Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications
Abstract
:1. Introduction
2. Microbial Fuel Cell and Microbial Electrolysis Cell
3. Hydrogels Used in METs
3.1. Hydrogels for Microbial Immobilisation
3.2. Hydrogel-Based MFCs
3.2.1. Anode Hydrogels
Conducting Polymer Hydrogels
Carbon Composite Hydrogels
3.2.2. Cathode Hydrogels
3.2.3. Membrane, Separator, and Electrolyte Hydrogels
3.3. Hydrogel-Based MECs
Hydrogel Applications in MET Technologies | |||||||||
---|---|---|---|---|---|---|---|---|---|
MET Type | Hydro/ Aerogel | Gel Use | Hydrogel Material | Anode (A)/ Cathode (C) Material | MFC/MEC Type | Maximum Power/ Current Density | Running Time | Other Remarks | Ref. |
MFC | Hydrogel | Anode | Alginate, PANI, Titanium Dioxide, Graphite | Woven graphite fibre © | Dual Chamber | 7.88 W/m3 | 7 days 1 | An increase in conductive materials results in the degradation of the gel matrix | [53] |
Hydrogel | Anode | BC, PANI | Graphite Pla© (C) | H-Type Dual Chamber | 117 mW/m2 | - | The bare graphite plate had a 1 mW/m2 density showing the significant effect of the hydrogel | [51] | |
Hydrogel | Anode | BC, PANI, Titanium Dioxide, Shewanella xiamenensis, Ammonium Persulphate | Graphite S©ts (C) | Dual Chamber | 38.89 W/m3 | 30 h 1 | The maximum power density was 15-fold higher than bare BC electrodes | [52] | |
Hydrogel | Anode | Sodium Alginate, PANI, CB | Grap©e Rod (C) | Dual Chamber | 515 mW/m2 | - | The modified anode had a power density of 1.38-fold higher than the bare anode | [54] | |
Hydrogel | Anode | PPy, CMC, Titanium Nitride, CB©rbon Rod (C) | Cylindrical | Dual Chamber | 14.11 W m−3 | 201 h 2 | The modified anode had a power density of 4.72-fold higher than the bare anode | [55] | |
Hydrogel | Anode | PPy, PANI, CNT, Iron Ox© | Carbon Rod (C) | Double Chamber | 5901.49 mW/m3 | - | The modified electrodes had a power output that was 1.33, 2.15, and 2.06 times greater than the PANI-PPy, PANI, and PPy anodes, respectively. | [56] | |
Hydrogel | Anode | CNT, Chitosan, Carbon paper | Carbon cloth (C) | Single Chamber | 132 mW/m2 | - | Compared to the control, the maximum current and power density of the modified MFC increased by 23% and 65%, respectively. | [24] | |
Hydrogel | Anode | GO, CNT, PNIPAM | Bare carbon cloth (A) (C) | Double Chamber | 434 mW m−2 | 300 h 1 | - | [62] | |
Hydrogel | Anode | PPy, CNT | Carbon Paper (A) (C) | H-Type Dual Chamber | 228 mW m−2 | - | [61] | ||
Hydrogel | Anode | PPy, CMC, Nitrogen-doped Carbon Sponge | Graphite Rod (C) | Dual Chamber | 4.88 W m−3, | 153 h 2 | The maximum power density of the modified electrodes were 1.34 and 1.71 times greater than the PPy/N-CNT/S and N-CNT/S bioanodes | [63] | |
Hydrogel | Cathode | Chlorella pyrenoidosa, Polyacrylonitrile fibre, Agar | Carbon Fibre brush (A) | 106.3 ± 5.9 mW m−2 | - | Carbonate precipitate was found after a prolonged operation which is a limitation. Cost $0.35 | [58] | ||
Hydrogel | Cathode | Nitrogen and FeCl3·6H2O self-doped activated carbon, Tofu gel synthesised from soybeans | Graphite felt (A) | H-Type Dual Chamber | 863.40 ± 13.19 mW m−2 | ~400 h 1 | - | [70] | |
Hydrogel | Cathode | Activated Carbon, Fe(III)-chitosan-Nitrogen | Carbon brush (A) | Single chamber | 2.4 ± 0.1 W m−2 | 120 h 1 | Slightly more costly to fabricate, costing $2.2 m−2 of catalyst | [20] | |
Hydrogel | Separator | PVA, Water | PVA-Coke (A) Carbon Cloth (C) | Tubular | 38 mW m−2 | 120 days 1 | Removed 95% of benzene Cost $0.0048 g−1 benzene | [57] | |
Hydrogel | Separator | PVA, Carbon Cloth, Water | Carbon felt (A) Carbon Cloth (C) | Tubular | 16.1 mW/m2 | - | COD removal of 95.6%. Cost $25/m2 | [72] | |
Hydrogel | Separator | PVA, Water, Clay aggregate | Carbon Rod + Coke (A) Carbon Cloth (C) | Tubular | 25.14 mW/m2 | - | 50 mL of Toluene was completely degraded in 6 days | [74] | |
Hydrogel | Electrolyte | ECG gel | Activate Carbon (A) Carbon Cloth (C) | Tubular | 6.1 W m−3 | >6 months 1 | - | [60] | |
Hydrogel | Electrolyte | Oxidised Konjac Glucomannan/2-hydroxypropytrimethyl ammonium chloride chitosan | Carbon Brush (A) Activate Carbon (C) | Cubic reactor | 1.0 ± 0.04 W/m2 | - | Creation of an air cathode. Cost $0.12/m2 | [59] | |
Hydrogel | Electrolyte | Sodium Polyacrylate, Phosphate Buffer Solution | Stainless Steel Mesh coated in Carbon Black (A) Activated Carbon (C) | Cubic Reactor | 295.5 W m−3 | - | The system is inspired by the transpiration of plants | [76] | |
MEC | Hydrogel | Anode | GO, Ascorbic Acid, Carbon Cloth, Stainless Steel | Platinum wire (Working electrode) Ag/AgCl (Reference Electrode) | Single Chamber | - | - | - | [77] |
Hydrogel | Electrolyte | Alginate, Chitosan, Carbon Cloth | Carbon Cloth and Platinum (C) | Single Chamber | 11.52 A m−2 At 0.2 V | - | COD removal of 78% | [26] | |
Aerogel | Cathode | CB | Carbon Cloth loaded with different catalysts | Dual Chamber | 0.36 mA cm2 at 0.8 V | - | Hydrogel production rate of 0.19 m3 H2 m−3 d−1 | [87] | |
Aerogel | Anode | Carbon Aerogel | Platinum | Dual Chamber | - | - | Hydrogel production (0.37 μmol cm−2 h−1) was 5 times higher than MECs containing a bio-carbon fibre anode with an external 0.3 V supply | [88] |
4. Sensor Development Using METs and Hydrogel
4.1. MFC-Based Sensors
4.1.1. Environmental Sensors for Water and Wastewater
Organic Matter Sensors
Biological Oxygen Demand (BOD) Sensor
Chemical Oxygen Demand (COD) Sensor
Volatile Fatty Acid (VFA) Sensor
Nutrient Sensor
Toxicant Sensors
Heavy Metal Biosensors
Toxic Organic Pollutant Biosensors
4.1.2. Medical Sensors
Clinical Diagnostics
Infectious Species
4.1.3. Other Sensing Applications
4.2. MEC-Based Sensors
4.3. Hydrogel-Based MFC Sensor
5. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
AG | Agarose |
BC | Bacterial cellulose |
BOD | Biological oxygen demand |
CB | Carbon brush |
CMC | Carboxymethyl cellulose |
CNT | Carbon nanotubes |
COD | Chemical oxygen demand |
