Emotion Self-Regulation in Neurotic Students: A Pilot Mindfulness-Based Intervention to Assess Its Effectiveness through Brain Signals and Behavioral Data
Abstract
:1. Introduction
2. Related Works
2.1. Relationship between Neuroticism, Cognitive Bias, and Emotion Regulation
2.2. Mindfulness and Its Role as Mediator between Neuroticism, Cognitive Biases, and Emotion Regulation
2.3. Neural Correlates of Mindfulness Using Encephalography
3. Materials and Methods
3.1. Participants
3.2. Experimental Materials
3.2.1. Personality Assessment
3.2.2. Psychometric Tests and Measures
3.2.3. Stimuli
Emotion Elicitation Video Clips
Color–Word Stroop Task
3.2.4. Breathing-Based Mindfulness Intervention (BMI)
3.3. Study Procedure
3.3.1. Experiment—Phase I (60–90 min)
3.3.2. Experiment—Phase II (6 Weeks)
3.3.3. Experiment—Phase III (40–60 min)
3.4. Methods
3.4.1. EEG Data Acquisition
3.4.2. EEG Data Analysis
3.4.3. Classification
4. Results and Findings
4.1. Behavioral Data Analysis—AES, DASS, FFMQ, and ERQ Questionnaires
4.2. EEG Data Analysis
4.2.1. Significant Channel Analysis Using PSD
4.2.2. Classification
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ochnik, D.; Rogowska, A.M.; Kuśnierz, C.; Jakubiak, M.; Schütz, A.; Held, M.J.; Arzenšek, A.; Benatov, J.; Berger, R.; Korchagina, E.V.; et al. Mental health prevalence and predictors among university students in nine countries during the COVID-19 pandemic: A cross-national study. Sci. Rep. 2021, 11, 18644. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.M.; Morris, M.; Davis, T.J. Neuroticism’s susceptibility to distress: Moderated with mindfulness. Personal. Individ. Differ. 2017, 106, 248–252. [Google Scholar] [CrossRef]
- Muris, P.; Roelofs, J.; Rassin, E.; Franken, I.; Mayer, B. Mediating effects of rumination and worry on the links between neuroticism, anxiety and depression. Personal. Individ. Differ. 2005, 39, 1105–1111. [Google Scholar] [CrossRef]
- Navrady, L.B.; Ritchie, S.J.; Chan, S.W.Y.; Kerr, D.M.; Adams, M.J.; Hawkins, E.H.; Porteous, D.; Deary, I.J.; Gale, C.R.; Batty, G.D.; et al. Intelligence and neuroticism in relation to depression and psychological distress: Evidence from two large population cohorts. Eur. Psychiatry 2017, 43, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Lahey, B.B. Public health significance of neuroticism. Am. Psychol. 2009, 64, 241–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widiger, T.A.; Oltmanns, J.R. Neuroticism is a fundamental domain of personality with enormous public health implications. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2017, 16, 144–145. [Google Scholar] [CrossRef] [Green Version]
- Feltman, R.; Robinson, M.D.; Ode, S. Mindfulness as a moderator of neuroticism–outcome relations: A self-regulation perspective. J. Res. Personal. 2009, 43, 953–961. [Google Scholar] [CrossRef]
- John, O.P.; Srivastava, S. The Big Five Trait taxonomy: History, measurement, and theoretical perspectives. In Handbook of Personality: Theory and Research, 2nd ed.; Guilford Press: New York, NY, USA, 1999; pp. 102–138. [Google Scholar]
- Farb, N.A.S.; Anderson, A.K.; Segal, Z.V. The mindful brain and emotion regulation in mood disorders. Can. J. Psychiatry 2012, 57, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, S.G.; Sawyer, A.T.; Witt, A.A.; Oh, D. The Effect of Mindfulness-Based Therapy on Anxiety and Depression: A Meta-Analytic Review. J. Consult. Clin. Psychol. 2010, 78, 169–183. [Google Scholar] [CrossRef]
- Hölzel, B.K.; Carmody, J.; Vangel, M.; Congleton, C.; Yerramsetti, S.M.; Gard, T.; Lazar, S.W. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 2011, 191, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Grecucci, A.; Pappaianni, E.; Siugzdaite, R.; Theuninck, A.; Job, R. Mindful Emotion Regulation: Exploring the Neurocognitive Mechanisms behind Mindfulness. BioMed Res. Int. 2015, 2015, 670724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roemer, L.; Williston, S.K.; Rollins, L.G. Mindfulness and emotion regulation. Curr. Opin. Psychol. 2015, 3, 52–57. [Google Scholar] [CrossRef]
- Malinowski, P.; Moore, A.W.; Mead, B.R.; Gruber, T. Mindful Aging: The Effects of Regular Brief Mindfulness Practice on Electrophysiological Markers of Cognitive and Affective Processing in Older Adults. Mindfulness 2015, 8, 78–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaxman, G.; Flook, L. Brief Summary of Mindfulness Research. Available online: http://marc.ucla.edu/workfiles/pdfs/marcmindfulness-research-summary.pdf (accessed on 23 February 2022).
