Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images
Abstract
:1. Introduction
2. Background
2.1. Sub-Pixel Shoreline Extraction
2.2. Cross Correlation and LUFT Rationale
3. Materials and Methods
3.1. Building Synthetic Images and Designing Registration Test
3.1.1. Testing LUFT Upsampling Factor f
3.1.2. Testing Matched Images Size
3.2. Shorelines Obtained from Remote Sensing Imagery to Assess the Performance of the LUFT Algorithm
4. Results
4.1. LUFT Accuracy and Influence of Factors
4.1.1. The Upsampling Factor
4.1.2. Image Size and Other Characteristics
4.2. Error in Shoreline Positioning
5. Discussion
5.1. Factors Affecting Image Registration Accuracy
5.2. Applying LUFT to Georeference Shorelines Extracted from Landsat Imagery
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yuan, F.; Sawaya, K.; Loeffelholz, B.; Bauer, M. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Hermosilla, T.; Ruiz, L.A.; Recio, J.A.; Cambra-López, M. Assessing contextual descriptive features for plot-based classification of urban areas. Landsc. Urban Plan. 2012, 106, 124–137. [Google Scholar] [CrossRef]
- Muslim, A.M.; Foody, G.M.; Atkinson, P.M. Localized soft classification for super resolution mapping of the shoreline. Int. J. Remote Sens. 2006, 27, 2271–2285. [Google Scholar] [CrossRef]
- Muslim, A.M.; Foody, G.M.; Atkinson, P.M. Shoreline mapping from coarse-spatial resolution remote sensing imagery of Seberang. J. Coast. Res. 2007, 23, 1399–1408. [Google Scholar] [CrossRef]
- Ruiz, L.A.; Pardo, J.E.; Almonacid, J.; Rodríguez, B. Coastline automated detection and multi-resolution evaluation using satellite images. In Proceedings of the Coastal Zone 7, Portland, OR, USA, 22–26 July 2007. [Google Scholar]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM multi-temporal images with subpixel precision. Remote Sens. Environ. 2012, 123, 1–11. [Google Scholar] [CrossRef]
- Brumby, S.P.; Theiler, J.; Bloch, J.J.; Harvey, N.R.; Perkins, S.; Szymanki, J.J.; Young, A.C. Evolving land cover classification algorithms for multi-spectral and multi-temporal imagery. Proc. SPIE Imaging Spectrom. VII 2002, 4480, 120–129. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Gotoh, K.; Tachiiri, K. Multi-temporal analysis of land cover changes in Nagasaki city associated with natural disasters using satellite remote sensing. J. Natl. Disaster Sci. 2005, 27, 9–15. [Google Scholar]
- Busetto, L.; Meroni, M.; Colombo, R. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series. Remote Sens. Environ. 2008, 112, 118–131. [Google Scholar] [CrossRef]
- Frazier, A.E.; Wang, L. Characterizing spatial patterns of invasive species using sub-pixel classifications. Remote Sens. Environ. 2011, 115, 1997–2007. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Kant, Y.; Badarinath, K.V.S. Sub-pixel fire detection using Landsat-TM thermal data. Infrared Phys. Technol. 2002, 43, 383–387. [Google Scholar] [CrossRef]
- Jianyaa, G.; Haiganga, S.; Guoruia, M.; Qiming, Z. A Review of multitemporal remote sensing data change detection algorithms. Proc. ISPRS 2008, 37, 757–762. [Google Scholar] [CrossRef]
- Zitova, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef]
- Kenney, C.S.; Manjunath, B.S.; Zuliani, M.; Hewer, G.A.; Nevel, A.V. A Condition Number for Point Matching with Application to Registration and Postregistration Error Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1437–1454. [Google Scholar] [CrossRef]
- Netanyahu, N.S.; Le Moigne, J.; Masek, J.G. Georegistration of Landsat data via robust matching of multiresolution features. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1586–1600. [Google Scholar] [CrossRef]
- Hu, A.; Acton, S.T. Morphological pyramid image registration. In Proceedings of the IEEE 4th Southwest Symposium on Image Analysis and Interpretation, Austin, TX, USA, 2–4 April 2000. [Google Scholar]
- Zhang, Z.; Zhang, J.; Uao, M.; Zhang, L. Automatic Registration of Multi-Source Imagery Based on Global Image Matching. Photogramm. Eng. Remote Sens. 2000, 66, 625–629. [Google Scholar]
- Yan, L.; Roy, D.P.; Zhang, H.; Li, J.; Huang, H. An Automated approach for sub-pixel registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. 2016, 8, 520. [Google Scholar] [CrossRef]
- Irani, M.; Peleg, S. Improving resolution by image registration. CVGIP Graph. Models Image Process. 1991, 53, 231–239. [Google Scholar] [CrossRef]
- Chalermwat, P.; El-Ghazawi, T.; Le Moigne, J. 2-Phase GA-based image registration on parallel clusters. Future Gener. Comput. Syst. 2001, 17, 467–476. [Google Scholar] [CrossRef]
- Barazzetti, L.; Scaioni, M.; Gianinetto, M. One-to-many registration of Landsat imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2013, 40, 37–42. [Google Scholar] [CrossRef]
- Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 3, 156–158. [Google Scholar] [CrossRef]
- Srinivasa-Reddy, B.; Chatterji, B.N. An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration. IEEE Trans. Image Process. 1996, 5, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Hicksa, N.; Kellera, G.R.; Huang, H.; Kreinovich, V. An IDL/ENVI implementation of the FFT-based algorithm for automatic image registration. Comput. Geosci. 2003, 29, 1045–1055. [Google Scholar] [CrossRef]
- Kuglin, C.D.; Hines, D.C. The phase correlation image alignment method. In Proceedings of the International Conference on Cybernetics and Society, San Francisco, CA, USA, 23‒25 September 1975; pp. 163–165. Available online: http://boutigny.free.fr/Astronomie/AstroSources/Kuglin-Hines.pdf (accessed on 13 October 2017).