CPH | Conducting polymer hydrogels |
CW | Constructed wetlands |
DO | Dissolved oxygen |
GO | Graphene oxide |
MEC | Microbial electrolysis cell |
MET | Microbial electrochemical technology |
MFC | Microbial fuel cell |
MoS2 | Molybdenum disulphide |
NG | Nitrogen-doped graphene |
ORR | Oxygen reduction reaction |
PAM | Polyacrylamide |
PANI | Polyaniline |
PNIPAM | Poly N-Isopropylacrylamide |
PPy | Polypyrrole |
PVA | Poly(vinyl alcohol) |
rGO | Reduced graphene oxide |
VFA | Volatile fatty acids |
References
- Casula, E.; Mascia, M.; De Gioannis, G.; Di Lorenzo, M.; Isipato, M.; Muntoni, A.; Spiga, D. Modelling Miniature Microbial Fuel Cells with Three-dimensional Anodes. E3S Web Conf. 2022, 334, 08005. [Google Scholar] [CrossRef]
- Hu, Y.; Rehnlund, D.; Klein, E.; Gescher, J.; Niemeyer, C.M. Cultivation of Exoelectrogenic Bacteria in Conductive DNA Nanocomposite Hydrogels Yields a Programmable Biohybrid Materials System. ACS Appl. Mater. Interfaces 2020, 12, 14806–14813. [Google Scholar] [CrossRef] [PubMed]
- Aulenta, F.; Puig, S.; Harnisch, F. Microbial electrochemical technologies: Maturing but not mature. Microb. Biotechnol. 2018, 11, 18–19. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Shi, Y.; Gao, F.; Yang, L.; Li, S.; Xiao, L. Understanding the current plummeting phenomenon in microbial fuel cells (MFCs). J. Water Process Eng. 2021, 40, 101984. [Google Scholar] [CrossRef]
- Mashkour, M.; Rahimnejad, M.; Mashkour, M.; Bakeri, G.; Luque, R.; Oh, S.-E. Application of Wet Nanostructured Bacterial Cellulose as a Novel Hydrogel Bioanode for Microbial Fuel Cells. ChemElectroChem 2017, 4, 648–654. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Kakade, A.; Kulshreshtha, S.; Liu, P.; Li, X. A Review on Microbial Electrocatalysis Systems Coupled with Membrane Bioreactor to Improve Wastewater Treatment. Microorganisms 2019, 7, 372. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.H.; Jang, J.K.; Chang, I.S.; Kim, B. Improvement of Cathode Reaction of a Mediatorless Microbial Fuel Cell. J. Microbiol. Biotechnol. 2004, 14, 324–329. [Google Scholar]
- Wang, D.; Liang, P.; Jiang, Y.; Liu, P.; Miao, B.; Hao, W.; Huang, X. Open external circuit for microbial fuel cell sensor to monitor the nitrate in aquatic environment. Biosens. Bioelectron. 2018, 111, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Bai, L.; Zhai, J.; Wang, Y.; Dong, S. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta 2017, 168, 210–216. [Google Scholar] [CrossRef]
- Liu, L.; Lu, Y.; Zhong, W.; Meng, L.; Deng, H. On-line monitoring of repeated copper pollutions using sediment microbial fuel cell based sensors in the field environment. Sci. Total Environ. 2020, 748, 141544. [Google Scholar] [CrossRef] [PubMed]
- Ivars-Barceló, F.; Zuliani, A.; Fallah, M.; Mashkour, M.; Rahimnejad, M.; Luque, R. Novel applications of microbial fuel cells in sensors and biosensors. Appl. Sci. 2018, 8, 1184. [Google Scholar] [CrossRef]
- Chalklen, T.; Jing, Q.; Kar-Narayan, S. Biosensors Based on Mechanical and Electrical Detection Techniques. Sensors 2020, 20, 5605. [Google Scholar] [CrossRef] [PubMed]
- Adorinni, S.; Rozhin, P.; Marchesan, S. Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine. Biomedicines 2021, 9, 570. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers 2022, 14, 3023. [Google Scholar] [CrossRef]
- Herrmann, A.; Haag, R.; Schedler, U. Hydrogels and Their Role in Biosensing Applications. Adv. Healthc. Mater. 2021, 10, 2100062. [Google Scholar] [CrossRef]
- Fu, L.; Yu, A.; Lai, G. Conductive Hydrogel-Based Electrochemical Sensor: A Soft Platform for Capturing Analyte. Chemosensors 2021, 9, 282. [Google Scholar] [CrossRef]
- Tavakoli, J.; Tang, Y. Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers 2017, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Chiranjeevi, P.; Patil, S.A. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnol. Adv. 2020, 39, 107468. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, H.; Hassett, D.J.; Gu, T. Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J. Chem. Technol. Biotechnol. 2013, 88, 508–518. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Rossi, R.; Logan, B.E. Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. Chem. Eng. J. 2020, 380, 122522. [Google Scholar] [CrossRef]
- Hua, T.; Li, S.; Li, F.; Zhou, Q.; Ondon, B.S. Microbial electrolysis cell as an emerging versatile technology: A review on its potential application, advance and challenge. J. Chem. Technol. Biotechnol. 2019, 94, 1697–1711. [Google Scholar] [CrossRef]
- Kadier, A.; Simayi, Y.; Abdeshahian, P.; Azman, N.F.; Chandrasekhar, K.; Kalil, M.S. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex. Eng. J. 2016, 55, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Katuri, K.P.; Ali, M.; Saikaly, P.E. The role of microbial electrolysis cell in urban wastewater treatment: Integration options, challenges, and prospects. Curr. Opin. Biotechnol. 2019, 57, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Huang, Y.X.; Sun, X.F.; Sheng, G.P.; Zhao, F.; Wang, S.G.; Yu, H.Q. Conductive Carbon Nanotube Hydrogel as a Bioanode for Enhanced Microbial Electrocatalysis. Acs Appl. Mater. Interfaces 2014, 6, 8158–8164. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Inda, M.E.; Lai, Y.; Lu, T.K.; Zhao, X. Engineered Living Hydrogels. Adv. Mater. 2022, 34, 2201326. [Google Scholar] [CrossRef]
- Gandu, B.; Rozenfeld, S.; Ouaknin Hirsch, L.; Schechter, A.; Cahan, R. Immobilization of bacterial cells on carbon-cloth anode using alginate for hydrogen generation in a microbial electrolysis cell. J. Power Sources 2020, 455, 227986. [Google Scholar] [CrossRef]
- Suravaram, S.K.; Smith, D.K.; Parkin, A.; Chechik, V. Conductive Gels Based on Modified Agarose Embedded with Gold Nanoparticles and their Application as a Conducting Support for Shewanella Oneidensis MR-1. ChemElectroChem 2019, 6, 5876–5879. [Google Scholar] [CrossRef]
