High-Accuracy Height-Independent 3D VLP Based on Received Signal Strength Ratio
Abstract
:1. Introduction
2. Indoor Positioning with Visible Light
3. Height-Independent 3D VLP Enabled by RSSR
3.1. System Overview
3.2. VLP Transmitter
3.3. VLP Receiver
3.4. Height-Independent Positioning
3.5. Proof of Height Independence
4. Experiment and Results
4.1. Experimental Setup
4.2. Horizontal Positioning 2D Performance
4.3. Height Independence Verification
4.4. 3D Positioning Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VLP | Visible Light Positioning |
RSS | Received Signal Strength |
3D | Three-Dimensional |
2D | Two-Dimensional |
VLC | Visible Light Communication |
LED | Light Emitting Diode |
IoT | Internet of Things |
RF | Radio Frequency |
PD | Photodiodes |
CMOS | Complementary Metal Oxide Semiconductor |
TOA | Time of Arrival |
TDOA | Time Difference of Arrival |
AOA | Angle of Arrival |
CSI | Channel State Information |
LoS | Line of Sight |
ML | Machine Learning |
NN | Neural Network |
SLLS | Successive Linear Least Squares |
AC | Alternating Current |
DC | Direct Current |
PWM | Pulse Width Modulation |
MOSFET | Metal-Oxide-Semiconductor Field-Effect Transistor |
ADC | Analog-to-Digital Converter |
FFT | Fast Fourier transform |
SNR | Signal-to-Noise Ratio |
NLoS | Non-Line-of-Sight |
CDF | Cumulative Distribution Function |
VDOP | Vertical Dilution of Precision |
HDOP | Horizontal Dilution of Precision |
References
- Tran, H.Q.; Ha, C. Machine learning in indoor visible light positioning systems: A review. Neurocomputing 2022, 491, 117–131. [Google Scholar] [CrossRef]
- Farahsari, P.S.; Farahzadi, A.; Rezazadeh, J.; Bagheri, A. A Survey on Indoor Positioning Systems for IoT-Based Applications. IEEE Internet Things J. 2022, 9, 7680–7699. [Google Scholar] [CrossRef]
- Xiong, J.; Jamieson, K. ArrayTrack: A Fine-Grained Indoor Location System. In Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), Lombard, IL, USA, 2–5 April 2013; pp. 71–84. [Google Scholar]
- Jiang, H.; Liu, W.; Jiang, G.; Jia, Y.; Liu, X.; Lui, Z.; Liao, X.; Xing, J.; Liu, D. Fly-Navi: A Novel Indoor Navigation System With On-the-Fly Map Generation. IEEE Trans. Mob. Comput. 2021, 20, 2820–2834. [Google Scholar] [CrossRef]
- Ndzukula, S.G.; Ramotsoela, T.D.; Silva, B.J.; Hancke, G.P. A bluetooth low energy based system for personnel tracking. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 8435–8440. [Google Scholar] [CrossRef]
- Huang, Z.; Tsay, L.W.J.; Shiigi, T.; Zhao, X.; Nakanishi, H.; Suzuki, T.; Ogawa, Y.; Kondo, N. A Noise Tolerant Spread Spectrum Sound-Based Local Positioning System for Operating a Quadcopter in a Greenhouse. Sensors 2020, 20, 1981. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Shiigi, T.; Tsay, L.W.J.; Nakanishi, H.; Suzuki, T.; Ogawa, Y.; Naoshi, K. A sound-based positioning system with centimeter accuracy for mobile robots in a greenhouse using frequency shift compensation. Comput. Electron. Agric. 2021, 187, 106235. [Google Scholar] [CrossRef]
- Jang, B.; Kim, H. Indoor Positioning Technologies Without Offline Fingerprinting Map: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 508–525. [Google Scholar] [CrossRef]
- Hassan, N.U.; Naeem, A.; Pasha, M.A.; Jadoon, T.; Yuen, C. Indoor Positioning Using Visible LED Lights: A Survey. ACM Comput. Surv. 2015, 48, 20. [Google Scholar] [CrossRef]
- Luo, J.; Fan, L.; Li, H. Indoor Positioning Systems Based on Visible Light Communication: State of the Art. IEEE Commun. Surv. Tutor. 2017, 19, 2871–2893. [Google Scholar] [CrossRef]
- Kahn, J.; Barry, J. Wireless infrared communications. Proc. IEEE 1997, 85, 265–298. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.Y.; Hann, S.; Park, C.S. TDOA-based optical wireless indoor localization using LED ceiling lamps. IEEE Trans. Consum. Electron. 2011, 57, 1592–1597. [Google Scholar] [CrossRef]
- Wang, T.Q.; Sekercioglu, Y.A.; Neild, A.; Armstrong, J. Position accuracy of time-of-arrival based ranging using visible light with application in indoor localization systems. J. Light. Technol. 2013, 31, 3302–3308. [Google Scholar] [CrossRef]
- Hong, C.Y.; Wu, Y.C.; Liu, Y.; Chow, C.W.; Yeh, C.H.; Hsu, K.L.; Lin, D.C.; Liao, X.L.; Lin, K.H.; Chen, Y.Y. Angle-of-Arrival (AOA) Visible Light Positioning (VLP) System Using Solar Cells With Third-Order Regression and Ridge Regression Algorithms. IEEE Photon. J. 2020, 12, 1–5. [Google Scholar] [CrossRef]
