Estimation of Soil Organic Carbon Density on the Qinghai–Tibet Plateau Using a Machine Learning Model Driven by Multisource Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Resources
2.2.1. Soil Sampling Data
2.2.2. Remote Sensing Data
2.2.3. Other Data
2.3. Calculation of Importance of Driving Factors
2.4. Topsoil SOC Density Estimation Model
2.5. Model Accuracy Comparison
2.6. Mapping Spatial Distribution of SOC
3. Results
3.1. Statistical Analysis of Topsoil SOC Density
3.2. Comparison of Accuracy of Different Models in Estimating Topsoil SOC Density
4. Discussion
4.1. Spatial Distribution Analysis of Topsoil SOC Density
4.2. Variable Importance Analysis
4.3. Comparison with Other Soil Products
4.4. Uncertainty
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caddeo, A.; Marras, S.; Sallustio, L.; Spano, D.; Sirca, C. Soil organic carbon in Italian forests and agroecosystems: Estimating current stock and future changes with a spatial modelling approach. Agric. For. Meteorol. 2019, 278, 107654. [Google Scholar] [CrossRef]
- Domke, G.M.; Perry, C.H.; Walters, B.F.; Nave, L.E.; Woodall, C.W.; Swanston, C.W. Toward inventory-based estimates of soil organic carbon in forests of the United States. Ecol. Appl. 2017, 27, 1223–1235. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M. Estimation of soil organic carbon in the forest catchment of two hydroelectric reservoirs in Uttarakhand, India. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 991–1001. [Google Scholar] [CrossRef]
- Houghton, R.A. Land-use change and the carbon cycle. Glob. Change Biol. 1995, 1, 275–287. [Google Scholar] [CrossRef]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil carbon pools and world life zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Johnston, C.A.; Johnston, C.A.; Groffman, P.; Breshears, D.D.; Cardon, Z.G.; Currie, W.; Emanuel, W.; Gaudinski, J.; Jackson, R.B.; Lajtha, K.; et al. Carbon cycling in soil. Front. Ecol. Environ. 2004, 2, 522–528. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Boivin, P.; Schäffer, B.; Sturny, W. Quantifying the relationship between soil organic carbon and soil physical properties using shrinkage modelling. Eur. J. Soil Sci. 2009, 60, 265–275. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Shen, C.; Ye, H.; Du, Y. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma 2012, 171, 35–43. [Google Scholar] [CrossRef]
- Genxing, P. Study on Carbon Reservoir in Soils of China. Sci. Technol. Bull. 1999, 15, 330–332. [Google Scholar]
- Wielopolski, L.; Hendrey, G.; Johnsen, K.H.; Mitra, S.; Prior, S.A.; Rogers, H.H.; Torbert, H.A. Nondestructive system for analyzing carbon in the soil. Soil Sci. Soc. Am. J. 2008, 72, 1269–1277. [Google Scholar] [CrossRef]
- Ward, K.J.; Chabrillat, S.; Brell, M.; Castaldi, F.; Spengler, D.; Foerster, S. Mapping Soil Organic Carbon for Airborne and Simulated EnMAP Imagery Using the LUCAS Soil Data-base and a Local PLSR. Remote Sens. 2020, 12, 3451. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, D.; Zhang, H.; Shi, P. Soil organic carbon content retrieved by UAV-borne high-resolution spectrometer. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2021, 37, 66–72. [Google Scholar]
- Poggio, L.; Gimona, A. Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas. Sci. Total Environ. 2017, 579, 1094–1110. [Google Scholar] [CrossRef] [PubMed]
- Bousbih, S.; Zribi, M.; Lili-Chabaane, Z.; Baghdadi, N.; El Hajj, M.; Gao, Q.; Mougenot, B. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters. Sensors 2017, 17, 2617. [Google Scholar] [CrossRef]
- Mengen, D.; Montzka, C.; Jagdhuber, T.; Fluhrer, A.; Brogi, C.; Baum, S.; Schüttemeyer, D.; Bayat, B.; Bogena, H.; Coccia, A.; et al. The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture. Remote Sens. 2021, 13, 825. [Google Scholar] [CrossRef]