- Ming, Z.; Han, L.; Bao, M.; Zhu, H.; Qiang, S.; Xue, S.; Liu, W. Living Bacterial Hydrogels for Accelerated Infected Wound Healing. Adv. Sci. 2021, 8, 2102545. [Google Scholar] [CrossRef]
- Du, Q.; Li, T.; Li, N.; Wang, X. Protection of Electroactive Biofilm from Extreme Acid Shock by Polydopamine Encapsulation. Environ. Sci. Technol. Lett. 2017, 4, 345–349. [Google Scholar] [CrossRef]
- Hasan, S.; Kouzani, A.Z.; Adams, S.; Long, J.; Mahmud, M.A.P. Recent progress in hydrogel-based sensors and energy harvesters. Sens. Actuators A Phys. 2022, 335, 113382. [Google Scholar] [CrossRef]
- Bae, J.; Park, J.; Kim, S.; Cho, H.; Kim, H.J.; Park, S.; Shin, D.-S. Tailored hydrogels for biosensor applications. J. Ind. Eng. Chem. 2020, 89, 1–12. [Google Scholar] [CrossRef]
- Singh, R.; Shitiz, K.; Singh, A. Immobilization of Bacterial Cells in Hydrogels Prepared by Gamma Irradiation for Bioremoval of Strontium Ions. Water Air Pollut. 2020, 231, 7. [Google Scholar] [CrossRef]
- Wasito, H.; Fatoni, A.; Hermawan, D.; Susilowati, S.S. Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water. Ecotoxicol. Environ. Saf. 2019, 170, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Drachuk, I.; Harbaugh, S.; Geryak, R.; Kaplan, D.L.; Tsukruk, V.V.; Kelley-Loughnane, N. Immobilization of Recombinant E. coli Cells in a Bacterial Cellulose–Silk Composite Matrix to Preserve Biological Function. ACS Biomater. Sci. Eng. 2017, 3, 2278–2292. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, E.; Yazdian, F.; Amoabediny, G.; Shariati, M.R.; Janfada, B.; Saber, M. A microbial biosensor for hydrogen sulfide monitoring based on potentiometry. Process Biochem. 2014, 49, 1393–1401. [Google Scholar] [CrossRef]
- Sakkos, J.K.; Kieffer, D.P.; Mutlu, B.R.; Wackett, L.P.; Aksan, A. Engineering of a silica encapsulation platform for hydrocarbon degradation using Pseudomonas sp. NCIB 9816-4. Biotechnol. Bioeng. 2016, 113, 513–521. [Google Scholar] [CrossRef]
- Song, R.-B.; Yan, K.; Lin, Z.-Q.; Chye Loo, J.S.; Pan, L.-J.; Zhang, Q.; Zhang, J.-R.; Zhu, J.-J. Inkjet-printed porous polyaniline gel as an efficient anode for microbial fuel cells. J. Mater. Chem. A 2016, 4, 14555–14559. [Google Scholar] [CrossRef]
- Schenkmayerová, A.; Bertóková, A.; Šefčovičová, J.; Štefuca, V.; Bučko, M.; Vikartovská, A.; Gemeiner, P.; Tkáč, J.; Katrlík, J. Whole-cell Gluconobacter oxydans biosensor for 2-phenylethanol biooxidation monitoring. Anal. Chim. Acta 2015, 854, 140–144. [Google Scholar] [CrossRef]
- Sagiroglu, A.; Paluzar, H.; Ozcan, H.M.; Okten, S.; Sen, B. A novel biosensor based on Lactobacillus acidophilus for determination of phenolic compounds in milk products and wastewater. Prep. Biochem. Biotechnol. 2011, 41, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Futra, D.; Heng, L.; Surif, S.; Ahmad, A.; Ling, T. Microencapsulated Aliivibrio fischeri in Alginate Microspheres for Monitoring Heavy Metal Toxicity in Environmental Waters. Sensors 2014, 14, 23248–23268. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Xu, Y.; Han, X.; Chang, X. The fabrication and the use of immobilized cells as test organisms in a ferricyanide-based toxicity biosensor. Environ. Toxicol. Chem. 2018, 37, 329–335. [Google Scholar] [CrossRef]
- Hassan, R.Y.A.; Febbraio, F.; Andreescu, S. Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications. Sensors 2021, 21, 1279. [Google Scholar] [CrossRef] [PubMed]
- Berlanga, M.; Guerrero, R. Living together in biofilms: The microbial cell factory and its biotechnological implications. Microb. Cell Factories 2016, 15, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, P.; Reich, S.; Leykam, D.; Willert-Porada, M.; Greiner, A.; Freitag, R. Electrogenic Single-Species Biocomposites as Anodes for Microbial Fuel Cells. Macromol. Biosci. 2017, 17, 1600442. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, H.; Du, Z.; Wang, W.; Ng, H.Y. Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells. RSC Adv. 2015, 5, 50968–50974. [Google Scholar] [CrossRef]
- Qi, L.J.; Wu, J.S.; Chen, Y.; Wen, Q.; Xu, H.T.; Wang, Y.Y. Shape-controllable binderless self-supporting hydrogel anode for microbial fuel cells. Renew. Energy 2020, 156, 1325–1335. [Google Scholar] [CrossRef]
- Hindatu, Y.; Annuar, M.S.M.; Gumel, A.M. Mini-review: Anode modification for improved performance of microbial fuel cell. Renew. Sustain. Energy Rev. 2017, 73, 236–248. [Google Scholar] [CrossRef]
- Liao, Y.H.; Liang, K.; Ren, Y.R.; Huang, X.B. Fabrication of SiOx-G/PAA-PANi/Graphene Composite With Special Cross-Doped Conductive Hydrogels as Anode Materials for Lithium Ion Batteries. Front. Chem. 2020, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.R.; Soares, P.; Checkles, C.; Zhao, Y.; Yu, G.H. Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-Ion Battery Anodes. Nano Lett. 2013, 13, 3414–3419. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, M.; Ma, C.B.; Wang, Y.Q.; Li, X.P.; Yu, G.H. A Conductive Self-Healing Hybrid Gel Enabled by Metal-Ligand Supramolecule and Nanostructured Conductive Polymer. Nano Lett. 2015, 15, 6276–6281. [Google Scholar] [CrossRef]
- Mashkour, M.; Rahimnejad, M.; Mashkour, M. Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell. J. Power Sources 2016, 325, 322–328. [Google Scholar] [CrossRef]
- Truong, D.H.; Dam, M.S.; Bujna, E.; Rezessy-Szabo, J.; Farkas, C.; Vi, V.N.H.; Csernus, O.; Nguyen, V.D.; Gathergood, N.; Friedrich, L.; et al. In situ fabrication of electrically conducting bacterial cellulose-polyaniline-titanium-dioxide composites with the immobilization of Shewanella xiamenensis and its application as bioanode in microbial fuel cell. Fuel 2021, 285, 119259. [Google Scholar] [CrossRef]
