Low-Power Lossless Data Compression for Wireless Brain Electrophysiology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Huffman Coding
2.2. Delta Compression
2.3. Hardware Prototype
2.3.1. Low-Power FPGA
2.3.2. Acquisition Chip
2.3.3. Wireless Device
2.3.4. Development Hardware
2.4. Sample Signals
3. Development and Design
3.1. Compression Algorithm
3.2. Low-Memory, Low Resource Compression
3.3. Transmission Protocol
4. Results
4.1. Compression Performance
4.2. Signal Integrity
4.3. Effect of Dictionary on Compression
4.4. Power Usage
4.5. Resource Usage
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASIC | Application-Specific Integrated Circuit |
DSP | Digital Signal Processor |
FPGA | Field-Programmable Gate Array |
IC | Integrated Circuit |
LFP | Local Field Potentials |
RAM | Random Access Memory |
ROM | Read-Only Memory |
References
- Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 2004, 7, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, J.W.; Ghazanfar, A.A.; Gomez-Marin, A.; MacIver, M.A.; Poeppel, D. Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron 2017, 93, 480–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taube, J.S.; Muller, R.U.; Ranck, J.B. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 1990, 10, 420–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, E.I.; Kropff, E.; Moser, M.B. Place Cells, Grid Cells, and the Brain’s Spatial Representation System. Annu. Rev. Neurosci. 2008, 31, 69–89. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.F.; O’Keefe, J.; Poort, J. Two Distinct Types of Eye-Head Coupling in Freely Moving Mice. Curr. Biol. 2020, 30, 2116–2130.e6. [Google Scholar] [CrossRef]
- Siegle, J.H.; Wilson, M.A. Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus. eLife 2014, 3, e03061. [Google Scholar] [CrossRef]
- López-Madrona, V.J.; Pérez-Montoyo, E.; Álvarez Salvado, E.; Moratal, D.; Herreras, O.; Pereda, E.; Mirasso, C.R.; Canals, S. Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. eLife 2020, 9, e57313. [Google Scholar] [CrossRef]
- Reinhold, A.S.; Sanguinetti-Scheck, J.I.; Hartmann, K.; Brecht, M. Behavioral and neural correlates of hide-and-seek in rats. Science 2019, 365, 1180–1183. [Google Scholar] [CrossRef]
- Yin, M.; Borton, D.; Komar, J.; Agha, N.; Lu, Y.; Li, H.; Laurens, J.; Lang, Y.; Li, Q.; Bull, C.; et al. Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior. Neuron 2014, 84, 1170–1182. [Google Scholar] [CrossRef] [Green Version]
- Massot, B.; Arthaud, S.; Barrillot, B.; Roux, J.; Ungurean, G.; Luppi, P.H.; Rattenborg, N.C.; Libourel, P.A. ONEIROS, a new miniature standalone device for recording sleep electrophysiology, physiology, temperatures and behavior in the lab and field. J. Neurosci. Methods 2019, 316, 103–116. [Google Scholar] [CrossRef]
- Vinepinsky, E.; Donchin, O.; Segev, R. Wireless electrophysiology of the brain of freely swimming goldfish. J. Neurosci. Methods 2017, 278, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Rattenborg, N.C.; Voirin, B.; Cruz, S.M.; Tisdale, R.; Dell’Omo, G.; Lipp, H.P.; Wikelski, M.; Vyssotski, A.L. Evidence that birds sleep in mid-flight. Nat. Commun. 2016, 7, 1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borna, A.; Najafi, K. A Low Power Light Weight Wireless Multichannel Microsystem for Reliable Neural Recording. IEEE J. Solid-State Circuits 2014, 49, 439–451. [Google Scholar] [CrossRef]
- Fan, D.; Rich, D.; Holtzman, T.; Ruther, P.; Dalley, J.W.; Lopez, A.; Rossi, M.A.; Barter, J.W.; Salas-Meza, D.; Herwik, S.; et al. A Wireless Multi-Channel Recording System for Freely Behaving Mice and Rats. PLoS ONE 2011, 6, e22033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Routhu, S.; Moon, K.S.; Lee, S.Q.; Youm, W.; Ozturk, Y. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface. Sensors 2016, 16, 1582. [Google Scholar] [CrossRef] [PubMed]
- Ghomashchi, A.; Zheng, Z.; Majaj, N.; Trumpis, M.; Kiorpes, L.; Viventi, J. A low-cost, open-source, wireless electrophysiology system. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3138–3141. [Google Scholar] [CrossRef]
