Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy
Abstract
:1. Introduction
2. CSRR-Loaded QMSIW Band-Pass Filter Design
3. Fabrication and Measurement
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lim, J.H.; Back, G.T.; Ko, Y.I.; Song, C.W.; Yun, T.Y. A reconfigurable PIFA using a switchable PIN-diode and a fine-tuning varactor for USPCS/WCDMA/m-WiMAX/WLAN. IEEE Trans. Antennas Propag. 2010, 58, 2404–2411. [Google Scholar]
- Nikolaou, S.; Bairavasubramanian, R.; Lugo, C.; Carrasquillo, I.; Thompson, D.C.; Ponchak, G.E.; Papapolymerou, J.; Tentzeris, M.M. Pattern and frequency reconfigurable annular slot antenna using pin diodes. IEEE Trans. Antennas Propag. 2006, 54, 439–448. [Google Scholar] [CrossRef]
- Brito-Brito, Z.; Llamas-Garro, I.; Pradell-Cara, L.; Corona-Chavez, A. Microstrip switchable bandstop filter using PIN diodes with precise frequency and bandwidth control. In Proceedings of the 38th European Microwave Conference (EuMC 2008), Amsterdam, The Netherlands, 27–31 October 2008; pp. 1707–1710. [Google Scholar]
- Liang, C.; Li, L.; Zhai, H. Variational stability form for the capacitance of an arbitrarily shaped conducting plate. Chin. J. Electron. 2004, 13, 714–718. [Google Scholar]
- Aghdam, S.A. A Novel UWB monopole antenna with tunable notched behavior using varactor diode. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1243–1246. [Google Scholar] [CrossRef]
- Khidre, A.; Yang, F.; Elsherbeni, A.Z. A Patch Antenna with a Varactor-Loaded Slot for Reconfigurable Dual-Band Operation. IEEE Trans. Antennas Propag. 2015, 63, 755–760. [Google Scholar] [CrossRef]
- Lin, F.; Rais-Zadeh, M. A tunable 0.6 GHz–1.7 GHz bandpass filter with a constant bandwidth using switchable varactor-tuned resonators. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium (IMS 2015), Phoenix, AZ, USA, 17–22 May 2015; pp. 2–5. [Google Scholar]
- Liu, B.; Wei, F.; Zhang, H.; Shi, X.; Lin, H. A Tunable Bandpass Filter with Switchable Bandwidth. J. Electromagn. Waves Appl. 2011, 25, 223–232. [Google Scholar] [CrossRef]
- Erdil, E.; Topalli, K.; Unlu, M.; Civi, O.A.; Akin, T. Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Trans. Antennas Propag. 2007, 55, 1193–1196. [Google Scholar] [CrossRef]
- Chan, K.Y.E.; Ramer, R.; Guo, Y.J. RF MEMS millimeter-wave switchable bandpass filter. In Proceedings of the 2013 IEEE International Wireless Symposium (IWS), Beijing, China, 14–18 April 2013; pp. 1–4. [Google Scholar]
- Park, S.; Lee, K.; Rebeiz, G.M. Low-loss 5.15–5.70 GHz RF MEMS switchable filter for wireless lan application. IEEE Trans. Microw. Theory Tech. 2006, 54, 3931–3939. [Google Scholar] [CrossRef]
- Yuk, K.Y.; Fouladi, S.; Ramer, R.; Mansour, R.R. RF MEMS switchable interdigital bandpass filter. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 44–46. [Google Scholar] [CrossRef]
- Aboufoul, T.; Alomainy, A.; Parini, C. Reconfiguring UWB monopole antenna for cognitive radio applications using GaAs FET switches. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 392–394. [Google Scholar] [CrossRef]
- Kodera, T.; Caloz, C. Multi-function reconfigurable microwave component based on a switchable FET circuit. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (IMS), Seattle, WA, USA, 2–7 June 2013; Volume 2, pp. 9–11. [Google Scholar]
- Wang, Y.; Yoon, K.; Lee, J. A Frequency Tunable Double Band-Stop Resonator (BSR) with Voltage Control by Varactor Diodes. J. Electromagn. Eng. Sci. 2016, 16, 159–163. [Google Scholar] [CrossRef]
- Aïssa, B.; Nedil, M.; Habib, M.A.; Haddad, E.; Jamroz, W.; Therriault, D.; Coulibaly, Y.; Rosei, F. Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency. Appl. Phys. Lett. 2013, 103. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, Z. Microfluidic electronics. Lab Chip 2012, 12, 2782–2791. [Google Scholar] [CrossRef] [PubMed]
- Hayes, G.J.; So, J.-H.; Qusba, A.; Dickey, M.D.; Lazzi, G. Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna. TAP IEEE Trans. Antennas Propag. 2012, 60, 2151–2156. [Google Scholar] [CrossRef]
- Kelley, M.; Koo, C.; McQuilken, H.; Lawrence, B.; Li, S.; Han, A.; Huff, G. Frequency reconfigurable patch antenna using liquid metal as switching mechanism. Electron. Lett. 2013, 49, 1370–1371. [Google Scholar] [CrossRef]
- Ling, K.; Kim, H.K.; Yoo, M.; Lim, S. Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy. Sensors 2015, 15, 28154–28165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.M.; Zhang, W.; Huang, R.F.; Ting, S.K.; Lo, G.Q.; Kwong, D.L.; Liu, A.Q. Metamaterial tunable filter with liquid metal. In Proceedings of the 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 725–728. [Google Scholar]