- Gorrab, A.; Zribi, M.; Baghdadi, N.; Mougenot, B.; Chabaane, Z.L. Potential of X-Band TerraSAR-X and COSMO-SkyMed SAR Data for the Assessment of Physical Soil Parameters. Remote Sens. 2015, 7, 747–766. [Google Scholar] [CrossRef]
- Yang, R.; Rossiter, D.G.; Liu, F.; Lu, Y.; Yang, F.; Yang, F.; Zhao, Y.; Li, D.; Zhang, G. Predictive Mapping of Topsoil Organic Carbon in an Alpine Environment Aided by Landsat TM. PLoS ONE 2015, 10, e0139042. [Google Scholar] [CrossRef]
- Nie, X.; Chen, H.; Niu, Z.; Zhang, L.; Liu, W.; Xing, S.; Fan, X.; Li, J. Digital SOC Mapping in Croplands Using Agricultural Activity Factors Derived from Time-Series Data in Western Fujian. Geo-Inf. Sci. 2022, 24, 1835–1852. [Google Scholar]
- Tziachris, P.; Aschonitis, V.; Chatzistathis, T.; Papadopoulou, M. Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters. Catena 2019, 174, 206–216. [Google Scholar] [CrossRef]
- Ho, W.K.O.; Tang, B.-S.; Wong, S.W. Predicting property prices with machine learning algorithms. J. Prop. Res. 2021, 38, 48–70. [Google Scholar] [CrossRef]
- Zhang, J.; Mucs, D.; Norinder, U.; Svensson, F. LightGBM: An effective and scalable algorithm for prediction of chemical toxicity–application to the Tox21 and mutagenicity data sets. J. Chem. Inf. Model. 2019, 59, 4150–4158. [Google Scholar] [CrossRef]
- Sun, X.; Liu, M.; Sima, Z. A novel cryptocurrency price trend forecasting model based on LightGBM. Financ. Res. Lett. 2020, 32, 101084. [Google Scholar] [CrossRef]
- Rufo, D.D.; Debelee, T.G.; Ibenthal, A.; Negera, W.G. Diagnosis of diabetes mellitus using gradient boosting machine (LightGBM). Diagnostics 2021, 11, 1714. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, H.; Zhang, Y.J.; Zhao, G.; Chen, N.; Li, J.X. A review of research on soil carbon storage and its influencing factors in the Tibetan Plateau. Chin. J. Ecol. 2019, 38, 3506. [Google Scholar]
- Northeast Institute of Geography Has Made Important Progress in the Stability Mechanism of Soil Organic Carbon in the Yarlung Zangbo River Basin on the Tibetan Plateau--Northeast Institute of Geography and Agroecology. Chinese Academy of Sciences. Available online: https://www.cas.cn/syky/202308/t20230823_4965292.shtml (accessed on 22 August 2023).
- Zhang, P.; Li, L.; Wang, J.; Zhang, S.; Zhu, Z. Effects of Hydraulic Erosion on the Spatial Redistribution Characteristics of Soil Aggregates and SOC on Pisha Sandstone Slope. Sustainability 2023, 15, 13276. [Google Scholar] [CrossRef]
- Buke, B.; Peng, Z.; Zhang, X.; Zhou, J.; Li, D.; Wang, Z. The Biogeochemical Cycling Model DNDC and Its Applications. Chin. J. Soil Sci. 2007, 38, 1208–1212. [Google Scholar]
- Lian, G.; Guo, X.; Fu, B.; Hu, C. Prediction of the spatial distribution of soil properties based on environmental correlation and geostatistics. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2009, 25, 237–242. [Google Scholar]
- Sun, X.; Zhao, Y.; Zhao, L.; Li, D.; Zhang, G. Prediction and mapping of spatial distribution of soil attributes by using soil-landscape models. Soils 2008, 40, 837–842. [Google Scholar]
- Zhou, Q.; Zhao, X.; Guo, X.; Zhou, Y. Prediction of Spatial Distribution of Soil Organic Carbon in Cultivated Land Based on Phenology and Extreme Climate Information. Acta Pedol. Sin. 2024, 61, 648–661. [Google Scholar]
- Yu, W.; Zhou, W.; Wang, T.; Xiao, J.; Peng, Y.; Li, H.; Li, Y. Significant Improvement in Soil Organic Carbon Estimation Using Data-Driven Machine Learning Based on Habitat Patches. Remote Sens. 2024, 16, 688. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Webster, R.; Viscarra Rossel, R.A.; Shi, Z.; Chen, S. Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s. Geoderma 2019, 334, 124–133. [Google Scholar] [CrossRef]
- Yang, R.M.; Huang, L.M.; Liu, F. Evaluation and mapping soil organic carbon in seasonally frozen ground on the Tibetan Plateau. Catena 2024, 235, 107631. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Tang, Y.; Ji, C.; Zheng, C.; He, J.; Zhu, B. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 2008, 14, 1592–1599. [Google Scholar] [CrossRef]
