Joint Intra/Inter-Slot Code Design for Unsourced Multiple Access in 6G Internet of Things
Abstract
:1. Introduction
1.1. Background
1.2. Related Works
1.3. Contributions
- Enhanced intra-slot coding structure. We apply the IDMA scheme with CS header to intra-slot code design. The user payload is split into two parts, encoded by IDMA and CS encoders separately, and combined as the intra-slot codeword. The CS part carries the user-specific interleaver pattern of the IDMA codeword, and the IDMA part is the multi-access code resolving the superposition interference.
- Joint intra/inter-slot iterative decoder. Under the IRSA paradigm, the superimposed spreading pattern of intra-slot code packets is expanded as a compound inter-slot factor graph, recovered by combining the CS pilot decoding results among the slots. The ESE + BP decoder of the intra-slot IDMA code is the embedded operation on the slot nodes. The inter-slot SIC iteration is performed on the graph to eliminate the interference on the slot nodes, making the overload slot nodes decodable.
- Joint intra/inter-slot coding parameter optimization. To minimize the required SNR under the given PUPE standard and a limited number of channel resources, we follow the idea of error event decomposition to build the framework of parameter optimization. The error caused by each coding module is modeled as a function of its coding parameter. Especially, the inter-slot degree distribution is analyzed by density evolution with finite-length realization and energy cost conditions. Then we integrate these error functions in a global optimization problem and design a heuristic bootstrap search algorithm to jointly optimize all these related parameters, including the intra-slot CS pilot length, the IDMA coding rate, and the inter-slot degree distribution.
1.4. Content Organization
2. Definitions and Notations
3. Joint Intra/Inter-Slot Coding Scheme
3.1. Encoder
3.1.1. Intra-Slot Encoding
3.1.2. Inter-Slot Irregular Spreading
3.2. Joint Intra/Inter-Slot Decoder on Compound Factor Graph
3.2.1. Intra-Slot Decoder
3.2.2. Inter-Slot Decoder
Algorithm 1 Inter-slot SIC decoding on the compound packet-level factor graph |
|
4. Performance Analysis and Parameter Optimization
4.1. Error Rate Analysis by Decomposition
4.2. Inter-Slot Degree Distribution Analysis
4.3. Joint Parameter Optimization Algorithm
Algorithm 2 Joint optimization of coding parameters |
|
5. Numerical Results
5.1. Energy Efficiency Analysis
5.2. Complexity Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UMA | Unsourced Multiple Access |
IoT | Internet-of-Things |
IRSA | Irregular Repeated Slotted Aloha |
OMA | Orthogonal Multiple Access |
NOMA | Non-Orthogonal Multiple Access |
RACH | Random Access CHannel |
PUPE | Per-User Probability of Error |
IDMA | Interleave-Division Multiple Access |
LDPC | Low Density Parity Check Code |
RS | Random Spreading |
SS | Sparse Spreading |
SCL | Successive Cancellation List |
SIC | Successive Interference Cancellation |
BCH | Bose Ray-Chaudhuri and Hocquenghem |
CS | Compressed Sensing |
CCS | Coded Compressed Sensing |
SPARC | SParse Rgression Code |
AMP | Approximate Message Passing |
SC-LDPC | Spatially Coupled-LDPC |
BP | Belief Propagation |
MIMO | Multi-Input Multi-Output |
ESE | Elementary Symbol Estimator |
SNR | Signal-to-Noise Ratio |
OMP | Orthogonal Match Pursuit |
AWGN | Additive White Gaussian Noise |
LLR | Log-Likelihood Ratio |
MUD | Multi-User Detection |
EXIT | EXtrinsic Information Transfer |
FLOPf | FLoating-point Operations Per frame |
Appendix A. The Expressions of FLOPf
Coding Scheme | Related Parameters | FLOPf |
---|---|---|
Our scheme | CS pilot length; pilot info length; threshold; length of IDMA codeword; LDPC lifting size; maximum iteration of LDPC SPA decoder; number of variable nodes; number of parity check nodes; V number of slots; maximum iteration of ESE+SPA IDMA decoder; number of users; V number of slots | |
