From Sensor to Cloud: An IoT Network of Radon Outdoor Probes to Monitor Active Volcanoes
Abstract
:1. Introduction and State-of-the-Art
1.1. Radon Monitoring on Active Volcanoes
1.2. Sensors for Radon Monitoring in the Air
1.3. IoT Network Technologies toward Large-Scale Deployment of Small Sensors on Active Volcanoes
- -
- The signal quality between gateways and nodes to collect sensor data.
- -
- The access to the internet required for data transfer from the gateway to the end point where it will be analyzed.
- -
- The energy supply needed for several months of autonomy.
- -
- The extreme conditions related to meteorology (very strong winds, heavy snowfalls, and extremely low temperatures) and, eventually, to volcanic activity (acidic plumes, damage due to ash, and bombs).
1.4. Data Management
- -
- The sensor data are transmitted locally to a gateway using an ultra-low bandwidth local network.
- -
- The gateway transmits the data to a server through the internet using a M2M SIM card.
- -
- The data are collected, stored, and processed in a data center.
- -
- They are exported back from the data center to local or international experts for interpretation and decision-making.
2. Materials and Methods
- -
- The tropicalization of the radon probes to protect them from high-altitude mountain conditions and volcanic plumes.
- -
- The use of versatile LoRaWAN nodes dedicated to environmental instrumentation.
- -
- The sensor network infrastructure on-site for data collection and transfer.
- -
- The data lake architecture in Clermont-Ferrand University Data Center.
2.1. Tropicalization of the Radon Probes
- -
- As radon measurements are affected by the temperature and humidity in the probe diffusion chamber, a 1-W heating resistance was added to maintain the temperature above 15 °C and humidity below saturation. As ÆR+ also measures continuously the temperature and humidity, the operation of this heating system is internally controlled by the ÆR+ itself.
- -
- The ÆR+ probe was installed in a polystyrene box (see Figure 1) to increase thermic insulation. The polystyrene box itself was installed in a larger metal box containing also a 3.2 V/180 Ah LiFePO4 battery to restore the probe autonomy despite the addition of the heating system. An M12 connector was installed to transfer ÆR+ data to a LoRa module (described hereafter).
- -
- Two air entries were opened into the polystyrene box where the ÆR+ is placed (one on the side and the other one on the bottom of the main box). This configuration allows fast, passive circulation of air around the detector. Moreover, it is also meant to preserve the connection of the detector with outdoor air if one of the entries is obstructed, for instance, because of heavy snowfalls (Figure 2f).
- -
- For the station to be deployed on the active crater rim of Mt. Etna (see next paragraph), the ÆR+ sensor was wrapped into a thin film of parafilm, allowing the diffusion of radon but protecting the sensor from acidic gases.
- -
- A Universal Asynchronous Receiver Transmitter (UART) interface is used for the data readout.
2.2. LoRaWAN Network, Communicating Nodes, and Gateways
- -
- Private network infrastructures can be installed by volcano observatories to fit their specific needs and constraints, while public networks rely on infrastructures that are managed independently by private companies and cannot be easily modified.
- -
- Financial investments to operate a private network (hardware and maintenance) is more favorable than a subscription to paid public networks when a long-term operation is planned and when the number of connected sensors is high, which is the case of volcano observatories.