- Szöllősi, A.; Hoschke, Á.; Rezessy-Szabó, J.M.; Bujna, E.; Kun, S.; Nguyen, Q.D. Formation of novel hydrogel bio-anode by immobilization of biocatalyst in alginate/polyaniline/titanium-dioxide/graphite composites and its electrical performance. Chemosphere 2017, 174, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wen, Q.; Chen, Y.; Zheng, H.; Wang, S. Enhanced performance of microbial fuel cell with polyaniline/sodium alginate/carbon brush hydrogel bioanode and removal of COD. Energy 2020, 202, 117780. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Q.; Chen, Y.; Li, W. Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells. Energy 2020, 204, 117942. [Google Scholar] [CrossRef]
- Xu, H.; Du, Y.; Chen, Y.; Wen, Q.; Lin, C.; Zheng, J.; Qiu, Z. Electricity generation in simulated benthic microbial fuel cell with conductive polyaniline-polypyrole composite hydrogel anode. Renew. Energy 2022, 183, 242–250. [Google Scholar] [CrossRef]
- Chang, S.-H.; Wu, C.-H.; Wang, R.-C.; Lin, C.-W. Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well. J. Environ. Manag. 2017, 193, 551–557. [Google Scholar] [CrossRef]
- Li, J.; Dong, Y.; Hu, L.; Zhang, Y.; Fu, Q.; Zhang, L.; Zhu, X.; Liao, Q. Microalgae hydrogel-derived monolithicfree-standing air cathode for microbial fuel cells: Tailoring the macroporous structure for enhanced bioelectricity generation. Renew. Sustain. Energy Rev. 2022, 153, 111773. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Liu, X.; Guan, W.; Zhang, E.; Shi, X.; Zhang, X.; Wang, X.; Mao, X. Diffusion-layer-free air cathode based on ionic conductive hydrogel for microbial fuel cells. Sci. Total Environ. 2020, 743, 140836. [Google Scholar] [CrossRef]
- Kim, J.R.; Premier, G.C.; Hawkes, F.R.; Dinsdale, R.M.; Guwy, A.J. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J. Power Sources 2009, 187, 393–399. [Google Scholar] [CrossRef]
- Zou, Y.; Xiang, C.; Yang, L.; Sun, L.-X.; Xu, F.; Cao, Z. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int. J. Hydrog. Energy 2008, 33, 4856–4862. [Google Scholar] [CrossRef]
- Kumar, G.G.; Hashmi, S.; Karthikeyan, C.; GhavamiNejad, A.; Vatankhah-Varnoosfaderani, M.; Stadler, F.J. Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications. Macromol. Rapid Commun. 2014, 35, 1861–1865. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Pan, X.; Chen, Y.; Wen, Q.; Lin, C.G.; Zheng, J.Y.; Li, W.; Xu, H.T.; Qi, L.J. A 3D porous nitrogen-doped carbon nanotube sponge anode modified with polypyrrole and carboxymethyl cellulose for high-performance microbial fuel cells. J. Appl. Electrochem. 2020, 50, 1281–1290. [Google Scholar] [CrossRef]
- Salas, E.C.; Sun, Z.; Lüttge, A.; Tour, J.M. Reduction of graphene oxide via bacterial respiration. ACS Nano 2010, 4, 4852–4856. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Miyata, Y.; Doi, K.; Goto, Y.; Nagao, Y.; Tero, R.; Hiraishi, A. Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria. Sci. Rep. 2016, 6, 21867. [Google Scholar] [CrossRef]
- Yoshida, N.; Miyata, Y.; Mugita, A.; Iida, K. Electricity Recovery from Municipal Sewage Wastewater Using a Hydrogel Complex Composed of Microbially Reduced Graphene Oxide and Sludge. Materials 2016, 9, 742. [Google Scholar] [CrossRef] [Green Version]
- Goto, Y.; Yoshida, N. Microbially reduced graphene oxide shows efficient electricity ecovery from artificial dialysis wastewater. J. Gen. Appl. Microbiol. 2017, 63, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F.W.T.; Hor, T.S.A.; Zong, Y.; Liu, Z. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5, 4643–4667. [Google Scholar] [CrossRef]
- Lu, M.; Guo, L.; Kharkwal, S.; Wu, H.n.; Ng, H.Y.; Li, S.F.Y. Manganese–polypyrrole–carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells. J. Power Sources 2013, 221, 381–386. [Google Scholar] [CrossRef]
- Liu, J.; Wei, L.; Wang, H.; Lan, G.; Yang, H.; Shen, J. Biomass-derived N-doped porous activated carbon as a high-performance and cost-effective pH-universal oxygen reduction catalyst in fuel cell. Int. J. Hydrog. Energy 2020, 45, 29308–29321. [Google Scholar] [CrossRef]
- Liu, S.-H.; Wu, C.-H.; Lin, C.-W. Enhancement of bioelectricity generation for an air-cathode microbial fuel cell using polyvinyl alcohol-membrane electrode assemblies. Biochem. Eng. J. 2017, 128, 210–217. [Google Scholar] [CrossRef]
- Wu, C.-H.; Liu, S.-H.; Chu, H.-L.; Li, Y.-C.; Lin, C.-W. Feasibility study of electricity generation and organics removal for a molasses wastewater by a waterfall-type microbial fuel cell. J. Taiwan Inst. Chem. Eng. 2017, 78, 150–156. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Wu, C.-H.; Meng, C.-T.; Lin, C.-W. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode. Appl. Energy 2017, 188, 392–398. [Google Scholar] [CrossRef]
- Liu, S.-H.; Chang, C.-M.; Lin, C.-W. Modifying proton exchange membrane in a microbial fuel cell by adding clay mineral to improve electricity generation without reducing removal of toluene. Biochem. Eng. J. 2018, 134, 101–107. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Logan, B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006, 8, 489–494. [Google Scholar] [CrossRef]
- Wu, S.; Patil, S.A.; Chen, S. Auto-feeding microbial fuel cell inspired by transpiration of plants. Appl. Energy 2018, 225, 934–939. [Google Scholar] [CrossRef]
- Lescano, M.I.; Gasnier, A.; Pedano, M.L.; Sica, M.P.; Pasquevich, D.M.; Prados, M.B. Development and characterisation of self-assembled graphene hydrogel-based anodes for bioelectrochemical systems. RSC Adv. 2018, 8, 26755–26763. [Google Scholar] [CrossRef] [Green Version]
- Dubrovin, I.A.; Hirsch, L.O.; Rozenfeld, S.; Gandu, B.; Menashe, O.; Schechter, A.; Cahan, R. Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Microorganisms 2022, 10, 1007. [Google Scholar] [CrossRef]
- Yasri, N.; Roberts, E.P.L.; Gunasekaran, S. The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Rep. 2019, 5, 1116–1136. [Google Scholar] [CrossRef]