- So, J.-H.; Thelen, J.; Qusba, A.; Hayes, G.J.; Lazzi, G.; Dickey, M.D. Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Adv. Funct. Mater. 2008, 3632–3637. [Google Scholar] [CrossRef]
- Cheng, S.; Rydberg, A.; Hjort, K.; Wu, Z. Liquid metal stretchable unbalanced loop antenna. Appl. Phys. Lett. 2009, 94, 144103. [Google Scholar] [CrossRef]
- Dickey, M.D.; Chiechi, R.C.; Larsen, R.J.; Weiss, E.A.; Weitz, D.A.; Whitesides, G.M. Eutectic gallium indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104. [Google Scholar] [CrossRef]
- Bozzi, M.; Georgiadis, A.; Wu, K. Review of substrate-integrated waveguide circuits and antennas. IET Microw. Antennas Propag. 2011, 5, 909–920. [Google Scholar] [CrossRef]
- Sabri, S.S.; Ahmad, B.H.; Othman, A.R.B. A review of Substrate Integrated Waveguide (SIW) bandpass filter based on different method and design. In Proceedings of the 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Melaka, Malaysia, 11–13 December 2012; pp. 210–215. [Google Scholar]
- Guo, Z.; Chin, K.-S.; Che, W.; Chang, C.-C. Cross-coupled bandpass filters using QMSIW cavities and S-shaped slot coupling structures. J. Electromagn. Waves Appl. 2013, 27, 160–167. [Google Scholar] [CrossRef]
- Senior, D.E.; Rahimi, A.; Jao, P.; Yoon, Y.K. Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications. In Proceedings of the 64th Electronic Components and Technology Conference (ECTC 2014), Orlando, FL, USA, 27–30 May 2014; pp. 789–795. [Google Scholar]
- Zhang, Z.; Yang, N.; Wu, K. 5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems. In Proceedings of the 4th International Conference on Radio and Wireless Symposium (RWS 2009), San Diego, CA, USA, 18–22 January 2009; pp. 95–98. [Google Scholar]
- Seo, Y.; Memon, M.U.; Lim, S. Microfluidic Eighth-Mode Substrate-Integrated-Waveguide Antenna for Compact Ethanol Chemical Sensor Application. IEEE Trans. Antennas Propag. 2016, 64, 3218–3222. [Google Scholar] [CrossRef]
- Khondoker, M.A.H.; Sameoto, D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater. Struct. 2016, 25, 93001. [Google Scholar] [CrossRef]
- Li, X.; Abe, T.; Esashi, M. Deep reactive ion etching of Pyrex glass using SF6 plasma. Sens. Actuators A Phys. 2001, 87, 139–145. [Google Scholar] [CrossRef]
- Kwon, K.; Kim, H.K.; Yun, S.W. Design of Dual-Band Bandpass Filters for Cognitive Radio Application of TVWS Band. J. Electromagn. Eng. Sci. 2016, 16, 19–23. [Google Scholar] [CrossRef]
- Memon, M.U.; Lim, S. Review of reconfigurable substrate-integrated-waveguide antennas. J. Electromagn. Waves Appl. 2014, 28, 1815–1833. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Hong, W.; Wu, K. Millimeter-wave half mode substrate integrated waveguide frequency scanning antenna with quadri-polarization. IEEE Trans. Antennas Propag. 2010, 58, 1848–1855. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, W.; Dong, Y.; Liu, B.; Tang, H.J.; Chen, J.; Yin, X.; Wu, K. Half mode substrate integrated waveguide (HMSIW) bandpass filter. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 265–267. [Google Scholar] [CrossRef]
- Zhang, S.; Bian, T.-J.; Zhai, Y.; Liu, W.; Yang, G.; Liu, F.-L. Quarter substrate integrated waveguide resonator applied to fractal-shaped BPFs. Microw. J. 2012, 55, 200–208. [Google Scholar]
- Memon, M.U.; Lim, S. Frequency-Tunable Compact Antenna Using Quarter-Mode Substrate Integrated Waveguide. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1606–1609. [Google Scholar] [CrossRef]
- Hong, J.S.; Lancaster, M.J. Microstrip Filters for RF/Microwave Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004; p. 167. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eom, S.; Memon, M.U.; Lim, S. Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy. Sensors 2017, 17, 699. https://doi.org/10.3390/s17040699
Eom S, Memon MU, Lim S. Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy. Sensors. 2017; 17(4):699. https://doi.org/10.3390/s17040699
Chicago/Turabian StyleEom, Seunghyun, Muhammad Usman Memon, and Sungjoon Lim. 2017. "Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy" Sensors 17, no. 4: 699. https://doi.org/10.3390/s17040699
APA StyleEom, S., Memon, M. U., & Lim, S. (2017). Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy. Sensors, 17(4), 699. https://doi.org/10.3390/s17040699