- Amsters, R.; Holm, D.; Joly, J.; Demeester, E.; Stevens, N.; Slaets, P. Visible Light Positioning Using Bayesian Filters. J. Light. Technol. 2020, 38, 5925–5936. [Google Scholar] [CrossRef]
- Lin, P.; Hu, X.; Ruan, Y.; Li, H.; Fang, J.; Zhong, Y.; Zheng, H.; Fang, J.; Jiang, Z.L.; Chen, Z. Real-time visible light positioning supporting fast moving speed. Opt. Express 2020, 28, 14503–14510. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Yang, Y.; Zhang, Z.; Feng, C.; Guo, C.; Cheng, J. A High-Coverage Camera Assisted Received Signal Strength Ratio Algorithm for Indoor Visible Light Positioning. IEEE Trans. Wirel. Commun. 2021, 20, 5730–5743. [Google Scholar] [CrossRef]
- Bai, L.; Yang, Y.; Feng, C.; Guo, C. Received signal strength assisted perspective-three-point algorithm for indoor visible light positioning. Opt. Express 2020, 28, 28045–28059. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, G.; Zhao, L.; Jiang, M. Dual-Mode LED Aided Visible Light Positioning System Under Multi-Path Propagation: Design and Demonstration. IEEE Trans. Wirel. Commun. 2021, 20, 5986–6003. [Google Scholar] [CrossRef]
- Liu, X.; Wei, X.; Guo, L.; Song, S. DarkVLP: “Lights-off” Visible Light Positioning. IEEE Internet Things J. 2021, 11071 –11084. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Hong, Z. RSS-based visible light positioning based on channel state information. Opt. Express 2022, 30, 5683–5699. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Li, Z.Q.; Hsu, C.W.; Liu, Y.; Chow, C.W. Visible light communication and positioning using positioning cells and machine learning algorithms. Opt. Express 2019, 27, 16377–16383. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Y.; Zhu, W.; Chen, H.; Hong, X.; Chen, J. Iterative point-wise reinforcement learning for highly accurate indoor visible light positioning. Opt. Express 2019, 27, 22161–22172. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Han, W.; Wang, J.; Lu, H.; Chen, D.; Jin, J.; Feng, L. High accuracy indoor visible light positioning using a long short term memory-fully connected network based algorithm. Opt. Express 2021, 29, 41109–41120. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Wang, W.; Shi, L.; Huang, C.; Wang, J.; Zhang, Y. Deep Convolutional Auto-Encoder based Indoor Light Positioning Using RSS Temporal Image. In Proceedings of the 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Jeju, Korea, 5–7 June 2019. [Google Scholar] [CrossRef]
- Tran, H.Q.; Ha, C. Reducing the burden of data collection in a fingerprinting-based VLP system using a hybrid of improved co-training semi-supervised regression and adaptive boosting algorithms. Opt. Commun. 2021, 488, 126857. [Google Scholar] [CrossRef]
- Abou-Shehada, I.M.; AlMuallim, A.F.; AlFaqeh, A.K.; Muqaibel, A.H.; Park, K.H.; Alouini, M.S. Accurate Indoor Visible Light Positioning Using a Modified Pathloss Model With Sparse Fingerprints. J. Light. Technol. 2021, 39, 6487–6497. [Google Scholar] [CrossRef]
- Zhang, W.; Chowdhury, M.I.S.; Kavehrad, M. Asynchronous indoor positioning system based on visible light communications. Opt. Eng. 2014, 53, 1–10. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, A.; Lau, V. Joint User Location and Orientation Estimation for Visible Light Communication Systems With Unknown Power Emission. IEEE Trans. Wirel. Commun. 2019, 18, 5181–5195. [Google Scholar] [CrossRef]
- Chen, S.; Ho, K.C. Achieving Asymptotic Efficient Performance for Squared Range and Squared Range Difference Localizations. IEEE Trans. Signal Process. 2013, 61, 2836–2849. [Google Scholar] [CrossRef]
- Jia, T.; Wang, H.; Shen, X.; Jiang, Z.; He, K. Target localization based on structured total least squares with hybrid TDOA-AOA measurements. Signal Process 2018, 143, 211–221. [Google Scholar] [CrossRef]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Langley, R.B. Dilution of precision. GPS World 1999, 10, 52–59. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Hu, X.; Sun, Y.; Yang, Y.; Zhang, L.; Deng, X.; Chen, L. High-Accuracy Height-Independent 3D VLP Based on Received Signal Strength Ratio. Sensors 2022, 22, 7165. https://doi.org/10.3390/s22197165
Xu Y, Hu X, Sun Y, Yang Y, Zhang L, Deng X, Chen L. High-Accuracy Height-Independent 3D VLP Based on Received Signal Strength Ratio. Sensors. 2022; 22(19):7165. https://doi.org/10.3390/s22197165
Chicago/Turabian StyleXu, Yihuai, Xin Hu, Yimao Sun, Yanbing Yang, Lei Zhang, Xiong Deng, and Liangyin Chen. 2022. "High-Accuracy Height-Independent 3D VLP Based on Received Signal Strength Ratio" Sensors 22, no. 19: 7165. https://doi.org/10.3390/s22197165