- Choudhury, P.; Prasad Uday, U.S.; Bandyopadhyay, T.K.; Ray, R.N.; Bhunia, B. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered 2017, 8, 471–487. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-G.; Rajesh, P.P.; Sim, Y.-U.; Jadhav, D.A.; Noori, M.T.; Kim, D.-H.; Al-Qaradawi, S.Y.; Yang, E.; Jang, J.-K.; Chae, K.-J. Addressing scale-up challenges and enhancement in performance of hydrogen-producing microbial electrolysis cell through electrode modifications. Energy Rep. 2022, 8, 2726–2746. [Google Scholar] [CrossRef]
- Yuan, H.; He, Z. Graphene-modified electrodes for enhancing the performance of microbial fuel cells. Nanoscale 2015, 7, 7022–7029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, R.C.; Porter-Gill, S.; Logan, B.E. Immobilization of anode-attached microbes in a microbial fuel cell. AMB Express 2012, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozenfeld, S.; Gandu, B.; Hirsch, L.O.; Dubrovin, I.; Schechter, A.; Cahan, R. Hydrogen production in a semi-single-chamber microbial electrolysis cell based on anode encapsulated in a dialysis bag. Int. J. Energy Res. 2021, 45, 19074–19088. [Google Scholar] [CrossRef]
- Gorgolis, G.; Galiotis, C. Graphene aerogels: A review. 2d Mater. 2017, 4, 032001. [Google Scholar] [CrossRef]
- Mao, J.; Iocozzia, J.; Huang, J.; Meng, K.; Lai, Y.; Lin, Z. Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 2018, 11, 772–799. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, B.; Wen, Z.; Cui, S.; Guo, X.; He, Z.; Chen, J. A 3D hybrid of layered MoS2/nitrogen-doped graphene nanosheet aerogels: An effective catalyst for hydrogen evolution in microbial electrolysis cells. J. Mater. Chem. A 2014, 2, 13795–13800. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-K.; Tang, B.; Liu, J.; Shi, H.; Xu, Q.; Zhao, G. Self-supported microbial carbon aerogel bioelectrocatalytic anode promoting extracellular electron transfer for efficient hydrogen evolution. Electrochim. Acta 2019, 303, 268–274. [Google Scholar] [CrossRef]
- Simoska, O.; Gaffney, E.M.; Minteer, S.D.; Franzetti, A.; Cristiani, P.; Grattieri, M.; Santoro, C. Recent trends and advances in microbial electrochemical sensing technologies: An overview. Curr. Opin. Electrochem. 2021, 30, 100762. [Google Scholar] [CrossRef]
- Cui, Y.; Lai, B.; Tang, X. Microbial Fuel Cell-Based Biosensors. Biosensors 2019, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Greenman, J.; Gajda, I.; You, J.; Mendis, B.A.; Obata, O.; Pasternak, G.; Ieropoulos, I. Microbial fuel cells and their electrified biofilms. Biofilm 2021, 3, 100057. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, A.; Raghavan, V.; Tartakovsky, B. A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring. Bioelectrochemistry 2019, 126, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q.S.; Zhou, Q.; Jiang, G. Environmental pollution, a hidden culprit for health issues. Eco-Environ. Health 2022, 1, 31–45. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A review of the application of machine learning in water quality evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef]
- Boas, J.V.; Oliveira, V.B.; Simões, M.; Pinto, A.M.F.R. Review on microbial fuel cells applications, developments and costs. J. Environ. Manag. 2022, 307, 114525. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, L.; Min, B.; Martins, G.; Brito, A.G.; Kroff, P.; Parpot, P.; Angelidaki, I.; Nogueira, R. In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry 2011, 81, 99–103. [Google Scholar] [CrossRef]
- Karube, I.; Matsunaga, T.; Tsuru, S.; Suzuki, S. Biochemical fuel cell utilizing immobilized cells of clostridium butyricum. Biotechnol. Bioeng. 1977, 19, 1727–1733. [Google Scholar] [CrossRef]
- Kim, B.H.; Chang, I.S.; Cheol Gil, G.; Park, H.S.; Kim, H.J. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 2003, 25, 541–545. [Google Scholar] [CrossRef]
- Kumar, T.; Naik, S.; Jujjavarappu, S.E. A critical review on early-warning electrochemical system on microbial fuel cell-based biosensor for on-site water quality monitoring. Chemosphere 2022, 291, 133098. [Google Scholar] [CrossRef]
- Chang, I.S.; Moon, H.; Jang, J.K.; Kim, B.H. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens. Bioelectron. 2005, 20, 1856–1859. [Google Scholar] [CrossRef]
- Zhou, X.; Qu, Y.; Kim, B.; Choo, P.; Liu, J.; Du, Y.; He, W.; Chang, I.; Ren, N.-Q.; Feng, Y. Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells. Bioresour. Technol. 2014, 169, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Ayyaru, S.; Dharmalingam, S. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor. Anal. Chim. Acta 2014, 818, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Spurr, M.W.A.; Yu, E.H.; Scott, K.; Head, I.M. Extending the dynamic range of biochemical oxygen demand sensing with multi-stage microbial fuel cells. Environ. Sci. Water Res. Technol. 2018, 4, 2029–2040. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Tian, S.; Zhang, P.; Ye, J.; Tao, X.; Li, F.; Zhou, Z.; Nabi, M. Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor. J. Environ. Manag. 2019, 252, 109682. [Google Scholar] [CrossRef] [PubMed]
- Kharkwal, S.; Tan, Y.; Lu, M.; Ng, H. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst. Int. J. Mol. Sci. 2017, 18, 276. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, J.; Wang, J.; Bian, C.; Tong, J.; Li, Y.; Xia, S. A microbial electrode based on the co-electrodeposition of carboxyl graphene and Au nanoparticles for BOD rapid detection. Biochem. Eng. J. 2017, 123, 86–94. [Google Scholar] [CrossRef]
- Zhang, Y.; Angelidaki, I. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC). Biosens. Bioelectron. 2012, 38, 189–194. [Google Scholar] [CrossRef]
- Pasternak, G.; Greenman, J.; Ieropoulos, I. Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring. Sens. Actuators B Chem. 2017, 244, 815–822. [Google Scholar] [CrossRef]
- Tardy, G.M.; Lóránt, B.; Gyalai-Korpos, M.; Bakos, V.; Simpson, D.; Goryanin, I. Microbial fuel cell biosensor for the determination of biochemical oxygen demand of wastewater samples containing readily and slowly biodegradable organics. Biotechnol. Lett. 2021, 43, 445–454. [Google Scholar] [CrossRef]