- Jia, Y.; Khan, W.; Lee, B.; Fan, B.; Madi, F.; Weber, A.; Li, W.; Ghovanloo, M. Wireless opto-electro neural interface for experiments with small freely behaving animals. J. Neural Eng. 2018, 15, 046032. [Google Scholar] [CrossRef]
- Mukati, M.R.; Kocatürk, S.; Kocatürk, M.; Baykaş, T. A Microcontroller-Based Wireless Multichannel Neural Data Transmission System. In Proceedings of the 2017 21st National Biomedical Engineering Meeting (BIYOMUT), Istanbul, Turkey, 24 November–26 December 2017; pp. i–iv. [Google Scholar] [CrossRef]
- Brenna, S.; Padovan, F.; Neviani, A.; Bevilacqua, A.; Bonfanti, A.; Lacaita, A.L. A 64-Channel 965-μW Neural Recording SoC With UWB Wireless Transmission in 130-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 528–532. [Google Scholar] [CrossRef]
- Jia, Y.; Lee, B.; Kong, F.; Zeng, Z.; Connolly, M.; Mahmoudi, B.; Ghovanloo, M. A Software-Defined Radio Receiver for Wireless Recording From Freely Behaving Animals. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1645–1654. [Google Scholar] [CrossRef]
- Lee, B.; Jia, Y.; Kong, F.; Connolly, M.; Mahmoudi, B.; Ghovanloo, M. Toward A Robust Multi-Antenna Receiver for Wireless Recording From Freely-Behaving Animals. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Lee, S.B.; Yin, M.; Manns, J.R.; Ghovanloo, M. A Wideband Dual-Antenna Receiver for Wireless Recording From Animals Behaving in Large Arenas. IEEE Trans. Biomed. Eng. 2013, 60, 1993–2004. [Google Scholar] [CrossRef] [Green Version]
- Navajas, J.; Barsakcioglu, D.Y.; Eftekhar, A.; Jackson, A.; Constandinou, T.G.; Quian Quiroga, R. Minimum requirements for accurate and efficient real-time on-chip spike sorting. J. Neurosci. Methods 2014, 230, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Pagin, M.; Haas, M.; Becker, J.; Ortmanns, M. Delta compression in time-multiplexed multichannel neural recorders. In Proceedings of the 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Lisbon, Portugal, 27–30 June 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Alsenwi, M.; Ismail, T.; Mostafa, H. Performance analysis of hybrid lossy/lossless compression techniques for EEG data. In Proceedings of the 2016 28th International Conference on Microelectronics (ICM), Giza, Egypt, 17–20 December 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Gagnon-Turcotte, G.; LeChasseur, Y.; Bories, C.; Messaddeq, Y.; De Koninck, Y.; Gosselin, B. A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhao, W.; Guo, H.; Lim, H.; Yang, Z. A streaming PCA based VLSI chip for neural data compression. In Proceedings of the 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, China, 17–19 October 2016; pp. 192–195. [Google Scholar] [CrossRef]
- Ahmadi-Dastgerdi, N.; Hosseini-Nejad, H.; Amiri, H.; Shoeibi, A.; Gorriz, J.M. A Vector Quantization-Based Spike Compression Approach Dedicated to Multichannel Neural Recording Microsystems. Int. J. Neural Syst. 2022, 32, 2250001. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Han, S.H.; Cha, J.H.; Liu, L.; Yao, L.; Gao, Y.; Je, M. A Sub-μW/Ch Analog Front-End for Δ-Neural Recording With Spike-Driven Data Compression. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Thies, J.; Alimohammad, A. Compact and Low-Power Neural Spike Compression Using Undercomplete Autoencoders. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1529–1538. [Google Scholar] [CrossRef]
- Li, N.; Sawan, M. High compression rate and efficient spikes detection system using compressed sensing technique for neural signal processing. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015; pp. 597–600. [Google Scholar] [CrossRef]
- Bilodeau, G.; Gagnon-Turcotte, G.; Gagnon, L.L.; Keramidis, I.; Timofeev, I.; De Koninck, Y.; Ethier, C.; Gosselin, B. A Wireless Electro-Optic Platform for Multimodal Electrophysiology and Optogenetics in Freely Moving Rodents. Front. Neurosci. 2021, 15, 718478. [Google Scholar] [CrossRef]