- Foroosh, H.; Zerubia, J.B.; Berthod, M. Extension of Phase Correlation to Subpixel Registration. IEEE Trans. Image Process. 2002, 11, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Shekarforoush, H.; Berthod, M.; Zerubia, J. Subpixel image registration by estimating the polyphase decomposition of cross power spectrum. In Proceedings of the 1996 IEEE Computer Society Conference on Computer Vision Pattern Recognition, Los Alamitos, CA, USA, 18–20 June 1996; pp. 532–537. [Google Scholar]
- Stone, H.S.; Orchard, M.T.; Chang, Ee-Ch.; Martucci, S.A. A fast direct Fourier-based algorithm for subpixel registration of images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2235–2243. [Google Scholar] [CrossRef]
- Jingying, J.; Xiaodong, H.; Kexin, X.; Qilian, Y. Phase correlation-based matching method with sub-pixel accuracy for translated and rotated images. In Proceedings of the International Conference on Signal Processing, Beijing, China, 26–30 August 2002; pp. 752–755. [Google Scholar]
- Wang, C.L.; Zhao, C.X.; Yang, J.Y. Local upsampling Fourier transform for high accuracy image rotation estimation. Adv. Mater. Res. 2011, 268–270, 1488–1593. [Google Scholar] [CrossRef]
- Fienup, J.R. Invariant error metrics for image reconstruction. Appl. Opt. 1997, 36, 8352–8357. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.J.; Hines, D.C.; Golosman, S.; Kuglin, C.D. Video-rate image correlation processor. Proc. SPIE 1977, 197–205. [Google Scholar] [CrossRef]
- Mareboyana, M.; Le Moigne, J.; Bennett, J. High resolution image reconstruction from projection of low resolution images differing in subpixel shifts. In Proceedings of the 2016 SPIE Commercial + Scientific Sensing and Imaging, Baltimore, MD, USA, 17–21 April 2016. [Google Scholar] [CrossRef]
- Le Moigne, J.; Netanyahu, N.S.; Eastman, R.D. Image Registration for Remote Sensing; Cambridge University Press: Cambridge, UK, 2011; pp. 401–412. [Google Scholar]
- Dvornychenko, V.N. Bound on (Deterministic) Correlation Functions with Applications to Registration. IEEE Trans. Pattern Anal. Mach. Intell. 1983, PAMI-5, 206–213. [Google Scholar] [CrossRef]
- Landsat Missions, Geometry. Available online: https://landsat.usgs.gov/geometry (accessed on 6 October 2017).
- Mohamed, S.A.; Helmi, A.K. Subpixel accuracy analysis of phase correlation shift measurement methods applied to satellite imagery. IJACSA 2012, 3, 202–206. [Google Scholar]
- Almonacid-Caballer, J. Extraction of Shorelines with Sub-Pixel Precision from Landsat Images (TM, ETM+, OLI) [Obtención de Lineas de Costa con Precisión Sub-Pixel A Partir de Imágenes Landsat (TM, ETM+ y OLI)]. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 10 October 2014. [Google Scholar]
- Tian, Q.; Huhnsm, M.N. Algorithms for subpixel registration. Comput. Vis. Graph. Image Process. 1986, 35, 220–233. [Google Scholar] [CrossRef]
- Markham, B.L. The Landsat sensor’s spatial responses. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 864–875. [Google Scholar] [CrossRef]
- Garcia-Haro, F.J. Corrección de la degradación espacial debida al PSF del sensor en teledetección. In Proceedings of the XI Congreso Nacional de Teledetección, Puerto de la Cruz, Canary Islands, Tenerife, 21–23 September 2005; Available online: http://www.aet.org.es/congresos/xi/ten131.pdf (accessed on 13 October 2017).
Pixel Size (m) | QB (26 October 2004) | QB (18 July 2005) | |
---|---|---|---|
28.8 | Mean distance | 0.982 | 1.303 |
RMSE | 5.710 | 4.268 |
Landsat 5 (TM) | Landsat 7 (ETM+) | Landsat 8 (OLI) | ||||
---|---|---|---|---|---|---|
Unregistered | Registered | Unregistered | Registered | Unregistered | Registered | |
Number of coastlines | 59 | 59 | 47 | 47 | 10 | 10 |
Number of points | 200,493 | 200,493 | 189,972 | 189,972 | 38,897 | 38,897 |
Distance to seawall average (m) | 76.421 | 3.615 | 12.982 | 3.753 | 16.950 | -0.548 |
Standard Deviation (m) | 207.667 | 7.050 | 15.326 | 7.015 | 9.015 | 6.334 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almonacid-Caballer, J.; Pardo-Pascual, J.E.; Ruiz, L.A. Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images. Remote Sens. 2017, 9, 1051. https://doi.org/10.3390/rs9101051
Almonacid-Caballer J, Pardo-Pascual JE, Ruiz LA. Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images. Remote Sensing. 2017; 9(10):1051. https://doi.org/10.3390/rs9101051
Chicago/Turabian StyleAlmonacid-Caballer, Jaime, Josep E. Pardo-Pascual, and Luis A. Ruiz. 2017. "Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images" Remote Sensing 9, no. 10: 1051. https://doi.org/10.3390/rs9101051