- Wang, G.; Qian, J.; Cheng, G.; Lai, Y. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci. Total Environ. 2002, 291, 207–217. [Google Scholar]
- Yu, B.H.; Lv, C.H. Assessment of ecological vulnerability on the Tibetan Plateau. Geogr. Res. 2011, 30, 2289–2295. [Google Scholar]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.; Song, X.; Shi, Z.; Zhu, A.; Zhang, G. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2021, 67, 328–340. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G.; Song, X.; Li, D.; Zhao, Y.; Yang, J.; Wu, H.; Yang, F. High-resolution and three-dimensional mapping of soil texture of China. Geoderma 2020, 361, 114061. [Google Scholar] [CrossRef]
- Xu, E. Land Use of the Tibet Plateau in 2015 (Version 1.0); A Big Earth Data Platform for Three Poles; Northwest Institute of Eco-Environment and Resources: Lanzhou, China, 2019. [Google Scholar]
- Ye, Z.; Sheng, Z.; Liu, X.; Ma, Y.; Wang, R.; Ding, S.; Liu, M.; Li, Z.; Wang, Q. Using Machine Learning Algorithms Based on GF-6 and Google Earth Engine to Predict and Map the Spatial Distribution of Soil Organic Matter Content. Sustainability 2021, 13, 14055. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Wu, W.; Liu, H. Prediction of Soil Organic Carbon under Different Land Use Types Using Sentinel-1/-2 Data in a Small Wa-tershed. Remote Sens. 2021, 13, 1229. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Z.; Zhou, P.; Lai, J.; Dai, Y.; Zhou, L.; Wang, Y.; Chen, G.; Jiang, Y.; Guo, X.; et al. Comparison of Four Machine Learning Models in Predicting Soil Organic Carbon Content in a Subtropical Hilly Watershed. Res. Agric. Mod. 2023, 44, 558–566. [Google Scholar]
- Chen, L.; Zhang, S.; Fu, B.; Peng, H. Correlation analysis on spatial pattern of land use and soil at catchment scale. Acta Ecol. Sin. 2003, 23, 2497–2505. [Google Scholar]
- Yan, J.; Xu, Y.; Cheng, Q.; Jiang, S.; Wang, Q.; Xiao, Y.; Ma, C.; Yan, J.; Wang, X. LightGBM: Accelerated genomically designed crop breeding through ensemble learning. Genome Biol. 2021, 22, 271. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lu, J.; Li, L.; Min, X.; Luo, Y. Pollution, ecological-health risks; sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere 2018, 201, 234–242. [Google Scholar] [CrossRef]
- Yang, J.; Fan, J.; Lan, Z.; Mu, X.; Wu, Y.; Xin, Z.; Miping, P.; Zhao, G. Improved Surface Soil Organic Carbon Mapping of SoilGrids250m Using Sentinel-2 Spectral Images in the Qinghai–Tibetan Plateau. Remote Sens. 2023, 15, 114. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Matsuki, K.; Kuperman, V.; Van Dyke, J.A. The Random Forests statistical technique: An examination of its value for the study of reading. Sci. Stud. Read. 2016, 20, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Ledgerwood, A.; Shrout, P.E. The trade-off between accuracy and precision in latent variable models of mediation processes. J. Personal. Soc. Psychol. 2011, 101, 1174–1188. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.C.; O’Hagan, A. Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2001, 63, 425–464. [Google Scholar] [CrossRef]
- Liu, B.; Udell, M. Impact of accuracy on model interpretations. arXiv 2020, arXiv:2011.09903. [Google Scholar]
- Zhao, Y.; Chen, J.; Oymak, S. On the role of dataset quality and heterogeneity in model confidence. arXiv 2020, arXiv:2002.09831. [Google Scholar]
- Li, C.; Cao, Z.; Chang, J.; Zhang, Y.; Zhu, G.; Zong, N.; He, Y.; Zhang, J.; He, N. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibetan alpine meadow. Catena 2017, 156, 139–148. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, H. Distribution characteristics of soil organic carbon of alpine meadow in the Eastern Qinghai-Tibet Plateau. Wuhan Univ. J. Nat. Sci. 2009, 14, 274–280. [Google Scholar] [CrossRef]