- Desrosiers, A.; Vine, V.; Klemanski, D.H.; Nolen-Hoeksema, S. Mindfulness and emotion regulation in depression and anxiety: Common and distinct mechanisms of action. Depress. Anxiety 2013, 30, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Lin, J. The Role of Meditation in College Students’ Neuroticism and Mental Health. Transl. Neurosci. 2019, 10, 112–117. [Google Scholar] [CrossRef]
- Tang, Y.; Ma, Y.; Wang, J.; Fan, Y.; Feng, S.; Lu, Q.; Yu, Q.; Sui, D.; Rothbart, M.K.; Fan, M.; et al. Short-term meditation training improves attention and self-regulation. Proc. Natl. Acad. Sci. USA 2007, 104, 17152–17156. [Google Scholar] [CrossRef] [Green Version]
- Lazar, S.W.; Kerr, C.E.; Wasserman, R.H.; Gray, J.R.; Greve, D.N.; Treadway, M.T.; McGarvey, M.; Quinn, B.T.; Dusek, J.A.; Benson, H.; et al. Meditation experience is associated with increased cortical thickness. Neuroreport 2005, 16, 1893–1897. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, S.; Medeiros, S.; Rampes, H. Mindfulness and Emotion Regulation: Insights from Neurobiological, Psychological, and Clinical Studies. Front. Psychol. 2017, 8, 220. [Google Scholar] [CrossRef]
- Mantzios, M.; Giannou, K. A Real-World Application of Short Mindfulness-Based Practices: A Review and Reflection of the Literature and a Practical Proposition for an Effortless Mindful Lifestyle. Am. J. Lifestyle Med. 2018, 13, 520–525. [Google Scholar] [CrossRef]
- Lutz, J.; Herwig, U.; Opialla, S.; Hittmeyer, A.; Jäncke, L.; Rufer, M.; Holtforth, M.G.; Brühl, A.B. Mindfulness and emotion regulation—An fMRI study. Soc. Cogn. Affect. Neurosci. 2013, 9, 776–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, C.J.; Creem, D.; Hendler, R.; Kober, H. Brief Mindfulness Meditation Improves Attention in Novices: Evidence from ERPs and Moderation by Neuroticism. Front. Hum. Neurosci. 2018, 12, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.B.G.; Lo, B.C.Y.; Macrae, C.N. Brief mindfulness meditation improves mental state attribution and empathizing. PLoS ONE 2014, 9, e110510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynaud, E.; El Khoury-Malhame, M.; Rossier, J.; Blin, O.; Khalfa, S. Neuroticism Modifies Psychophysiological Responses to Fearful Film. PLoS ONE 2012, 7, e32413. [Google Scholar] [CrossRef] [Green Version]
- Izhar, L.I.; Roslan, N.S.; Feng, Y.Z.; Faye, I.; Ho, T.W.; Abdul, R.M. Classification of Neuroticism using Psychophysiological Signals During Speaking Task based on Two Different Baseline Measurements. Int. J. Integr. Eng. 2019, 11, 119–128. [Google Scholar] [CrossRef]
- Farahi, S.M.M.; Ebrahimabad, M.J.A.; Gorji, A.; Bigdeli, I.; Farahi, S.M. Neuroticism and Frontal EEG Asymmetry Correlated With Dynamic Facial Emotional Processing in Adolescents. Front. Psychol. 2019, 10, 175. [Google Scholar] [CrossRef]
- Zotev, V.; Phillips, R.; Yuan, H.; Misaki, M.; Bodurka, J. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG Neurofeedback. NeuroImage 2014, 85, 985–995. [Google Scholar] [CrossRef] [Green Version]