2.3. Data Lake
3. Results
3.1. Autonomy and Mechanical Integrity of the Stations
3.1.1. Autonomy
3.1.2. Mechanical Integrity
3.2. Performances of the Wireless Network
3.3. Preliminary Radon Measurement Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chirkov, A.M. Radon as a possible criterion for predicting eruptions as observed at Karymsky volcano. Bull. Volcanol. 1975, 39, 126–131. [Google Scholar] [CrossRef]
- Immè, G.; La Delfa, S.; Nigro, S.L.; Morelli, D.; Patanè, G. Soil radon concentration and volcanic activity of Mt. Etna before and after the 2002 eruption. Radiat. Meas. 2006, 41, 241–245. [Google Scholar] [CrossRef]
- Neri, M.; Ferrera, E.; Giammanco, S.; Currenti, G.; Cirrincione, R.; Patané, G.; Zanon, V. Soil radon measurements as a potential tracer of tectonic and volcanic activity. Sci. Rep. 2016, 6, 24581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cigolini, C.; Laiolo, M.; Coppola, D.; Trovato, C.; Borgogno, G. Radon surveys and monitoring at active volcanoes: Learning from Vesuvius, Stromboli, La Soufrière and Villarrica. Geol. Soc. London Spéc. Publ. 2016, 451, 183–208. [Google Scholar] [CrossRef]
- Morales-Simfors, N.; Wyss, R.A.; Bundschuh, J. Recent progress in radon-based monitoring as seismic and volcanic precursor: A critical review. Crit. Rev. Environ. Sci. Technol. 2019, 50, 979–1012. [Google Scholar] [CrossRef]
- Mollo, S.; Tuccimei, P.; Soligo, M.; Galli, G.; Scarlato, P. Chapter 18—Advancements in Understanding the Radon Signal in Volcanic Areas: A Laboratory Approach Based on Rock Physicochemical Changes. In Integrating Disaster Science and Management; Samui, P., Kim, D., Ghosh, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 309–328. ISBN 978-0-12-812056-9. [Google Scholar]
- Vaupotič, J.; Žvab, P.; Giammanco, S. Radon in outdoor air in the Mt. Etna area, Italy. Nukleonika 2010, 55, 573–577. [Google Scholar]
- Terray, L.; Breton, V.; Gauthier, P.I.; Giammanco, S.; Sigmarsson, O.; Salerno, G.; Caltabiano, T.; Falvard, A. Radon Emissions from an Open-Conduit Volcano: The Case of Mount Etna. In Proceedings of the the 27th IUGG General Assembly, Montreal, Canada, 8–18 July 2019. [Google Scholar]
- Terray, L.; Gauthier, P.-J.; Salerno, G.; Caltabiano, T.; La Spina, A.; Sellitto, P.; Briole, P. A New Degassing Model to Infer Magma Dynamics from Radioactive Disequilibria in Volcanic Plumes. Geoscience 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Ting, D.S. WHO Handbook on Indoor Radon: A Public Health Perspective. Int. J. Environ. Stud. 2010, 67, 100–102. [Google Scholar] [CrossRef]
- Ishimori, Y.; Lange, K.; Martin, P.; Mayya, Y.S.; Phaneuf, M. Measurement and Calculation of Radon Releases from NORM Residues; Technical Reports Series; International Atomic Energy Agency: Vienna, Austria, 2013; no. 474. [Google Scholar]
- Baskaran, M. Radon Measurement Techniques. In Radon: A Tracer for Geological, Geophysical and Geochemical Studies; Baskaran, M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 15–35. ISBN 978-3-319-21329-3. [Google Scholar]
- Blanco-Novoa, O.; Fernández-Caramés, T.; Fraga-Lamas, P.; Castedo, L. A Cost-Effective IoT System for Monitoring Indoor Radon Gas Concentration. Sensors 2018, 18, 2198. [Google Scholar] [CrossRef] [Green Version]
- Schmithüsen, D.; Chambers, S.D.; Fischer, B.; Gilge, S.; Hatakka, J.; Kazan, V.; Neubert, R.; Paatero, J.; Ramonet, M.; Schlosser, C.; et al. A European-wide 222radon and 222radon progeny comparison study. Atmos. Meas. Tech. 2017, 10, 1299–1312. [Google Scholar] [CrossRef] [Green Version]
- Beck, T.R.; Buchröder, H.; Schmidt, V. Performance tests for instruments measuring radon activity concentration. Appl. Radiat. Isot. 2009, 67, 876–880. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Gutiérrez-Villanueva, J.; Múñoz, J.; García-Talavera, M.; Adamiec, G.; Iñiguez, M. Radon measurements with a PIN photodiode. Appl. Radiat. Isot. 2006, 64, 1287–1290. [Google Scholar] [CrossRef] [PubMed]
- ÆR Radon. Available online: https://www.algade.com/2017/09/04/ÆR/ (accessed on 23 January 2020).