CCS-AMP [37] | row size of CS (Compressed Sensing) matrix; column size of CS matrix; number of users; J number of sub-blocks; maximum iteration of CS AMP decoder | |
Sparse IDMA [13] | row size of CS matrix for pilot coding; column size of CS matrix for pilot coding; number of users; average repetition rate; basic LDPC code rate; IDMA code length; IDMA information bit length; BP user layer iteration; BP channel layer iteration | |
Polar-RS [14] | total number of spreading sequences; length of spreading sequences; length of information bits for polar coding; r length of CRC (Cyclic Redundancy Check) parity bits; polar code length; g length of segment in energy detector; maximum iteration of polar list decoder |
References
- You, X.; Wang, C.X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J.; et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2021, 64, 110301. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Shi, Y.; Zhao, L.; Li, W. A Vision of C-V2X: Technologies, Field Testing, and Challenges With Chinese Development. IEEE Internet Things J. 2020, 7, 3872–3881. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Debnath, A. Green IoT: Design Goals, Challenges and Energy Solutions. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 8–10 July 2021; pp. 637–642. [Google Scholar] [CrossRef]
- Polyanskiy, Y. A perspective on massive random-access. In Proceedings of the IEEE International Symposium on Information Theory, Aachen, Germany, 25–30 June 2017; pp. 2523–2527. [Google Scholar] [CrossRef]
- Li, H.; Ru, G.; Kim, Y.; Liu, H. OFDMA capacity analysis in MIMO channels. IEEE Trans. Inf. Theory 2010, 56, 4438–4446. [Google Scholar] [CrossRef]
- Razavi, R.; Dianati, M.; Imran, M.A. Non-Orthogonal Multiple Access (NOMA) for future radio access. In 5G Mobile Communications; Springer: Cham, Switzerland, 2016; pp. 135–163. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, S.; Wu, Y.; Poor, H.V.; Ding, Z.; You, X.; Hanzo, L. NOMA for Next-Generation Massive IoT: Performance Potential and Technology Directions. IEEE Commun. Mag. 2021, 59, 115–121. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, X.; Zhou, S.; Yang, W.; Polyanskiy, Y.; Caire, G. Massive Access for Future Wireless Communication Systems. IEEE Wirel. Commun. 2020, 27, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Dai, J.; Si, Z.; Niu, K.; Dong, C.; Lin, J.; Wang, S.; Yuan, Y. Unsourced multiple access for 6G massive machine type communications. China Commun. 2022, 19, 70–87. [Google Scholar] [CrossRef]
- Polonelli, T.; Brunelli, D.; Marzocchi, A.; Benini, L. Slotted aloha on lorawan-design, analysis, and deployment. Sensors 2019, 19, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liva, G. A slotted ALOHA scheme based on bipartite graph optimization. In Proceedings of the 2010 International ITG Conference on Source and Channel Coding, SCC 2010, Siegen, Germany, 18–21 January 2010; pp. 1–6. [Google Scholar]
- Pradhan, A.K.; Amalladinne, V.K.; Vem, A.; Narayanan, K.R.; Chamberland, J. A Joint Graph Based Coding Scheme for the Unsourced Random Access Gaussian Channel. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar]
- Pradhan, A.K.; Amalladinne, V.K.; Narayanan, K.R.; Chamberland, J. Polar Coding and Random Spreading for Unsourced Multiple Access. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Virtual, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zheng, M.; Wu, Y.; Zhang, W. Polar Coding and Sparse Spreading for Massive Unsourced Random Access. In Proceedings of the IEEE Vehicular Technology Conference, Virtual, 18 November–16 December 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Ordentlich, O.; Polyanskiy, Y. Low complexity schemes for the random access Gaussian channel. In Proceedings of the IEEE International Symposium on Information Theory, Aachen, Germany, 25–30 June 2017; pp. 2528–2532. [Google Scholar] [CrossRef]
- Amalladinne, V.K.; Member, G.S.; Chamberland, J.f.; Member, S.; Narayanan, K.R. A Coded Compressed Sensing Scheme for Unsourced Multiple Access. IEEE Trans. Inf. Theory 2020, 66, 6509–6533. [Google Scholar] [CrossRef]