- Morais, P.; Quaresma, C.; Vigário, R.; Quintão, C. Electrophysiological effects of mindfulness meditation in a concentration test. Med. Biol. Eng. Comput. 2021, 59, 759–773. [Google Scholar] [CrossRef] [PubMed]
- Lomas, T.; Ivtzan, I.; Fu, C.H.Y. A Systematic Review of the Neurophysiology of Mindfulness on EEG Oscillations. Neurosci. Biobehav. Rev. 2015, 57, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Vekety, B.; Logemann, A.; Takacs, Z.K. Mindfulness Practice with a Brain-Sensing Device Improved Cognitive Functioning of Elementary School Children: An Exploratory Pilot Study. Brain Sci. 2022, 12, 103. [Google Scholar] [CrossRef]
- Deolindo, C.S.; Ribeiro, M.W.; Aratanha, M.A.; Afonso, R.F.; Irrmischer, M.; Kozasa, E.H. A Critical Analysis on Characterizing the Meditation Experience Through the Electroencephalogram. Front. Syst. Neurosci. 2020, 14, 53. [Google Scholar] [CrossRef]
- Tabakcioglu, M.; Çizmeci, H.; Ayberkin, D. Neurosky EEG Biosensor Using in Education. Int. J. Appl. Math. Electron. Comput. 2016, 4, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Lee, M. The Effect of a Mindfulness-Based Education Program on Brain Waves and the Autonomic Nervous System in University Students. Healthcare 2021, 9, 1606. [Google Scholar] [CrossRef] [PubMed]
- McCrae, R.R.; Costa Jr, P.T. Personality trait structure as a human universal. Am. Psychol. 1997, 52, 509. [Google Scholar] [CrossRef] [PubMed]
- Klimstra, T.A.; Bleidorn, W.; Asendorpf, J.B.; van Aken, M.A.G.; Denissen, J.J.A. Correlated change of Big Five personality traits across the lifespan: A search for determinants. J. Res. Personal. 2013, 47, 768–777. [Google Scholar] [CrossRef]
- Mroczek, D.K.; Almeida, D.M. The effect of daily stress, personality, and age on daily negative affect. J. Personal. 2004, 72, 355–378. [Google Scholar] [CrossRef] [PubMed]
- Eysenck, H.J.; Eysenck, M.W. Personality and Individual Differences; Plenum: New York, NY, USA, 1985. [Google Scholar]
- Minnix, J.A.; Kline, J.P. Neuroticism predicts resting frontal EEG asymmetry variability. Personal. Individ. Differ. 2004, 36, 823–832. [Google Scholar] [CrossRef]
- Goodwin, R.D.; Fergusson, D.M.; Horwood, L.J. Neuroticism in adolescence and psychotic symptoms in adulthood. Psychol. Med. 2003, 33, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J.; John, O.P. Healthy and unhealthy emotion regulation: Personality processes, individual differences, and life span development. J. Personal. 2004, 72, 1301–1333. [Google Scholar]
- Chambers, R.; Gullone, E.; Allen, N.B. Mindful emotion regulation: An integrative review. Clin. Psychol. Rev. 2009, 29, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J.; John, O.P. Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. J. Personal. Soc. Psychol. 2003, 85, 348–362. [Google Scholar] [CrossRef]
- Zeidan, F.; Martucci, K.T.; Kraft, R.A.; McHaffie, J.G.; Coghill, R.C. Neural correlates of mindfulness meditation-related anxiety relief. Soc. Cogn. Affect. Neurosci. 2014, 9, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Ruhl, C. Cognitive Bias Examples. Simply Psychology. 2021. Available online: www.simplypsychology.org/cognitive-bias.html (accessed on 23 February 2022).
