Path Loss Model for 3.5 GHz and 5.6 GHz Bands in Cascaded Tunnel Environments
Abstract
:1. Introduction
2. Path Loss Model for Cascaded Tunnels in Far-Field Region of Propagation
2.1. Calculation of Break Point
2.2. The Joint Channel Model Based on Waveguide and SBR
3. Channel Measurement and RT Parameters Calibration in a Subway Tunnel
3.1. Measurement Environment and Configuration
3.2. RT Parameters Calibration
4. Determination of ELC by RT Simulation
5. Verification and Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ai, B.; Cheng, X.; Kürner, T.; Zhong, Z.-D.; Guan, K.; He, R.-S.; Xiong, L.; Matolak, D.W.; Michelson, D.G.; Briso-Rodriguez, C. Challenges Toward Wireless Communications for High-Speed Railway. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2143–2158. [Google Scholar] [CrossRef]
- Ai, B.; Cheng, X.; Yang, L.; Zhong, Z.; Ding, J.; Song, H. Social Network Services for Rail Traffic Applications. IEEE Intell. Syst. 2014, 29, 63–69. [Google Scholar] [CrossRef]
- Gerasimov, J.; Balal, N.; Liokumovitch, E.; Richter, Y.; Gerasimov, M.; Bamani, E.; Pinhasi, G.A.; Pinhasi, Y. Scaled Modeling and Measurement for Studying Radio Wave Propagation in Tunnels. Electronics 2021, 10, 53. [Google Scholar] [CrossRef]
- Pan, Y.; Zheng, G.; Wang, T. Investigation of MIMO Channel Correlation and Capacity in Curved Subway Tunnel. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1698–1702. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, H.; Zheng, G.; Zhang, F.; Saleem, A.; Zhang, K.; Cang, L. Ultra-High Mobility Analysis of MIMO Wireless System in Tunnel Scenarios. IEEE Commun. Lett. 2022, 26, 687–691. [Google Scholar] [CrossRef]
- Ai, B.; Guan, K.; Zhong, Z.; López, C.F.; Zhang, L.; Briso-Rodríguez, C.; He, R. Measurement and Analysis of Extra Propagation Loss of Tunnel Curve. IEEE Trans. Veh. Technol. 2016, 65, 1847–1858. [Google Scholar] [CrossRef] [Green Version]
- Azpilicueta, L.; Rawat, M.; Rawat, K.; Ghannouchi, F.M.; Falcone, F. A Ray Launching-Neural Network Approach for Radio Wave Propagation Analysis in Complex Indoor Environments. IEEE Trans. Antennas Propag. 2014, 62, 2777–2786. [Google Scholar] [CrossRef]
- Sun, S.; Rappaport, T.S.; Thomas, T.A.; Ghosh, A.; Nguyen, H.C.; Kovács, I.Z.; Rodriguez, I.; Koymen, O.; Partyka, A. Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications. IEEE Trans. Veh. Technol. 2016, 65, 2843–2860. [Google Scholar] [CrossRef]
- Sadovaya, Y.; Solomitckii, D.; Mao, W.; Orhan, O.; Nikopour, H.; Tawar, S.; Andreev, S.; Koucheryacy, Y. Ray-Based Modeling of Directional Millimeter-Wave V2V Transmissions in Highway Scenarios. IEEE Access. 2020, 8, 54482–54493. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.-X.; Bai, L.; Sun, J.; Yang, Y.; Li, J.; Tirkkonen, O.; Zhou, M.-T. A Big Data Enabled Channel Model for 5G Wireless Communication Systems. IEEE Trans. Big Data 2020, 6, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Hrovat, A.; Kandus, G.; Javornik, T. A Survey of Radio Propagation Modeling for Tunnels. IEEE Commun. Surv. Tutor. 2014, 16, 658–669. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Hou, W.; Li, Y.; Ai, B. Optimized Scheme of Antenna Diversity for Radio Wave Coverage in Tunnel Environment. IEEE Access 2020, 8, 127226–127233. [Google Scholar] [CrossRef]
- Forooshani, A.E.; Noghanian, S.; Michelson, D.G. Characterization of Angular Spread in Underground Tunnels Based on the Multimode Waveguide Model. IEEE Trans. Commun. 2014, 62, 4126–4133. [Google Scholar] [CrossRef]