- Fengler, A.; Jung, P.; Caire, G. SPARCs and AMP for Unsourced Random Access. In Proceedings of the IEEE International Symposium on Information Theory, Paris, France, 7–12 July 2019; pp. 2843–2847. [Google Scholar] [CrossRef]
- Paolini, E.; Stefanović, Č.; Liva, G.; Popovski, P. Coded random access: Applying codes on graphs to design random access protocols. IEEE Commun. Mag. 2015, 53, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Vem, A.; Narayanan, K.R.; Chamberland, J.F.; Cheng, J. A User-Independent Successive Interference Cancellation Based Coding Scheme for the Unsourced Random Access Gaussian Channel. IEEE Trans. Commun. 2019, 67, 8258–8272. [Google Scholar] [CrossRef]
- Marshakov, E.; Balitskiy, G.; Andreev, K.; Frolov, A. A polar code based unsourced random access for the gaussian MAC. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Glebov, A.; Matveev, N.; Andreev, K.; Frolov, A.; Turlikov, A. Achievability Bounds for T-Fold Irregular Repetition Slotted ALOHA Scheme in the Gaussian MAC. In Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC, Marrakesh, Morocco, 15–18 April 2019; pp. 12–17. [Google Scholar] [CrossRef]
- Polyanskiy, Y.; Poor, H.V.; Verdú, S. Channel coding rate in the finite blocklength regime. IEEE Trans. Inf. Theory 2010, 56, 2307–2359. [Google Scholar] [CrossRef]
- Kowshik, S.S.; Polyanskiy, Y. Fundamental Limits of Many-User MAC With Finite Payloads and Fading. IEEE Trans. Inf. Theory 2021, 67, 5853–5884. [Google Scholar] [CrossRef]
- Kowshik, S.S.; Andreev, K.; Frolov, A.; Polyanskiy, Y. Energy efficient random access for the quasi-static fading MAC. In Proceedings of the IEEE International Symposium on Information Theory, Paris, France, 7–12 July 2019; pp. 2768–2772. [Google Scholar] [CrossRef]
- Li, T.; Wu, Y.; Zheng, M.; Wang, D.; Zhang, W. SPARC-LDPC Coding for MIMO Massive Unsourced Random Access. In Proceedings of the IEEE Globecom Workshops, Taipei, Taiwan, 7–11 December 2020; pp. 8–13. [Google Scholar]
- Wang, Q.; Liu, L.; Zhang, S.; Lau, F.C. On Massive IoT Connectivity with Temporally-Correlated User Activity. In Proceedings of the IEEE International Symposium on Information Theory, Melbourne, Australia, 12–20 July 2021; pp. 3020–3025. [Google Scholar] [CrossRef]
- Fengler, A.; Haghighatshoar, S.; Jung, P.; Caire, G. Non-Bayesian Activity Detection, Large-Scale Fading Coefficient Estimation, and Unsourced Random Access with a Massive MIMO Receiver. IEEE Trans. Inf. Theory 2021, 67, 2925–2951. [Google Scholar] [CrossRef]
- Koep, N.; Behboodi, A.; Mathar, R. An Introduction to Compressed Sensing. In Applied and Numerical Harmonic Analysis; Birkhäuser: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Xiong, X.; Hu, J.; Tian, L. A fast converging multi-user detection for IDMA based on time-reversal. In Proceedings of the 2007 6th International Conference on Information, Communications and Signal Processing, ICICS, Singapore, 10–13 December 2007. [Google Scholar] [CrossRef]
- Leinonen, M.; Codreanu, M.; Giannakis, G.B. Compressed Sensing with Applications in Wireless Networks; Now Foundations and Trends: Boston, MA, USA, 2019. [Google Scholar] [CrossRef]
- Richardson, T.; Urbanke, R. Modern Coding Theory; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Hagenauer, J. The exit chart—Introduction to extrinsic information transfer in iterative processing. In Proceedings of the 2004 12th European Signal Processing Conference, Vienna, Austria, 6–10 September 2004; pp. 1541–1548. [Google Scholar]
- Price, K.V. Differential evolution. In Handbook of Optimization; Springer: Berlin/Heidelberg, Germany, 2013; pp. 187–214. [Google Scholar]
- 3GPP. TS 138 212-V15. 2.0-5G; NR; Multiplexing and Channel Coding (3GPP TS 38.212 Version 15.2. 0 Release 15). Retrieved. 26 June 2022. Available online: https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/ts_138212v150200p.pdf (accessed on 29 September 2022).