- Mathews, A.; MacLeod, C. Cognitive vulnerability to emotional disorders. Annu. Rev. Clin. Psychol. 2005, 1, 167–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klockner, K.; Hicks, R.E. Cognitive Failures at Work, Mindfulness, and the Big Five. GSTF J. Psychol. JPsych 2015, 2, 1. [Google Scholar] [CrossRef]
- Kondracki, A.J.; Riedel, M.C.; Crooks, K.; Perez, P.V.; Flannery, J.S.; Laird, A.R.; Sutherland, M.T. The Link between Neuroticism and Everyday Cognitive Failures Is Mediated by Self-Reported Mindfulness Among College Students. Psychol. Rep. 2021, 332941211048467. [Google Scholar] [CrossRef] [PubMed]
- Wongpakaran, N.; Wongpakaran, T.; Wedding, D.; Mirnics, Z.; Kövi, Z. Role of Equanimity on the Mediation Model of Neuroticism, Perceived Stress and Depressive Symptoms. Healthcare 2021, 9, 1300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Z.; Wang, X.; Liu, L.; Zhang, J.; Zhou, R. The Effects of Different Stages of Mindfulness Meditation Training on Emotion Regulation. Front. Hum. Neurosci. 2019, 13, 208. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.Y.; Hsu, A.L.; Hsu, L.M.; Tsai, J.S.; Huang, C.M.; Chao, Y.P.; Hwang, T.J.; Wu, C.W. Mindfulness Improves Emotion Regulation and Executive Control on Bereaved Individuals: An fMRI Study. Front. Hum. Neurosci. 2019, 12, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alidina, S.; Marshall, J.J. Mindfulness Workbook for Dummies; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Clarke, J.; Draper, S. Intermittent mindfulness practice can be beneficial, and daily practice can be harmful. An in depth, mixed methods study of the “Calm” app’s (mostly positive) effects. Internet Interv. 2020, 19, 100293. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Jang, K.S. Mediating Effects of Emotion Regulation between Socio-Cognitive Mindfulness and Achievement Emotions in Nursing Students. Healthcare 2021, 9, 1238. [Google Scholar] [CrossRef] [PubMed]
- Kabat-Zinn, J.; Massion, A.O.; Kristeller, J.; Peterson, L.G. Effectiveness of a meditation-based stress reduction program in the treatment of anxiety disorders. Am. J. Psychiatry 1992, 149, 936–943. [Google Scholar] [PubMed]
- Miller, J.J.; Fletcher, K.; Kabat-Zinn, J. Three-year follow-up and clinical implications of a mindfulness meditation-based stress reduction intervention in the treatment of anxiety disorders. Gen. Hosp. Psychiatry 1995, 17, 192–200. [Google Scholar] [CrossRef]
- Jaiswal, S.; Muggleton, N.G.; Juan, C.H.; Liang, W.K. Indices of association between anxiety and mindfulness: A guide for future mindfulness studies. Personal. Neurosci. 2019, 2, e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.Y.; Hölzel, B.; Posner, M. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 2015, 16, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Cisler, J.M.; Olatunji, B.O.; Feldner, M.T.; Forsyth, J.P. Emotion Regulation and the Anxiety Disorders: An Integrative Review. J. Psychopathol. Behav. Assess. 2010, 32, 68–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalaudin, N.; Amin, M.K.M. EEG analysis on human reflection towards relaxation of mind. Malays. J. Fundam. Appl. Sci. 2019, 15, 185–189. [Google Scholar] [CrossRef]
- Chien, J.H.; Colloca, L.; Korzeniewska, A.; Meeker, T.J.; Bienvenu, O.J.; Saffer, M.I.; Lenz, F.A. Behavioral, Physiological and EEG Activities Associated with Conditioned Fear as Sensors for Fear and Anxiety. Sensors 2020, 20, 6751. [Google Scholar] [CrossRef]