- Zhou, C.; Waynert, J. The Equivalence of the Ray Tracing and Modal Methods for Modeling Radio Propagation in Lossy Rectangular Tunnels. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 615–618. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, X.; Wang, J.; Sarris, C.D. Hybrid Numerical Modeling of Electromagnetic Interference in Train Communication Systems. IEEE Trans. Electromagn. Compat. 2020, 62, 715–724. [Google Scholar] [CrossRef]
- Zhang, X.; Sarris, C.D. A Gaussian Beam Approximation Approach for Embedding Antennas into Vector Parabolic Equation-Based Wireless Channel Propagation Models. IEEE Trans. Antennas Propag. 2017, 65, 1301–1310. [Google Scholar] [CrossRef]
- Zhang, X.; Sood, N.; Siu, J.K.; Sarris, C.D. A Hybrid Ray-Tracing/Vector Parabolic Equation Method for Propagation Modeling in Train Communication Channels. IEEE Trans. Antennas Propag. 2016, 64, 1840–1849. [Google Scholar] [CrossRef]
- Zhou, C.; Jacksha, R. Modeling and Measurement of Radio Propagation in Tunnel Environments. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1431–1434. [Google Scholar] [CrossRef] [Green Version]
- Guan, K.; Ai, B.; Peng, B.; He, D.; Li, G.; Yang, J.; Zhong, Z.; Kurner, T. Towards Realistic High-Speed Train Channels at 5G Millimeter-Wave Band—Part I: Paradigm, Significance Analysis, and Scenario Reconstruction. IEEE Trans. Veh. Technol. 2018, 67, 9112–9128. [Google Scholar] [CrossRef]
- Ostlin, E.; Zepernick, H.; Suzuki, H. Macrocell Path-Loss Prediction Using Artificial Neural Networks. IEEE Trans. Veh. Technol. 2010, 59, 2735–2747. [Google Scholar] [CrossRef] [Green Version]
- Briso-Rodríguez, C.; Fratilescu, P.; Xu, Y. Path Loss Modeling for Train-to-Train Communications in Subway Tunnels at 900/2400 MHz. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1164–1168. [Google Scholar] [CrossRef]
- Sun, Z.; Akyildiz, I.F. Channel modeling and analysis for wireless networks in underground mines and road tunnels. IEEE Trans. Commun. 2010, 58, 1758–1768. [Google Scholar] [CrossRef]
- Kasdorf, S.; Troksa, B.; Key, C.; Harmon, J.; Notaroš, B.M. Advancing Accuracy of Shooting and Bouncing Rays Method for Ray-Tracing Propagation Modeling Based on Novel Approaches to Ray Cone Angle Calculation. IEEE Trans. Antennas Propag. 2021, 69, 4808–4815. [Google Scholar] [CrossRef]
- Zhang, X.; Sarris, C.D. Vector Parabolic Equation-Based Derivation of Rectangular Waveguide Surrogate Models of Arched Tunnels. IEEE Trans. Antennas Propag. 2018, 66, 1392–1403. [Google Scholar] [CrossRef]
- Zhang, X.; Sood, N.; Sarris, C.D. Fast Radio-Wave Propagation Modeling in Tunnels with a Hybrid Vector Parabolic Equation/Waveguide Mode Theory Method. IEEE Trans. Antennas Propag. 2018, 66, 6540–6551. [Google Scholar] [CrossRef]
- Yu, D.; Yue, G.; Wei, N.; Yang, L.; Tan, H.; Liang, D.; Gong, Y. Empirical Study on Directional Millimeter-Wave Propagation in Railway Communications Between Train and Trackside. IEEE J. Sel. Areas Commun. 2020, 38, 2931–2945. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Yao, L.; Cao, W. Improved Channel Model and Analysis of the Effect of Bodies in Curved Tunnel Using Ray Tracing. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1162–1166. [Google Scholar] [CrossRef]
- Kalyankar, S.K.; Lee, Y.H.; Meng, Y.S. Two-Slope Path Loss Model for Curved-Tunnel Environment with Concept of Break Point. IEEE Trans. Intell. Transp. Syst. 2021, 22, 7850–7859. [Google Scholar] [CrossRef]
- Fuschini, F.; Falciasecca, G. A Mixed Rays—Modes Approach to the Propagation in Real Road and Railway Tunnels. IEEE Trans. Antennas Propag. 2012, 60, 1095–1105. [Google Scholar] [CrossRef]