- Wu, S.; Kuschk, P.; Brix, H.; Vymazal, J.; Dong, R. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Res. 2014, 57, 40–55. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, Y.; Fan, C.; Fan, Z.; Zhao, F. First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring. Bioresour. Technol. 2017, 243, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yu, W.; Graham, N.; Zhao, Y. Revisiting the bioelectrochemical system based biosensor for organic sensing and the prospect on constructed wetland-microbial fuel cell. Chemosphere 2021, 264, 128532. [Google Scholar] [CrossRef] [PubMed]
- Corbella, C.; Hartl, M.; Fernandez-gatell, M.; Puigagut, J. MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Sci. Total Environ. 2019, 660, 218–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, A.; Kim, J.R.; Michie, I.; Dinsdale, R.M.; Guwy, A.J.; Premier, G.C. Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosens. Bioelectron. 2013, 47, 50–55. [Google Scholar] [CrossRef]
- Kaur, A.; Ibrahim, S.; Pickett, C.J.; Michie, I.S.; Dinsdale, R.M.; Guwy, A.J.; Premier, G.C. Anode modification to improve the performance of a microbial fuel cell volatile fatty acid biosensor. Sens. Actuators B Chem. 2014, 201, 266–273. [Google Scholar] [CrossRef]
- Schievano, A.; Colombo, A.; Cossettini, A.; Goglio, A.; D’Ardes, V.; Trasatti, S.; Cristiani, P. Single-chamber microbial fuel cells as on-line shock-sensors for volatile fatty acids in anaerobic digesters. Waste Manag. 2018, 71, 785–791. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Wu, S.; Dong, R.; Angelidaki, I. Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion. Sci. Total Environ. 2019, 655, 1439–1447. [Google Scholar] [CrossRef]
- Sun, H.; Angelidaki, I.; Wu, S.; Dong, R.; Zhang, Y. The Potential of Bioelectrochemical Sensor for Monitoring of Acetate During Anaerobic Digestion: Focusing on Novel Reactor Design. Front. Microbiol. 2019, 9, 3357. [Google Scholar] [CrossRef]
- Sun, H.; Xu, M.; Wu, S.; Dong, R.; Angelidaki, I.; Zhang, Y. Innovative air-cathode bioelectrochemical sensor for monitoring of total volatile fatty acids during anaerobic digestion. Chemosphere 2021, 273, 129660. [Google Scholar] [CrossRef]
- Kretzschmar, J.; Böhme, P.; Liebetrau, J.; Mertig, M.; Harnisch, F. Microbial Electrochemical Sensors for Anaerobic Digestion Process Control—Performance of Electroactive Biofilms under Real Conditions. Chem. Eng. Technol. 2018, 41, 687–695. [Google Scholar] [CrossRef]
- Li, D.; Shi, Y.; Gao, F.; Yang, L.; Kehoe, D.K.; Romeral, L.; Gun’ko, Y.K.; Lyonsa, M.G.; Wang, J.J.; Mullarkey, D.; et al. Characterising and control of ammonia emission in microbial fuel cells. Chem. Eng. J. 2020, 389, 124462. [Google Scholar] [CrossRef]
- Hakeem, K.R.; Sabir, M.; Ozturk, M.; Akhtar, M.S.; Ibrahim, F.H. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation. In Reviews of Environmental Contamination and Toxicology; de Voogt, P., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 242, pp. 183–217. [Google Scholar]
- Guidelines for Drinking Water: Fourth Edition Incorporating the First Addendum Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950-eng.pdf (accessed on 30 November 2022).
- Klevinskas, A.; Kantminienė, K.; Žmuidzinavičienė, N.; Jonuškienė, I.; Griškonis, E. Microbial Fuel Cell as a Bioelectrochemical Sensor of Nitrite Ions. Processes 2021, 9, 1330. [Google Scholar] [CrossRef]
- Shen, Y.J.; Lefebvre, O.; Tan, Z.; Ng, H.Y. Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity. Water Sci. Technol. 2012, 65, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Huang, S.; Li, Y.; Zhao, N.; Li, H.; Angelidaki, I.; Zhang, Y. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring. Talanta 2018, 186, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Papandonatos, G.D.; Zheng, T.; Braun, J.M.; Zhang, B.; Liu, W.; Wu, C.; Zhou, A.; Liu, S.; Buka, S.L.; et al. Prenatal metal mixture exposure and birth weight: A two-stage analysis in two prospective cohort studies. Eco-Environ. Health 2022, 1, 165–171. [Google Scholar] [CrossRef]
- Wen, M.; Ma, Z.; Gingerich, D.B.; Zhao, X.; Zhao, D. Heavy metals in agricultural soil in China: A systematic review and meta-analysis. Eco-Environ. Health 2022, 1, 219–228. [Google Scholar] [CrossRef]
- Rocha, D.L.; Maringolo, V.; Araújo, A.N.; Amorim, C.M.P.G.; Montenegro, M.D.C.B.S.M. An overview of Structured Biosensors for Metal Ions Determination. Chemosensors 2021, 9, 324. [Google Scholar] [CrossRef]
- Tran, P.H.N.; Luong, T.T.T.; Nguyen, T.T.T.; Nguyen, H.Q.; Duong, H.V.; Kim, B.H.; Pham, H.T. Possibility of using a lithotrophic iron-oxidizing microbial fuel cell as a biosensor for detecting iron and manganese in water samples. Environ. Sci. Process. Impacts 2015, 17, 1806–1815. [Google Scholar] [CrossRef]
- Stein, N.E.; Hamelers, H.V.; van Straten, G.; Keesman, K.J. Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition. Biosensensor 2012, 2, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo, M.; Thomson, A.R.; Schneider, K.; Cameron, P.J.; Ieropoulos, I. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens. Bioelectron. 2014, 62, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.H.; Cheng, C.Y.; Liu, M.H.; Chen, T.Y.; Hsieh, M.C.; Chung, Y.C. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination. Sensors 2016, 16, 1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Deng, H.; Han, C.; Liu, L.; Zhong, W. A Novel Sediment Microbial Fuel Cell Based Sensor for On-Line and in situ Monitoring Copper Shock in Water. Electroanalysis 2018, 30, 2668–2675. [Google Scholar] [CrossRef]