- Lin, Y.; Gloe, L.M.; Louis, C.C.; Eckerle, W.D.; Fisher, M.E.; Moser, J.S. An electrophysiological investigation on the emotion regulatory mechanisms of brief open monitoring meditation in novice non-meditators. Sci. Rep. 2020, 10, 14252. [Google Scholar] [CrossRef]
- Martin, R.E.; Ochsner, K.N. The Neuroscience of Emotion Regulation Development: Implications for Education. Curr. Opin. Behav. Sci. 2016, 10, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Seedat, S.; Scott, K.M.; Angermeyer, M.C.; Berglund, P.; Bromet, E.J.; Brugha, T.S.; Demyttenaere, K.; de Girolamo, G.; Haro, J.M.; Jin, R.; et al. Cross-national associations between gender and mental disorders in the World Health Organization World Mental Health Surveys. Arch. Gen. Psychiatry 2009, 66, 785–795. [Google Scholar] [CrossRef]
- McLean, C.P.; Asnaani, A.; Litz, B.T.; Hofmann, S.G. Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. J. Psychiatr. Res. 2011, 45, 1027–1035. [Google Scholar] [CrossRef] [Green Version]
- Augustine, A.A.; Hemenover, S.H. On the relative effectiveness of affect regulation strategies: A meta-analysis. Cogn. Emot. 2009, 23, 1181–1220. [Google Scholar] [CrossRef]
- Webb, T.L.; Miles, E.; Sheeran, P. Dealing with feeling: A meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychol. Bull. 2012, 138, 775–808. [Google Scholar] [CrossRef] [PubMed]
- McRae, K.; Ochsner, K.N.; Mauss, I.B.; Gabrieli, J.J.D.; Gross, J.J. Gender Differences in Emotion Regulation: An fMRI Study of Cognitive Reappraisal. Group Process. Intergroup Relat. 2008, 11, 143–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eysenck, H.J.; Eysenck, S.B.G. Eysenck Personality Questionnaire; Educational and Industrial Testing Service: Princeton, NJ, USA, 1976. [Google Scholar]
- Lovibond, S.H.; Lovibond, P.F. Manual for the Depression Anxiety Stress Scales, 2nd ed.; Psychology Foundation: Sydney, Australia, 1995; ISBN 7334-1423-0. [Google Scholar]
- Carlson, C.; Collinis, F.; Cheryl, O.L. Emotional Assessment Scale 1989. Phsychology 2007, 197996746. [Google Scholar]
- Gratz, K.L.; Roemer, L. Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the difficulties in emotion regulation scale. J. Psychopathol. Behav. Assess. 2004, 26, 41–54. [Google Scholar] [CrossRef]
- Baer, R.A.; Smith, G.T.; Hopkins, J.; Krietemeyer, J.; Toney, L. Using self-report assessment methods to explore facets of mindfulness. Assessment 2006, 13, 27–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Hart, S.G. NASA-Task Load Index (NASA-TLX); 20 Years Later. In Proceedings of the Human Factors and Ergonomics Society 50th Annual Meeting; HFES: Santa Monica, CA, USA, 2006; pp. 904–908. [Google Scholar]
- Schaefer, A.; Nils, F.; Philippot, P.; Sanchez, X. Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. Cogn. Emot. 2010, 24, 1153–1172. [Google Scholar] [CrossRef]
- Russell, J. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Stoet, G. PsyToolkit: A novel web-based method for running online questionnaires and reaction-time experiments. Teach. Psychol. 2017, 44, 24–31. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Weil, A. Video: Breathing Exercises: 4-7-8 Breath [Video File]. Available online: https://www.drweil.com/videos-features/videos/breathing-exercises-4-7-8-breath/ (accessed on 23 February 2022).