- Lapolli, Â.C.; Coppa, B.; Héliot, R. Low-power hardware for neural spike compression in BMIs. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2156–2159. [Google Scholar] [CrossRef]
- Farsiani, S.; Sodagar, A.M. Hardware and Power-Efficient Compression Technique Based on Discrete Tchebichef Transform for Neural Recording Microsystems. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3489–3492. [Google Scholar] [CrossRef]
- Chen, F.; Chandrakasan, A.P.; Stojanovic, V. A signal-agnostic compressed sensing acquisition system for wireless and implantable sensors. In Proceedings of the IEEE Custom Integrated Circuits Conference 2010, San Jose, CA, USA, 19–22 September 2010; pp. 1–4. [Google Scholar]
- Aviyente, S. Compressed sensing framework for EEG compression. In Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, WI, USA, 26–29 August 2007; pp. 181–184. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, W. Compressed Sensing of Extracellular Neurophysiology Signals: A Review. Front. Neurosci. 2021, 15, 682063. [Google Scholar] [CrossRef]
- Sarbandi, E.R.; Taghavi, E.; Hosseini-Nejad, H. Neural Spike Compression Based on Random Sampling and IMATI Techniques. In Proceedings of the Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8–10 May 2018; pp. 1425–1428. [Google Scholar] [CrossRef]
- Bulach, C.; Bihr, U.; Ortmanns, M. Evaluation study of compressed sensing for neural spike recordings. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3507–3510. [Google Scholar]
- Liu, X.; Zhang, M.; Xiong, T.; Richardson, A.G.; Lucas, T.H.; Chin, P.S.; Etienne-Cummings, R.; Tran, T.D.; Van der Spiegel, J. A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 874–883. [Google Scholar] [CrossRef]
- Huffman, D.A. A Method for the Construction of Minimum-Redundancy Codes. Proc. IRE 1952, 40, 1098–1101. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Thummala, S.; Kumar, T.; Latha, S. FPGA Implementation of Huffman Encoder and Decoder for High Performance Data Transmission. Int. J. Eng. Res. Technol. (IJERT) 2014, 3, 745–749. [Google Scholar]
- Hashemian, R. Memory efficient and high-speed search Huffman coding. IEEE Trans. Commun. 1995, 43, 2576–2581. [Google Scholar] [CrossRef]
- Larmore, L.L.; Hirschberg, D.S. A fast algorithm for optimal length-limited Huffman codes. J. ACM 1990, 37, 464–473. [Google Scholar] [CrossRef]
- Freking, R.A.; Parhi, K.K. Low-memory, fixed-latency Huffman encoder for unbounded-length codes. In Proceedings of the Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154), Pacific Grove, CA, USA, 29 October–1 November 2000; Volume 2, pp. 1031–1034. [Google Scholar] [CrossRef]
- Aziz, J.N.Y.; Abdelhalim, K.; Shulyzki, R.; Genov, R.; Bardakjian, B.L.; Derchansky, M.; Serletis, D.; Carlen, P.L. 256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes. IEEE J. Solid-State Circuits 2009, 44, 995–1005. [Google Scholar] [CrossRef]
- Microsemi IGLOO series Low-Power FPGAs. Available online: https://www.microsemi.com/product-directory/fpgas/1689-igloo#igloo-nano (accessed on 18 October 2021).
- Intan Technologies RHD Electrophysiology Amplifier Chips. Available online: https://intantech.com/products_RHD2000.html (accessed on 18 October 2021).
- CC3220SF Data Sheet, Product Information and Support|TI.com. Available online: https://www.ti.com/product/CC3220SF (accessed on 18 October 2021).
- Siegle, J.H.; López, A.C.; Patel, Y.A.; Abramov, K.; Ohayon, S.; Voigts, J. Open Ephys: An open-source, plugin-based platform for multichannel electrophysiology. J. Neural Eng. 2017, 14, 045003. [Google Scholar] [CrossRef]