- Xu, M.; Li, J.; Liu, B.; Yang, C.; Hou, H.; Hu, J.; Yang, J.; Xiao, K.; Liang, S.; Dongliang, W. The evaluation of long term performance of microbial fuel cell based Pb toxicity shock sensor. Chemosphere 2020, 270, 129455. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, H.; Chen, J.; Wang, T.; Luo, H.; Chen, W.; Mo, Y.; Li, L.; An, X.; Zhang, X. Microbial fuel cell (MFC)-based biosensor for combined heavy metals monitoring and associated bioelectrochemical process. Int. J. Hydrog. Energy 2022, 47, 21231–21240. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, D.S.; Hyeon Jin, J.; Park, B.S.; Hee Jin, Y.; Hyun, M.S.; Kim, M. Microbial fuel cell as a biosensor to monitor various toxic metal substances in water. In Proceedings of the 2015 9th International Conference on Sensing Technology (ICST), Auckland, New Zealand, 8–10 December 2015; IEEE: Manhattan, NY, USA, 2015; pp. 416–419. [Google Scholar]
- Do, M.H.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Pandey, A.; Sharma, P.; Varjani, S.; Nguyen, T.A.H.; Hoang, N.B. A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater. Sci. Total Environ. 2022, 811, 152261. [Google Scholar] [CrossRef]
- Liu, B.; Lei, Y.; Li, B. A batch-mode cube microbial fuel cell based “shock” biosensor for wastewater quality monitoring. Biosens. Bioelectron. 2014, 62, 308–314. [Google Scholar] [CrossRef]
- Ojha, A.; Tiwary, D. Chapter 16—Organic pollutants in water and its health risk assessment through consumption. In Contamination of Water; Ahamad, A., Siddiqui, S.I., Singh, P., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 237–250. [Google Scholar] [CrossRef]
- Zhou, T.; Han, H.; Liu, P.; Xiong, J.; Tian, F.; Li, X. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review. Sensors 2017, 17, 2230. [Google Scholar] [CrossRef]
- Do, M.H.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Q.; Nghiem, D.L.; Thanh, B.X.; Zhang, X.; Hoang, N.B. Performance of a dual-chamber microbial fuel cell as a biosensor for in situ monitoring Bisphenol A in wastewater. Sci. Total Environ. 2022, 845, 157125. [Google Scholar] [CrossRef]
- Chen, Z.; Niu, Y.; Zhao, S.; Khan, A.; Ling, Z.; Chen, Y.; Liu, P.; Li, X. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell. Biosens. Bioelectron. 2016, 85, 860–868. [Google Scholar] [CrossRef]
- Lu, H.; Yu, Y.; Xi, H.; Wang, C.; Zhou, Y. Bacterial response to formaldehyde in an MFC toxicity sensor. Enzym. Microb. Technol. 2020, 140, 109565. [Google Scholar] [CrossRef] [PubMed]
- Dávila, D.; Esquivel, J.P.; Sabaté, N.; Mas, J. Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens. Bioelectron. 2011, 26, 2426–2430. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Li, X.; Shi, Y.; Qi, Y.; Huang, D.; Tadé, M.; Wang, S.; Liu, S. FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin. Biosens. Bioelectron. 2017, 91, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Chouler, J.; Di Lorenzo, M. Pesticide detection by a miniature microbial fuel cell under controlled operational disturbances. Water Sci. Technol. 2019, 79, 2231–2241. [Google Scholar] [CrossRef]
- Rinsky, J.L.; Hopenhayn, C.; Golla, V.; Browning, S.; Bush, H.M. Atrazine exposure in public drinking water and preterm birth. Public Health Rep. 2012, 127, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Olias, L.G.; Di Lorenzo, M. Microbial fuel cells for in-field water quality monitoring. RSC Adv. 2021, 11, 16307–16317. [Google Scholar] [CrossRef]
- Catal, T.; Yavaser, S.; Enisoglu-Atalay, V.; Bermek, H.; Ozilhan, S. Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresour. Technol. 2018, 268, 116–120. [Google Scholar] [CrossRef]
- Schneider, G.; Czeller, M.; Rostás, V.; Kovács, T. Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of beta-lactam antibiotics. Enzym. Microb. Technol. 2015, 73, 59–64. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sens. Int. 2021, 2, 100100. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, W.; Yan, K.; Gao, J.; Zhang, J. Fuel cell-based self-powered electrochemical sensors for biochemical detection. Nano Energy 2019, 61, 173–193. [Google Scholar] [CrossRef]
- Asghary, M.; Raoof, J.B.; Rahimnejad, M.; Ojani, R. A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell. Biosens. Bioelectron. 2016, 82, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Johnston, L.; Wang, G.; Hu, K.; Qian, C.; Liu, G. Advances in Biosensors for Continuous Glucose Monitoring Towards Wearables. Front. Bioeng. Biotechnol. 2021, 9, 733810. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Shi, Y.; Sun, Y.; Wang, Z.; Kehoe, D.K.; Romeral, L.; Gao, F.; Yang, L.; McCurtin, D.; Gun’ko, Y.K.; et al. Microbe-Based Sensor for Long-Term Detection of Urine Glucose. Sensor 2022, 22, 5340. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.Y.A.; Hassan, H.N.A.; Abdel-Aziz, M.S.; Khaled, E. Nanomaterials-based microbial sensor for direct electrochemical detection of Streptomyces Spp. Sens. Actuators B Chem. 2014, 203, 848–853. [Google Scholar] [CrossRef]
- Kim, T.; Han, J.-I. Fast detection and quantification of Escherichia coli using the base principle of the microbial fuel cell. J. Environ. Manag. 2013, 130, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Kasas, S.; Ruggeri, F.S.; Benadiba, C.; Maillard, C.; Stupar, P.; Tournu, H.; Dietler, G.; Longo, G. Detecting nanoscale vibrations as signature of life. Proc. Natl. Acad. Sci. USA 2015, 112, 378–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrevaya, X.C.; Mauas, P.J.D.; Cortón, E. Microbial Fuel Cells Applied to the Metabolically Based Detection of Extraterrestrial Life. Astrobiology 2010, 10, 965–971. [Google Scholar] [CrossRef] [Green Version]
- Figueredo, F.; Cortón, E.; Abrevaya, X.C. In Situ Search for Extraterrestrial Life: A Microbial Fuel Cell–Based Sensor for the Detection of Photosynthetic Metabolism. Astrobiology 2015, 15, 717–727. [Google Scholar] [CrossRef]
- Greenman, J.; Mendis, A.; You, J.; Gajda, I.; Horsfield, I.; Ieropoulos, I. Microbial Fuel Cell Based Thermosensor for Robotic Applications. Front. Robot. AI 2021, 8, 558953. [Google Scholar] [CrossRef]