- Welch, P.D. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Heinzel, G.; Rüdiger, A.O.; Schilling, R. Spectrum and Spectral Density Estimation by the Discrete Fourier Transform (DFT), Including a Comprehensive List of Window Functions and Some New At-Top Windows. 2002. Available online: https://holometer.fnal.gov/GH_FFT.pdf (accessed on 23 February 2022).
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firpi, H.A.; Vogelstein, R.J. Particle swarm optimization-based feature selection for cognitive state detection. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6556–6559. [Google Scholar]
- Asghar, M.A.; Khan, M.J.; Fawad, A.Y.; Rizwan, M.; Rahman, M.; Badnava, S.; Mirjavadi, S.S. EEG-Based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach. Sensors 2019, 19, 5218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brookshire, G.; Casasanto, D. Motivation and motor control: Hemispheric specialization for approach motivation reverses with handedness. PLoS ONE 2012, 7, e36036. [Google Scholar] [CrossRef] [PubMed]
- Gotlieb, R.J.; Yang, X.F.; Immordino-Yang, M.H. Measuring Learning in the Blink of an Eye: Adolescents’ Neurophysiological Reactions Predict Long-Term Memory for Stories. Front. Educ. 2021, 5, 594668. [Google Scholar] [CrossRef]
- Oken, B.; Ahani, A.; Wahbeh, H.; Nezamfar, H.; Miller, M.; Erdogmus, D.; Goodrich, E. Signal Processing and Machine Learning of EEG and Respiration Changes During Mindfulness Meditation State. J. Altern. Complement. Med. 2014, 20, A25. [Google Scholar] [CrossRef]
- Zhuang, N.; Ying, Z.; Kai, Y.; Chi, Z.; Li, T.; Bin, Y. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals. Sensors 2018, 18, 841. [Google Scholar] [CrossRef] [Green Version]
- Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y.; Al-Wabil, A. Review and classification of emotion recognition based on EEG brain-computer interface system research: A systematic review. Appl. Sci. 2017, 7, 1239. [Google Scholar] [CrossRef] [Green Version]
- Dennis, T.; Solomon, B. Frontal EEG and emotion regulation: Electrocortical activity in response to emotional film clips is associated with reduced mood induction and attention interference effects. Biol. Psychol. 2010, 85, 456–464. [Google Scholar] [CrossRef] [Green Version]
- Chiodelli, R.; Mello, L.T.N.; Jesus, S.N.; Andretta, I. Effects of a brief mindfulness-based intervention on emotional regulation and levels of mindfulness in senior students. Psicol. Reflex. Crit. 2018, 31, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Rahrig, H.; Eichel, K.; Niles, H.F.; Rocha, T.; Lepp, N.E.; Gold, J.; Britton, W.B. Gender differences in response to a school-based mindfulness training intervention for early adolescents. J. Sch. Psychol. 2018, 68, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Z.; Chen, Y.; Sun, Y.; Zhang, K.; Wang, N.; Sun, Y.; Lin, X.; Wang, J.; Luo, F. Gender differences in the benefits of meditation training on attentional blink. Curr. Psychol. 2021, 1–10. [Google Scholar] [CrossRef]
- Rojiani, R.; Santoyo, J.F.; Rahrig, H.; Roth, H.D.; Britton, W.B. Women Benefit More Than Men in Response to College-based Meditation Training. Front. Psychol. 2017, 8, 551. [Google Scholar] [CrossRef]