- Zhai, M.; Zhai, K.; Cui, H.; Li, D. Multifrequency Channel Characterization for Curved Tunnels. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2457–2460. [Google Scholar] [CrossRef]
- Hu, Z.; Ji, W.; Zhao, H.; Zhai, X.; Saleem, A.; Zheng, G. Channel Measurement for Multiple Frequency Bands in Subway Tunnel Scenario. Int. J. Antennas Propag. 2021, 2021, 9991758. [Google Scholar] [CrossRef]
- Wang, C.; Ji, W.; Zheng, G.; Saleem, A. Analysis of Propagation Characteristics for Various Subway Tunnel Scenarios at 28 GHz. Int. J. Antennas Propag. 2021, 2021, 7666624. [Google Scholar] [CrossRef]
- Rana, M.M.; Mohan, A.S. Segmented-Locally-One-Dimensional-FDTD Method for EM Propagation Inside Large Complex Tunnel Environments. IEEE Trans. Magn. 2012, 48, 223–226. [Google Scholar] [CrossRef]
- Zhou, C. Ray Tracing and Modal Methods for Modeling Radio Propagation in Tunnels with Rough Walls. IEEE Trans. Antennas Propag. 2017, 65, 2624–2634. [Google Scholar] [CrossRef] [Green Version]
- Guan, K.; Zhong, Z.; Ai, B.; He, R.; Chen, B.; Li, Y.; Briso-Rodríguez, C. Complete Propagation Model in Tunnels. IEEE Antennas Wirel. Propag. 2013, 12, 741–744. [Google Scholar] [CrossRef]
- Guan, K.; Zhong, Z.; Ai, B.; He, R.; Briso-Rodriguez, C. Five-Zone Propagation Model for Large-Size Vehicles Inside Tunnels. Prog. Electromagn. Res. 2013, 138, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, S.F. Wireless Transmission in Tunnels with Non-Circular Cross Section. IEEE Trans. Antennas Propag. 2010, 58, 613–616. [Google Scholar] [CrossRef]
- Briso-Rodriguez, C.; Cruz, J.M.; Alonso, J.I. Measurements and Modeling of Distributed Antenna Systems in Railway Tunnels. IEEE Trans. Veh. Technol. 2007, 56, 2870–2879. [Google Scholar] [CrossRef]
- Liu, X.; Yin, X.; Zheng, G. Experimental Investigation of Millimeter-Wave MIMO Channel Characteristics in Tunnel. IEEE Access 2019, 7, 108395–108399. [Google Scholar] [CrossRef]
- Leng, W.; Wang, A.-G. The Simulation of AOA Estimation Using Double Patterns with Partial Overlapping in the Software of Wireless Insite. In Proceedings of the 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 23–25 September 2011; pp. 1–4. [Google Scholar]
- ITU-R. P.2040: Effects of Building Materials and Structures on Radiowave Propagation above about 100 MHz; International Telecommunication Union Radiocommunication Sector ITU-R P: Geneva, Switzerland, 2015. [Google Scholar]
- Zhou, T.; Li, H.; Sun, R.; Wang, Y.; Liu, L.; Tao, C. Simulation and Analysis of Propagation Characteristics for Tunnel Train-Ground Communications at 1.4 and 40 GHz. IEEE Access 2019, 7, 105123–105131. [Google Scholar] [CrossRef]
- Li, S.-D.; Liu, J.-Y.; Lin, L.-K.; Sheng, Z.; Sun, X.-C.; Chen, Z.-P.; Zhang, X.-J. Channel Measurements and Modeling at 6 GHz in the Tunnel Environments for 5G Wireless Systems. Int. J. Antennas Propag. 2017, 2017, 15130380. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Ai, B.; Guan, K.; Zhong, Z.; Hui, B.; Kim, J.; Chung, H.; Kim, I. Channel Measurement, Simulation, and Analysis for High-Speed Railway Communications in 5G Millimeter-Wave Band. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3144–3158. [Google Scholar] [CrossRef]
- Samad, M.A.; Diba, F.D.; Kim, Y.-J.; Choi, D.-Y. Results of Large-Scale Propagation Models in Campus Corridor at 3.7 and 28 GHz. Sensors 2021, 21, 7747. [Google Scholar] [CrossRef] [PubMed]
- Lecci, M.; Testolina, P.; Polese, M.; Giordani, M.; Zorzi, M. Accuracy Versus Complexity for mmWave Ray-Tracing: A Full Stack Perspective. IEEE Trans. Wirel. Commun. 2021, 20, 7826–7841. [Google Scholar] [CrossRef]