- Pan, H.; Huang, P.; Xu, J. The spatial and temporal pattern evolution of vegetation NPP and its driving forces in middle-lower areas of the Min river based on geographical detector analyses. Acta Ecol. Sin. 2019, 39, 7621–7631. [Google Scholar]
- Ping, X.; Li, C.; Li, C.; Tang, S.; Fang, H.; Cui, S.; Chen, J.; Wang, E.; He, Y.; Cai, P.; et al. The distribution, population and conservation status of Przewalski’s gazelle, Procapra przewalskii. Biodivers. Sci. 2018, 26, 177–184. [Google Scholar] [CrossRef]
- Tian, Y.; Ouyang, H.; Xu, X.; Song, M.; Zhou, C. Distribution Characteristics of Soil Organic Carbon Storage and Density on the Qinghai-Tibet Plateau. Acta Pedol. Sin. 2008, 45, 933–942. [Google Scholar]
- Du, H.; Li, C. Influence of Hydrogeological Characteristics on Soil Groundwater Pollution Diffusion—A Case Study of an Agricultural Pharmaceutical Factory. Adv. Environ. Prot. 2023, 13, 302–311. [Google Scholar] [CrossRef]
- Bangroo, S.; Najar, G.; Rasool, A. Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. Catena 2017, 158, 63–68. [Google Scholar] [CrossRef]
- Choudhury, B.U.; Verma, B.C.; Ramesh, T.; Hazarika, S. Altitude regulates accumulation of organic carbon in soil: Case studies from the hilly ecosystem of northeastern region of India. Adv. Crop Environ. Interact. 2018, 137–149. [Google Scholar]
- Wang, G.; Li, Y.; Wang, Y.; Wu, Q. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai–Tibet Plateau, China. Geoderma 2008, 143, 143–152. [Google Scholar]
- Li, X.; McCarty, G.W.; Karlen, D.L.; Cambardella, C.A. Topographic metric predictions of soil redistribution and organic carbon in Iowa cropland fields. Catena 2018, 160, 222–232. [Google Scholar] [CrossRef]
- Lozano-García, B.; Parras-Alcántara, L.; Brevik, E.C. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Sci. Total Environ. 2016, 544, 963–970. [Google Scholar] [CrossRef]
- Dyer, J.M. Assessing topographic patterns in moisture use and stress using a water balance approach. Landsc. Ecol. 2009, 24, 391–403. [Google Scholar] [CrossRef]
- Silveira, C.T.; Oka-Fiori, C.; Santos, L.J.C.; Sirtoli, A.E.; Silva, C.R.; Botelho, M.F. Soil prediction using artificial neural networks and topographic attributes. Geoderma 2013, 195, 165–172. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, L.; Chen, M.; Fang, H.; Yue, G.; Chen, J.; Pang, Q.; Wang, Z.; Ding, Y. Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the Central Western Qinghai-Tibet Plateau, China. Permafr. Periglac. Process. 2012, 23, 162–169. [Google Scholar] [CrossRef]
- Liu, W.; Chen, S.; Qin, X.; Baumann, F. Storage, patterns; control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau. Environ. Res. Lett. 2012, 7, 035401. [Google Scholar] [CrossRef]
- Baumann, F.; He, J.; Schmidt, K.; Kühn, P.; Scholten, T. Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Glob. Change Biol. 2009, 15, 3001–3017. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, G.; Li, W. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences 2013, 10, 1707–1715. [Google Scholar] [CrossRef]
- Alhassan, A.R.M.; Ma, W.; Li, G.; Jiang, Z.; Wu, J.; Chen, G. Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet mead-ow on the Qinghai–Tibet Plateau. Ecol. Evol. 2018, 8, 11999–12010. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Fan, J.; Wang, W.; Luo, J.; Kuzyakov, Y.; He, J.-S.; Chu, H.; Ding, W. Nitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan Plateau. Sci. Total Environ. 2019, 650, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, T.; Sun, W.; Zhang, W.; Zhang, Q.; Yu, L.; Qin, Z.; Guo, B.; Liu, J.; Zha, X. Degradation of wetlands on the Qinghai-Tibetan Plateau causing a loss in soil organic carbon in 1966–2016. Plant Soil 2021, 467, 253–265. [Google Scholar] [CrossRef]