- Chaure, F.J.; Rey, H.G.; Quian Quiroga, R. A novel and fully automatic spike-sorting implementation with variable number of features. J. Neurophysiol. 2018, 120, 1859–1871. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Marin, A.; Ghazanfar, A.A. The Life of Behavior. Neuron 2019, 104, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Adame, T.; Bel, A.; Bellalta, B.; Barcelo, J.; Oliver, M. IEEE 802.11AH: The WiFi approach for M2M communications. IEEE Wirel. Commun. 2014, 21, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Jun, J.J.; Steinmetz, N.A.; Siegle, J.H.; Denman, D.J.; Bauza, M.; Barbarits, B.; Lee, A.K.; Anastassiou, C.A.; Andrei, A.; Aydın, Ç.; et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 2017, 551, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Putzeys, J.; Raducanu, B.C.; Carton, A.; De Ceulaer, J.; Karsh, B.; Siegle, J.H.; Van Helleputte, N.; Harris, T.D.; Dutta, B.; Musa, S.; et al. Neuropixels Data-Acquisition System: A Scalable Platform for Parallel Recording of 10,000+ Electrophysiological Signals. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1635–1644. [Google Scholar] [CrossRef]
- Park, S.Y.; Cho, J.; Lee, K.; Yoon, E. Dynamic Power Reduction in Scalable Neural Recording Interface Using Spatiotemporal Correlation and Temporal Sparsity of Neural Signals. IEEE J. Solid-State Circuits 2018, 53, 1102–1114. [Google Scholar] [CrossRef]
- Khazaei, Y.; Shahkooh, A.A.; Sodagar, A.M. Spatial Redundancy Reduction in Multi-Channel Implantable Neural Recording Microsystems. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 898–901. [Google Scholar] [CrossRef]
- Bihr, U.; Xu, H.; Bulach, C.; Lorenz, M.; Anders, J.; Ortmanns, M. Real-time data compression of neural spikes. In Proceedings of the 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS), Trois-Rivieres, QC, Canada, 22–25 June 2014; pp. 436–439. [Google Scholar] [CrossRef]
Bit | 0 | 1 |
---|---|---|
0 | 50% | 50% |
1 | 50.72% | 49.28% |
2 | 52.19% | 47.81% |
3 | 55.15% | 44.85% |
4 | 61.36% | 38.64% |
5 | 77.18% | 22.82% |
6 | 95.51% | 3.49% |
7 | 99.81% | 0.19% |
8 | 99.99% | 0.01% |
9 | ∼100% | <0.01% |
Sign | 49.76% | 50.24% |
Data | Compression Ratio | Recording Time |
---|---|---|
Offline compression | ||
Mouse 1 | 33.86% | 5 min |
Mouse 2 | 33.72% | 5 min |
Mouse 3 | 33.37% | 5 min |
Mouse 4 | 33.25% | 5 min |
Mouse 5 | 38.44% | 5 min |
Rat 1 | 51.37% | 30 min × 4 days |
Rat 2 | 44.60% | 30 min × 4 days |
Rat 3 | 59.31% | 30 min × 4 days |
Mean | 47.94% | Weighted Average |
in vivo online compression | ||
Rat 1 | 62.99% | 20 min |
Rat 2 | 62.29% | 20 min |
Rat 3 | 71.45% | 20 min |
Mean | 65.58% | Average |
Mouse 1 | Mouse 2 | Mouse 3 | Mouse 4 | Mouse 5 | |
---|---|---|---|---|---|
Detected events in original | 11,021 | 139,743 | 109,759 | 207,416 | 148,400 |
Detected events in processed | 109,992 | 139,709 | 109,763 | 207,379 | 148,374 |
Matching events (%) | 99.9736 | 99.9757 | 99.9964 | 99.9822 | 99.9825 |
MAtching events start sample error | 0.3572 | 0.3910 | 0.3404 | 0.2755 | 0.1437 |
Animal Data | Animal + Base | ||
---|---|---|---|
Base | w. Rat 3 | 51.87% | N/A |
w/o Rat 3 | 48.15% | N/A | |
All | w. Rat 3 | 50.76% | 50.59% |
w/o Rat 3 | 47.42% | 47.96% | |
Self | w. Rat 3 | 48.8% | 49.42% |
w/o Rat 3 | 46.42% | 47.44% | |
Others | w. Rat 3 | 49.37% | 51.16% |
w/o Rat 3 | 47.67% | 46.39% |
Xilinx Cells | IGLOO Cells | Prototype Usage | |
---|---|---|---|
Compression | 60 | 585 | 9.20% |
Transmission protocol | 22 | 210 | 3.42% |
Data acquisition | 54 | 495 | 8.08% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuevas-López, A.; Pérez-Montoyo, E.; López-Madrona, V.J.; Canals, S.; Moratal, D. Low-Power Lossless Data Compression for Wireless Brain Electrophysiology. Sensors 2022, 22, 3676. https://doi.org/10.3390/s22103676
Cuevas-López A, Pérez-Montoyo E, López-Madrona VJ, Canals S, Moratal D. Low-Power Lossless Data Compression for Wireless Brain Electrophysiology. Sensors. 2022; 22(10):3676. https://doi.org/10.3390/s22103676
Chicago/Turabian StyleCuevas-López, Aarón, Elena Pérez-Montoyo, Víctor J. López-Madrona, Santiago Canals, and David Moratal. 2022. "Low-Power Lossless Data Compression for Wireless Brain Electrophysiology" Sensors 22, no. 10: 3676. https://doi.org/10.3390/s22103676
APA StyleCuevas-López, A., Pérez-Montoyo, E., López-Madrona, V. J., Canals, S., & Moratal, D. (2022). Low-Power Lossless Data Compression for Wireless Brain Electrophysiology. Sensors, 22(10), 3676. https://doi.org/10.3390/s22103676