Type | Methods | Models | Pros and Cons | Ref. |
---|---|---|---|---|
Straight tunnel | Fit measurement results using regression method | FI model | Low complexity Insufficient accuracy | [21] |
Superpose multiple modes in both near and far region | Multimode model | High accuracy Limited applicability | [22] | |
Calculate Per-ray cone angle | Improved RT model | High accuracy Low computational efficiency | [23] | |
Extract rectangular waveguide model using VPE | Mixed model based on waveguide and VPE | Reduced complexity Limited Validity | [24,25] | |
Curved tunnel | Introduce a break point distance into the CI model | Improved CI model | High accuracy Less stability | [26] |
Divide propagation region into LOS and NLOS | Two-slope model | Realistic scenario Large deviation | [27] | |
Define the break point between two waveguiding effects | Improved FI model with break point | High accuracy Calculations of break point required | [28] | |
Estimate the main effects of the curvature on multimode | Mixed model based on waveguide and RT | Low complexity Insufficient accuracy | [29] | |
Combine RT method with neural network | Improved RT model | High applicability High complexity | [30] | |
Cascaded tunnel | Fit measurement results using regression method | CI model | Low complexity Insufficient accuracy | [31] |
Reconstruct a high-precision 3D model of measurement tunnel | RT model | High accuracy High-precision 3D model required | [32] | |
Divide space into segments to solve stability constraint | Improved FDTD model | High accuracy high complexity | [33] |
Material | Roughness (m) | Conductivity (S/m) | Permittivity | |
---|---|---|---|---|
Tunnel Wall | Concrete | 0.075 | 0.09 (3.5 GHz)/0.15 (5.6 GHz) | 5.31 |
Rail | Metal | - | 107 | 5.31 |
α | β | Xσ | |
---|---|---|---|
3.5 GHz Measurement | 1.444 | 36.217 | 2.506 |
3.5 GHz RT simulation | 1.461 | 35.437 | 2.970 |
5.6 GHz Measurement | 1.394 | 43.938 | 3.393 |
5.6 GHz RT simulation | 1.405 | 44.021 | 3.252 |
f (GHz) | d1 (m) | d2 (m) | d3 (m) | BP (m) |
---|---|---|---|---|
3.5 | 300 | 350 | 400 | 261 |
5.6 | 450 | 500 | 550 | 417 |
f (GHz) | R (m) | ELC (dB/100 m) | Average RMSE (dB) | ||
---|---|---|---|---|---|
d1 (m) | d2 (m) | d3 (m) | |||
3.5 | 300 | 7.18 | 7.03 | 7.17 | 1.66 |
3.5 | 600 | 4.35 | 4.28 | 4.66 | 1.69 |
3.5 | 900 | 3.45 | 3.56 | 3.96 | 1.35 |
3.5 | 1200 | 3.25 | 3.16 | 3.05 | 1.89 |
3.5 | 1500 | 2.82 | 2.62 | 2.65 | 1.95 |
5.6 | 300 | 7.22 | 7.35 | 7.15 | 1.81 |
5.6 | 600 | 4.56 | 5.32 | 4.55 | 2.17 |
5.6 | 900 | 4.12 | 4.15 | 3.89 | 1.72 |
5.6 | 1200 | 3.09 | 3.16 | 3.26 | 1.58 |
5.6 | 1500 | 2.82 | 2.99 | 2.77 | 1.55 |
f (GHz) | A | b | RMSE (dB) |
---|---|---|---|
3.5 | 1.75 | 1618 | 0.104 |
5.6 | 1.97 | 1612 | 0.230 |
f (GHz) | R (m) | ELC (dB/100 m) |
---|---|---|
3.5 | 500 | 5.00 |
3.5 | 1000 | 3.38 |
5.6 | 500 | 5.20 |
5.6 | 1000 | 3.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Wu, Y.; Saleem, A.; Zheng, G. Path Loss Model for 3.5 GHz and 5.6 GHz Bands in Cascaded Tunnel Environments. Sensors 2022, 22, 4524. https://doi.org/10.3390/s22124524
Qian J, Wu Y, Saleem A, Zheng G. Path Loss Model for 3.5 GHz and 5.6 GHz Bands in Cascaded Tunnel Environments. Sensors. 2022; 22(12):4524. https://doi.org/10.3390/s22124524
Chicago/Turabian StyleQian, Jingyuan, Yating Wu, Asad Saleem, and Guoxin Zheng. 2022. "Path Loss Model for 3.5 GHz and 5.6 GHz Bands in Cascaded Tunnel Environments" Sensors 22, no. 12: 4524. https://doi.org/10.3390/s22124524