Multiple Scattering Options: Update. Available online: https://api.semanticscholar.org/CorpusID:204176927 (accessed on 15 January 2024).
- Carmona, E.; Alonso, K.; Bachmann, M.; Burch, K.; Cerra, D.; de los Reyes, R.; Heiden, U.; Knodt, U.; Krutz, D.; Marshall, D.; et al. Vicarious Calibration of The Desis Imaging Spectrometer: Status and Plans. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 4587–4590. [Google Scholar]
- Romero, J.E.; Burton, M.; Cáceres, F.; Taddeucci, J.; Civico, R.; Ricci, T.; Pankhurst, M.J.; Hernández, P.A.; Bonadonna, C.; Llewellin, E.W.; et al. The initial phase of the 2021 Cumbre Vieja ridge eruption (Canary Islands): Products and dynamics controlling edifice growth and collapse. J. Volcanol. Geotherm. Res. 2022, 431, 107642. [Google Scholar] [CrossRef]
- Lombardo, V.; Pick, L.; Spinetti, C.; Tadeucci, J.; Zakšek, K. Temperature and Emissivity Separation ‘Draping’ Algorithm Applied to Hyperspectral Infrared Data. Remote Sens. 2020, 12, 2046. [Google Scholar] [CrossRef]
- Hernandez-Pacheco, A.; Valls, M.C. The historic eruptions of La Palma (Canaries), Arquipélago. Série Ciências Da Nat. 1982, 3, 83–94. [Google Scholar]
- Klügel, A.; Hoernle, K.A.; Schmincke, H.U.; White, J.D.L. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrological evolution and magma supply dynamics of a rift zone eruption. J. Geophys. Res. 2000, 105, 5997–6016. [Google Scholar] [CrossRef]
Channel | DN | DN (bg) | L (TOA) | L (TOA, emitted) |
---|---|---|---|---|
B8A | 8430 | 1462 | 8.430 | 6.968 |
B11 | 44,086 | 3380 | 8.817 | 8.142 |
B12 | 60,048 | 15,012 | 3.002 | 2.252 |
Channel | T1 (K) | T2 (K) | T3 (K) |
---|---|---|---|
B8A | 1117 | 1103 | 1118 |
B11 | 760 | 755 | 764 |
B12 | 580 | 566 | 573 |
Date | Time | datatakeID | () | Off-Nadir () |
---|---|---|---|---|
30th September | 14:12 | 638761160 | 35.6 | 19.3 |
15th October | 17:01 | 644308832 | 69.4 | 5.4 |
Date | T [K] | RMSET [K] | RMSEϵ | [%/100] | RMSE [%/100] | |
---|---|---|---|---|---|---|
30th September | 1159 ± 2 | 111 | 0.09 ± 0.001 | 0.25 | 0.17 ± 0.00 | 0.02 |
15th October | 1237 ± 2 | 184 | 0.040 ± 0.001 | 0.246 | 0.260 ± 0.001 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Los Reyes, R.; Richter, R.; Plank, S.; Marshall, D. Analysis of Lava from the Cumbre Vieja Volcano Using Remote Sensing Data from DESIS and Sentinel-2. Remote Sens. 2024, 16, 351. https://doi.org/10.3390/rs16020351
De Los Reyes R, Richter R, Plank S, Marshall D. Analysis of Lava from the Cumbre Vieja Volcano Using Remote Sensing Data from DESIS and Sentinel-2. Remote Sensing. 2024; 16(2):351. https://doi.org/10.3390/rs16020351
Chicago/Turabian StyleDe Los Reyes, Raquel, Rudolf Richter, Simon Plank, and David Marshall. 2024. "Analysis of Lava from the Cumbre Vieja Volcano Using Remote Sensing Data from DESIS and Sentinel-2" Remote Sensing 16, no. 2: 351. https://doi.org/10.3390/rs16020351
APA StyleDe Los Reyes, R., Richter, R., Plank, S., & Marshall, D. (2024). Analysis of Lava from the Cumbre Vieja Volcano Using Remote Sensing Data from DESIS and Sentinel-2. Remote Sensing, 16(2), 351. https://doi.org/10.3390/rs16020351