- Thompson, B.L. Everyday Mindfulness and Mindfulness Meditation: Overlapping Constructs or Not? Ph.D. Thesis, University of Montana, Missoula, MT, Canada, 2005. [Google Scholar]
Phase | Mean Length (min) | Mean Arousal | Mean Valence |
---|---|---|---|
Pre-intervention | 2.35 | 5.26 | 2.73 |
Post-intervention | 2.42 | 5.35 | 2.77 |
Questionnaire | M(SD) | F-Value | p-Value | η2 | |
---|---|---|---|---|---|
T1 | T2 | ||||
AES | 123.22 (11.53) | 119.89 (9.65) | 0.975 | 0.337 | 0.054 |
FFMQ-observe | 28.72 (3.97) | 27.787 (4.86) | 0.702 | 0.414 | 0.40 |
FFMQ-describe | 22.83 (6.4) | 23.78 (4.15) | 0.545 | 0.470 | 0.031 |
FFMQ-act-with-awareness | 22.56 (4.95) | 22.39 (4.62) | 0.023 | 0.882 | 0.001 |
FFMQ-non-judgmental | 17.17 (5.06) | 19.33 (4.54) | 4.95 | 0.040 | 0.225 |
FFMQ-non-reactive-to-inner-experience | 19.94 (3.35) | 22.33 (2.33) | 7.79 | 0.013 | 0.314 |
DASS-anxiety | 21.78 (6.36) | 15.78 (8.51) | 7.61 | 0.013 | 0.309 |
DASS-stress | 21.33 (8.62) | 16.11(6.42) | 5.89 | 0.027 | 0.257 |
DASS-depression | 13.33 (7.7) | 11.56(7.66) | 0.63 | 0.438 | 0.036 |
Q | M(SD) | F-Value | p-Value | η2 | |
---|---|---|---|---|---|
T1 | T2 | ||||
ERQ-appraisal | 29.56 (4.31) | 30.89 (3.72) | 1.766 | 0.201 | 0.094 |
ERQ-suppression | 18.17 (3.67) | 15.89 (3.67) | 4.620 | 0.046 | 0.214 |
Brain Wave | Eyes-Closed (EC) | Eyes-Opened (EO) | Trial 1 | Trial 2 | Trial 3 | Trial 4 | Trial 5 | Most-Selected Channel |
---|---|---|---|---|---|---|---|---|
Delta | - | Fp1, F3 | P4 | - | P4, O1, Fp2, Fp1 | P3, Fp1, T7 | Fp1, Fp2, P4 | Fp1 *** |
Theta | P8, O1, O2 | F4 | - | - | - | - | FP1, F4 | F4 ** |
Alpha | O1, O2, T7 | F3 | Pz | - | - | - | C4, F4, C3, F3 | F3 ** |
Beta | O2 | - | - | - | T8 | - | - | NA |
Gamma | - | - | - | - | T8 | - | - | NA |
Most-selected channel | O2 *** | F3 ** | NA | NA | T8 ** | NA | Fp1 ** F4 ** | O2 ***, Fp1 *** |
Classification Method | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|
KNN | 76.9% | 76.9%% | 76.9%% | 0.8 |
SVM | 76.9% | 76.9%% | 76.9%% | 0.75 |
Accuracy | Sensitivity | Specificity | AUC | |
---|---|---|---|---|
KNN | 76.7% | 80% | 73.3% | 0.66 |
SVM | 76.7% | 80% | 73.3% | 0.75 |
Channel | Accuracy | Sensitivity | Specificity |
---|---|---|---|
O2 | 76.9% | 76.9% | 76.9% |
Fp1 | 76.7% | 80% | 73.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izhar, L.I.; Babiker, A.; Rizki, E.E.; Lu, C.-K.; Abdul Rahman, M. Emotion Self-Regulation in Neurotic Students: A Pilot Mindfulness-Based Intervention to Assess Its Effectiveness through Brain Signals and Behavioral Data. Sensors 2022, 22, 2703. https://doi.org/10.3390/s22072703
Izhar LI, Babiker A, Rizki EE, Lu C-K, Abdul Rahman M. Emotion Self-Regulation in Neurotic Students: A Pilot Mindfulness-Based Intervention to Assess Its Effectiveness through Brain Signals and Behavioral Data. Sensors. 2022; 22(7):2703. https://doi.org/10.3390/s22072703
Chicago/Turabian StyleIzhar, Lila Iznita, Areej Babiker, Edmi Edison Rizki, Cheng-Kai Lu, and Mohammad Abdul Rahman. 2022. "Emotion Self-Regulation in Neurotic Students: A Pilot Mindfulness-Based Intervention to Assess Its Effectiveness through Brain Signals and Behavioral Data" Sensors 22, no. 7: 2703. https://doi.org/10.3390/s22072703