- Galli, G.; Cannelli, V.; Nardi, A.; Piersanti, A. Implementing soil radon detectors for long term continuous monitoring. Appl. Radiat. Isot. 2019, 153, 108813. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.; Cannavò, F.; Greco, F.; Messina, A.; Siligato, G.; Lautier-Gaud, J.; Antoni-Micollier, L.; Hammond, G.; Middlemiss, R.; van Zeeuw de-Dalfsen, E. Application of newly developed gravimeters to monitor and study active volcanoes: The NEWTON-g project. In Geophysical Research Abstracts, Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 7–12 April 2019; Copernicus GmbH: Göttingen, Germany, 2019; Volume 21. [Google Scholar]
- Roberts, T.J.; Lurton, T.; Giudice, G.; Liuzzo, M.; Aiuppa, A.; Coltelli, M.; Vignelles, D.; Salerno, G.; Couté, B.; Chartier, M.; et al. Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna. Bull. Volcanol. 2017, 79, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Werner-Allen, G.; Lorincz, K.; Ruiz, M.C.; Marcillo, O.; Johnson, J.B.; Lees, J.; Welsh, M. Deploying a wireless sensor network on an active volcano. IEEE Internet Comput. 2006, 10, 18–25. [Google Scholar] [CrossRef]
- Pereira, R.L.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazao, T. A wireless sensor network for monitoring volcano-seismic signals. Nat. Hazards Earth Syst. Sci. 2014, 14, 3123–3142. [Google Scholar] [CrossRef] [Green Version]
- Libelium Presents a White Paper with 50 Real IoT Success Stories after Ten Years of Experience in the Market. Available online: http://www.libelium.com/libelium-presents-a-white-paper-with-50-real-iot-success-stories-after-ten-years-of-experience-in-the-market/ (accessed on 23 January 2020).
- Awadallah, S.; Moure-García, D.; Torres-González, P. An Internet of Things (IoT) Application on Volcano Monitoring. Sensors 2019, 19, 4651. [Google Scholar] [CrossRef] [Green Version]
- Hristov, G.; Raychev, J.; Kinaneva, D.; Zahariev, P. Emerging Methods for Early Detection of Forest Fires Using Unmanned Aerial Vehicles and Lorawan Sensor Networks. In Proceedings of the 2018 28th EAEEIE Annual Conference (EAEEIE), Hafnarfjordur, Iceland, 26–28 September 2018; pp. 1–9. [Google Scholar]
- Bardram, A.V.T.; Larsen, M.D.; Malarski, K.M.; Petersen, M.N.; Ruepp, S. LoRaWan capacity simulation and field test in a harbour environment. In Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; pp. 193–198. [Google Scholar]
- Buyukakkaslar, M.T.; Erturk, M.A.; Aydin, M.A.; Vollero, L. LoRaWAN as an e-Health Communication Technology. In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; Volume 2, pp. 310–313. [Google Scholar]
- Davcev, D.; Mitreski, K.; Trajkovic, S.; Nikolovski, V.; Koteli, N. IoT agriculture system based on LoRaWAN. In Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, 13–15 June 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Makario, J.; Ngetich, K.; Maina, C. wa Long Range Low Power Sensor Networks for Agricultural Monitoring—A Case Study in Kenya. In Proceedings of the 2019 IST-Africa Week Conference (IST-Africa), Nairobi, Kenya, 8–10 May 2019; pp. 1–8. [Google Scholar]
- Alvarellos, A.; Gestal, M.; Dorado, J.; Rabuñal, J.R. Developing a Secure Low-Cost Radon Monitoring System. Sensors 2020, 20, 752. [Google Scholar] [CrossRef] [Green Version]
- Durand, T.G.; Visagie, L.; Booysen, M.J. Evaluation of next-generation low-power communication technology to replace GSM in IoT-applications. IET Commun. 2019, 13, 2533–2540. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, K.D.; Chaouchi, H.; Bonnin, J.M. Wireless sensor networks: A survey on recent developments and potential synergies. J. Supercomput. 2013, 68, 1–48. [Google Scholar] [CrossRef]
- Beauducel, F.; Lafon, D.; Béguin, X.; Saurel, J.-M.; Bosson, A.; Mallarino, D.; Boissier, P.; Brunet, C.; LeMarchand, A.; Anténor-Habazac, C.; et al. WebObs: The Volcano Observatories Missing Link Between Research and Real-Time Monitoring. Front. Earth Sci. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Pokorny, J. Database architectures: Current trends and their relationships to environmental data management. Environ. Model. Softw. 2006, 21, 1579–1586. [Google Scholar] [CrossRef]