- Amalladinne, V.K.; Kumar Pradhan, A.; Rush, C.; Chamberland, J.F.; Narayanan, K.R. On Approximate Message Passing for Unsourced Access with Coded Compressed Sensing. In Proceedings of the 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA, 21–26 June 2020; pp. 2995–3000. [Google Scholar] [CrossRef]
- Calderbank, R.; Thompson, A. CHIRRUP: A practical algorithm for unsourced multiple access. Inf. Inference 2020, 9, 875–897. [Google Scholar] [CrossRef]
Parameters | Configurations |
---|---|
Total frame length | 30,000 |
User payload length B | 100 |
LDPC encoder | 5G NR BG2 [35] |
Number of active users | 50 to 300 |
IDMA modulation | BPSK |
CS pilot sensing matrix | Gaussian random matrix |
PUPE requirement | 0.1 |
Parameters | Optimized Results | |||||
---|---|---|---|---|---|---|
Number of active users | 50 | 100 | 150 | 200 | 250 | 300 |
Pilot info length | 11 | 11 | 11 | 11 | 12 | 12 |
IDMA data info length | 89 | 89 | 89 | 89 | 88 | 88 |
CS pilot length | 100 | 100 | 100 | 100 | 125 | 125 |
LDPC rate | 1/5 | 1/5 | 1/3 | 1/3 | 2/5 | 1/4 |
Intra-slot repetition rate | 1/2 | |||||
IDMA rate R | 0.1 | 0.1 | 0.167 | 0.167 | 0.2 | 0.25 |
Number of slots V | 28 | 28 | 43 | 43 | 48 | 57 |
threshold | 2 | 3 | 3 | 3 | 4 | 5 |
Optimized degree distribution | ||||||
Average packet repetition rate | 1.11 | 1.12 | 1.13 | 1.15 | 1.18 | 1.20 |
SNR threshold | 2.75 | 2.89 | 3.23 | 3.91 | 4.11 | 4.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Niu, K.; Dong, C.; Suo, S.; Lin, J. Joint Intra/Inter-Slot Code Design for Unsourced Multiple Access in 6G Internet of Things. Sensors 2023, 23, 242. https://doi.org/10.3390/s23010242
Li Y, Niu K, Dong C, Suo S, Lin J. Joint Intra/Inter-Slot Code Design for Unsourced Multiple Access in 6G Internet of Things. Sensors. 2023; 23(1):242. https://doi.org/10.3390/s23010242
Chicago/Turabian StyleLi, Yuanjie, Kai Niu, Chao Dong, Shiqiang Suo, and Jiaru Lin. 2023. "Joint Intra/Inter-Slot Code Design for Unsourced Multiple Access in 6G Internet of Things" Sensors 23, no. 1: 242. https://doi.org/10.3390/s23010242
APA StyleLi, Y., Niu, K., Dong, C., Suo, S., & Lin, J. (2023). Joint Intra/Inter-Slot Code Design for Unsourced Multiple Access in 6G Internet of Things. Sensors, 23(1), 242. https://doi.org/10.3390/s23010242