- Mathieu, R.; Sbih, M.; Viau, A.A.; Anctil, F.; Parent, L.E.; Boisvert, J. Relationships between Radarsat SAR data and surface moisture content of agricultural organic soils. Int. J. Remote Sens. 2003, 24, 5265–5281. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil Moisture Retrieval from Space: The Soil Moisture and Ocean Salinity (SMOS) Mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Monerris, A.; Benedicto, P.; Vall-llossera, M.; Camps, A.; Santanach, E.; Piles, M.; Prehn, R. Assessment of the topography impact on microwave radiometry at L-band. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G. Basic Soil Property Dataset of High-Resolution China Soil Information Grids (2010–2018); A Big Earth Data Platform for Three Poles; Northwest Institute of Eco-Environment and Resources: Lanzhou, China, 2021. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, W.; Xiao, J.; Li, H.; Yao, L.; Xie, L.; Wang, K. Soil Organic Carbon Prediction Using Sentinel-2 Data and Environmental Variables in a Karst Trough Val-ley Area of Southwest China. Remote Sens. 2023, 15, 2118. [Google Scholar] [CrossRef]
Variable Category | Index | Obtained Time (Year) | Spatial Resolution (m) |
---|---|---|---|
Radar remote sensing data | Vertical–vertical (VV) | 2015 | 500 m |
Vertical–horizontal (VH) | 2015 | 500 m | |
Vegetation index | Normalized difference vegetation index (NDVI) | 2015 | 500 m |
Human activity | Large Livestock | 2015 | 500 m |
Topographical factor | Elevation | 2015 | 500 m |
Topographic wetness index (TWI) | 2015 | 500 m | |
Slope | 2015 | 500 m | |
Terrain ruggedness index (TRI) | 2015 | 500 m | |
Valley depth (VD) | 2015 | 500 m | |
Climate factor | Land surface temperature (LST) | 2015 | 500 m |
Precipitation | 2015 | 500 m | |
Temperature | 2015 | 500 m | |
Soil properties | Clay percentage | 2015 | 500 m |
Soil moisture | 2015 | 500 m |
Model | Cross-Validation | R2 | RMSE | MAE |
---|---|---|---|---|
RF | 3-fold | 0.6971 | 2.647 | 1.940672 |
5-fold | 0.7334 | 2.6238 | 1.951615 | |
10-fold | 0.7007 | 2.6542 | 1.937285 | |
XGBoost | 3-fold | 0.6758 | 2.7325 | 1.901836 |
5-fold | 0.7093 | 2.5990 | 1.863551 | |
10-fold | 0.6907 | 2.7325 | 1.901836 | |
LightGBM | 3-fold | 0.7187 | 2.5998 | 1.832515 |
5-fold | 0.7537 | 2.4928 | 1.719547 | |
10-fold | 0.7492 | 2.5914 | 1.820192 |
Sample Size | Maximum (kg/m²) | Minimum (kg/m2) | Average (kg/m2) | Standard Deviation (kg/m2) | Kurtosis | Skewness | Coefficient of Variation (%) |
---|---|---|---|---|---|---|---|
325 | 28.2 | 0.15 | 5.30 | 3.74 | 3.52 | 1.25 | 70.59 |
Model | RMSE (kgC/m2) | MAE | R2 |
---|---|---|---|
RF | 2.6238 | 1.9516 | 0.7334 |
XGBoost | 2.5990 | 1.8636 | 0.7093 |
LightGBM | 2.5914 | 1.7195 | 0.7537 |
Model | Average (kg C/m2) | Median (kg/m2) | Standard Deviation (kg C/m2) | Coefficient of Variation (%) |
---|---|---|---|---|
RF | 5.64 | 5.34 | 2.13 | 43.10 |
XGBoost | 4.95 | 4.58 | 2.37 | 44.84 |
LightGBM | 5.29 | 4.83 | 1.81 | 32.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhou, W.; Shi, W. Estimation of Soil Organic Carbon Density on the Qinghai–Tibet Plateau Using a Machine Learning Model Driven by Multisource Remote Sensing. Remote Sens. 2024, 16, 3006. https://doi.org/10.3390/rs16163006
Chen Q, Zhou W, Shi W. Estimation of Soil Organic Carbon Density on the Qinghai–Tibet Plateau Using a Machine Learning Model Driven by Multisource Remote Sensing. Remote Sensing. 2024; 16(16):3006. https://doi.org/10.3390/rs16163006
Chicago/Turabian StyleChen, Qi, Wei Zhou, and Wenjiao Shi. 2024. "Estimation of Soil Organic Carbon Density on the Qinghai–Tibet Plateau Using a Machine Learning Model Driven by Multisource Remote Sensing" Remote Sensing 16, no. 16: 3006. https://doi.org/10.3390/rs16163006
APA StyleChen, Q., Zhou, W., & Shi, W. (2024). Estimation of Soil Organic Carbon Density on the Qinghai–Tibet Plateau Using a Machine Learning Model Driven by Multisource Remote Sensing. Remote Sensing, 16(16), 3006. https://doi.org/10.3390/rs16163006