- Blair, G.S.; Henrys, P.; Leeson, A.A.; Watkins, J.; Eastoe, E.; Jarvis, S.; Young, P.J. Data Science of the Natural Environment: A Research Roadmap. Front. Environ. Sci. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Khine, P.P.; Wang, Z.S. Data lake: A new ideology in big data era. ITM Web Conf. 2018, 17, 3025. [Google Scholar] [CrossRef]
- Ravat, F.; Zhao, Y. Data Lakes: Trends and Perspectives. In Proceedings of the Applications of Evolutionary Computation, Leipzig, Germany, 24–26 April 2019; Springer Science and Business Media LLC: Berlin, Germany, 2019; pp. 304–313. [Google Scholar]
- ISO. 11665-5: Measurement of Radioactivity in the Environment—Air: Radon-222—Part 5: Continuous Measurement Method of the Activity Concentration; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Pecoraino, G.; Giammanco, S. Geochemical Characterization and Temporal Changes in Parietal Gas Emissions at Mt. Etna (Italy) During the Period July 2000–July 2003. Terr. Atmos. Ocean. Sci. 2005, 16, 805. [Google Scholar] [CrossRef] [Green Version]
- Giammanco, S.; Melián, G.; Neri, M.; Hernández, P.A.; Sortino, F.; Barrancos, J.; López, M.; Pecoraino, G.; Pérez, N.; Giovannella, P. Active tectonic features and structural dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil temperature surveying. J. Volcanol. Geotherm. Res. 2016, 311, 79–98. [Google Scholar] [CrossRef]
- Petäjäjärvi, J.; Mikhaylov, K.; Pettissalo, M.; Janhunen, J.; Iinatti, J. Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717699412. [Google Scholar] [CrossRef] [Green Version]
- Bajer, M. Building an IoT Data Hub with Elasticsearch, Logstash and Kibana. In Proceedings of the 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Prague, Czech Republic, 21–23 August 2017; pp. 63–68. [Google Scholar]
- Grafana Labs. Available online: https://grafana.com/grafana/ (accessed on 23 January 2020).
- Yassein, M.B.; Shatnawi, M.Q.; Aljwarneh, S.; Al-Hatmi, R. Internet of Things: Survey and open issues of MQTT protocol. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS), Monastir, Tunisia, 8–10 May 2017; pp. 1–6. [Google Scholar]
- PostgreSQL: The World’s Most Advanced Open Source Database. Available online: https://www.postgresql.org/ (accessed on 23 January 2020).
- GeoNetwork. Available online: https://geonetwork-opensource.org/ (accessed on 23 January 2020).
- Branca, S.; Coltelli, M.; Groppelli, G.; Lentini, F. Geological map of Etna volcano, 1:50,000 scale. Ital. J. Geosci. 2011, 130, 265–291. [Google Scholar] [CrossRef]
Node Location | Data Loss Rate | Statistical Significance (2σ) | Frame-First Transmission Failure Rate |
---|---|---|---|
Mt. Barbagallo | 2.7% | ±0.4% | 9.2% |
Mt. Frumento | 1% | ±0.4% | 13.1% |
Montagnola Peak | 37% | ±2.5% | 54% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terray, L.; Royer, L.; Sarramia, D.; Achard, C.; Bourdeau, E.; Chardon, P.; Claude, A.; Fuchet, J.; Gauthier, P.-J.; Grimbichler, D.; et al. From Sensor to Cloud: An IoT Network of Radon Outdoor Probes to Monitor Active Volcanoes. Sensors 2020, 20, 2755. https://doi.org/10.3390/s20102755
Terray L, Royer L, Sarramia D, Achard C, Bourdeau E, Chardon P, Claude A, Fuchet J, Gauthier P-J, Grimbichler D, et al. From Sensor to Cloud: An IoT Network of Radon Outdoor Probes to Monitor Active Volcanoes. Sensors. 2020; 20(10):2755. https://doi.org/10.3390/s20102755
Chicago/Turabian StyleTerray, Luca, Laurent Royer, David Sarramia, Cyrille Achard, Etienne Bourdeau, Patrick Chardon, Alexandre Claude, Jérôme Fuchet, Pierre-Jean Gauthier, David Grimbichler, and et al. 2020. "From Sensor to Cloud: An IoT Network of Radon Outdoor Probes to Monitor Active Volcanoes" Sensors 20, no. 10: 2755. https://doi.org/10.3390/s20102755
APA StyleTerray, L., Royer, L., Sarramia, D., Achard, C., Bourdeau, E., Chardon, P., Claude, A., Fuchet, J., Gauthier, P.-J., Grimbichler, D., Mezhoud, J., Ogereau, F., Vandaële, R., & Breton, V. (2020). From Sensor to Cloud: An IoT Network of Radon Outdoor Probes to Monitor Active Volcanoes. Sensors, 20(10), 2755. https://doi.org/10.3390/s20102755