- Zhang, Y.; Angelidaki, I. Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges. Water Res. 2014, 56, 11–25. [Google Scholar] [CrossRef]
- Zhang, Y.; Angelidaki, I. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability. Biotechnol. Bioeng. 2011, 108, 2339–2347. [Google Scholar] [CrossRef] [PubMed]
- Modin, O.; Wilén, B.-M. A novel bioelectrochemical BOD sensor operating with voltage input. Water Res. 2012, 46, 6113–6120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Liao, C.; Zhong, Z.; Liu, S.; Li, M.; Wang, X. Design, optimization and application of a highly sensitive microbial electrolytic cell-based BOD biosensor. Environ. Res. 2023, 216, 114533. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.Y.; Kim, Y. Accurate and rapid organic detection by eliminating hysteresis in bioanode sensor applications. Environ. Sci.-Water Res. Technol. 2017, 3, 905–910. [Google Scholar] [CrossRef]
- Jin, X.D.; Li, X.H.; Zhao, N.N.; Angelidaki, I.; Zhang, Y.F. Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process. Water Res. 2017, 111, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Angelidaki, I.; Zhang, Y. Current as an indicator of ammonia concentration during wastewater treatment in an integrated microbial electrolysis cell—Nitrification system. Electrochim. Acta 2018, 281, 266–273. [Google Scholar] [CrossRef]
- Ahn, Y.; Schroder, U. Microfabricated, continuous-flow, microbial three-electrode cell for potential toxicity detection. Biochip J. 2015, 9, 27–34. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Shen, J.; Zhao, S.; Kang, J.; Chu, W.; Zhou, Y.; Wang, B. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere 2020, 242, 125227. [Google Scholar] [CrossRef]
- Du, L.; Yan, Y.Q.; Li, T.; Liu, H.W.; Li, N.; Wang, X. Machine Learning Enables Quantification of Multiple Toxicants with Microbial Electrochemical Sensors. ACS ES&T Eng. 2022, 2, 92–100. [Google Scholar] [CrossRef]
- Mottet, L.; Le Cornec, D.; Noël, J.-M.; Kanoufi, F.; Delord, B.; Poulin, P.; Bibette, J.; Bremond, N. A conductive hydrogel based on alginate and carbon nanotubes for probing microbial electroactivity. Soft Matter 2018, 14, 1434–1441. [Google Scholar] [CrossRef]
- Winfield, J.; Greenman, J.; Ieropoulos, I. Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes. Int. J. Hydrog. Energy 2019, 44, 15344–15354. [Google Scholar] [CrossRef]
- Angelaalincy, M.J.; Navanietha Krishnaraj, R.; Shakambari, G.; Ashokkumar, B.; Kathiresan, S.; Varalakshmi, P. Biofilm Engineering Approaches for Improving the Performance of Microbial Fuel Cells and Bioelectrochemical Systems. Front. Energy Res. 2018, 6, 63. [Google Scholar] [CrossRef]
- Logan, B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Li, L.; Cho, Y.; de Figueiredo, P.; Han, A. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS ONE 2009, 4, e6570. [Google Scholar] [CrossRef] [PubMed]
- Harvey, H.J.; Wildman, R.D.; Mooney, S.J.; Avery, S.V. Challenges and approaches in assessing the interplay between microorganisms and their physical micro-environments. Comput. Struct. Biotechnol. J. 2020, 18, 2860–2866. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Yan, Z.; Xu, H.; Yao, Z.; Wang, C.; Chen, M.; Zhao, Z.; Peng, Z.; Wang, C.; Jiang, H.-L. Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Sci. Total Environ. 2019, 673, 272–280. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Chu, P.K.; Gelinsky, M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater. Sci. Eng. R Rep. 2020, 140, 100543. [Google Scholar]
- Li, D.; Yang, L.; Kavanagh, R.; Xiao, L.; Shi, Y.; Kehoe, D.K.; Sheerin, E.D.; Gun’ko, Y.K.; Boland, J.J.; Wang, J.J. Sampling, Identification and Characterization of Microplastics Release from Polypropylene Baby Feeding Bottle during Daily Use. JoVE J. Vis. Exp. 2021, 173, e62545. [Google Scholar] [CrossRef]
- Shi, Y.; Li, D.; Xiao, L.; Sheerin, E.D.; Mullarkey, D.; Yang, L.; Bai, X.; Shvets, I.V.; Boland, J.J.; Wang, J.J. The influence of drinking water constituents on the level of microplastic release from plastic kettles. J. Hazard. Mater. 2021, 425, 127997. [Google Scholar] [CrossRef]
- Shi, Y.; Li, D.; Xiao, L.; Mullarkey, D.; Kehoe, D.K.; Sheerin, E.D.; Barwich, S.; Yang, L.; Gun’ko, Y.K.; Shvets, I.V.; et al. Real-world natural passivation phenomena can limit microplastic generation in water. Chem. Eng. J. 2022, 428, 132466. [Google Scholar] [CrossRef]
- Li, D.; Sheerin, E.D.; Shi, Y.; Xiao, L.; Yang, L.; Boland, J.J.; Wang, J.J. Alcohol pre-treatment to eliminate the interference of micro additive particles in the identification of microplastics using Raman spectroscopy. Environ. Sci. Technol. 2022, 56, 12158–12168. [Google Scholar] [CrossRef] [PubMed]
Key Term | Number of Publications |
---|---|
“Sensor” | 791,393 |
“Sensor” and “Hydrogel” | 4791 |
“Sensor” and “Microbial Fuel Cell” | 591 |
“Microbial Fuel Cell” and “Hydrogel” | 80 |
Polymer Modified Bioanode | Pyrrole Modified Bioanode |
---|---|
Agarose and mediator (AG + NR) | pyrrole (Ppy) |
Polyacrylamide and mediator (PAM + NR) | pyrrole propanoic acid (Ppy−) |
Polyvinyl alcohol (PVA) + Calcium Alginate + Carbon Powder | pyrrole alkylammonium (Ppy+) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, D.; Shi, Y.; Sun, Y.; Okeke, S.I.; Yang, L.; Zhang, W.; Zhang, Z.; Shi, Y.; Xiao, L. Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications. Sensors 2023, 23, 641. https://doi.org/10.3390/s23020641
Wang Z, Li D, Shi Y, Sun Y, Okeke SI, Yang L, Zhang W, Zhang Z, Shi Y, Xiao L. Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications. Sensors. 2023; 23(2):641. https://doi.org/10.3390/s23020641
Chicago/Turabian StyleWang, Zeena, Dunzhu Li, Yunhong Shi, Yifan Sun, Saviour I. Okeke, Luming Yang, Wen Zhang, Zihan Zhang, Yanqi Shi, and Liwen Xiao. 2023. "Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications" Sensors 23, no. 2: 641. https://doi.org/10.3390/s23020641