Origami and Kirigami Structure for Impact Energy Absorption: Its Application to Drone Guards
Abstract
:1. Introduction
2. Results and Discussion
2.1. Conceptual Overview of the Proposed Origami–Kirigami Structures
2.2. Deformation Experiment
2.3. Drop Impact Test
2.4. Airflow Testing
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Aydin, B. Public acceptance of drones: Knowledge, attitudes, and practice. Technol. Soc. 2019, 59, 101180. [Google Scholar] [CrossRef]
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef]
- Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks 2018, 72, 411–458. [Google Scholar] [CrossRef]
- Bamburry, D. Drones: Designed for product delivery. Des. Manag. Rev. 2015, 26, 40–48. [Google Scholar] [CrossRef]
- Bernard, M.; Kondak, K.; Maza, I.; Ollero, A. Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 2011, 28, 914–931. [Google Scholar] [CrossRef]
- Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Rosser, J.C., Jr.; Vignesh, V.; Terwilliger, B.A.; Parker, B.C. Surgical and Medical Applications of Drones: A Comprehensive Review. J. Soc. Laparoendosc. 2018, 22, e2018.00018. [Google Scholar] [CrossRef]
- Kwag, Y.K.; Chung, C.H. UAV based collision avoidance radar sensor. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007. [Google Scholar] [CrossRef]
- Sabatini, R.; Richardson, M.; Roviaro, E. Development and flight test of an avionics LIDAR for helicopter and UAV low-level flight. J. Aeronaut. Aerosp. Eng. 2013, 2, 3. [Google Scholar] [CrossRef]
- Pestana, J.; Maurer, M.; Muschick, D.; Hofer, M.; Fraundorfer, F. Overview obstacle maps for obstacle-aware navigation of autonomous drones. J. Field Robot. 2019, 36, 734–762. [Google Scholar] [CrossRef]
- Balcaen, R.; Lavatelli, A.; Jiménez-Peña, C.; Pfeiffer, H.; Zappa, E.; Debruyne, D. Impact of motion blur on stereo-digital image correlation with the focus on a drone-carried stereo rig. Strain 2019, 55, e12300. [Google Scholar] [CrossRef]
- Stanoev, A.; Audinet, N.; Tancock, S.; Dahnoun, N. Real-time stereo vision for collision detection on autonomous UAVs. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017. [Google Scholar] [CrossRef]
- Jung, S.; Cho, S.; Lee, D.; Lee, H.; Shim, D.H. A direct visual servoing-based framework for the 2016 IROS Autonomous Drone Racing Challenge. J. Field Robot. 2018, 35, 146–166. [Google Scholar] [CrossRef]
- Dusha, D.; Mejias, L. Walker. Fixed-wing attitude estimation using temporal tracking of the horizon and optical flow. J. Field Robot. 2011, 28, 355–372. [Google Scholar] [CrossRef]
- Lee, G.J.; Choi, C.; Kim, D.-H.; Song, Y.M. Bioinspired Artificial Eyes: Optic Components, Digital Cameras, and Visual Prostheses. Adv. Funct. Mater. 2018, 28, 1705202. [Google Scholar] [CrossRef]
- Chung, T.; Lee, Y.; Yang, S.-P.; Kim, K.; Kang, B.-H.; Jeong, K.-H. Mining the Smartness of Insect Ultrastructures for Advanced Imaging and Illumination. Adv. Funct. Mater. 2018, 28, 1705912. [Google Scholar] [CrossRef]
- Wild, G.; Murray, J.; Baxter, G. Exploring Civil Drone Accidents and Incidents to Help Prevent Potential Air Disasters. Aerospace 2016, 3, 22. [Google Scholar] [CrossRef]
- Chung, L.K.; Cheung, Y.; Lagman, C.; Yong, N.A.; McBride, D.Q.; Yang, I. Skull fracture with effacement of the superior sagittal sinus following drone impact: A case report. Childs Nerv. Syst. 2017, 33, 1609–1611. [Google Scholar] [CrossRef]
- Wild, G.; Gavin, K.; Murray, J.; Silva, J.; Baxter, G. A Post-Accident Analysis of Civil Remotely-Piloted Aircraft System Accidents and Incidents. J. Aerosp. Technol. Manag. 2017, 9, 157–168. [Google Scholar] [CrossRef]
- Ghasri, M.; Maghrebi, M. Factors affecting unmanned aerial vehicles’ safety: A post-occurrence exploratory data analysis of drones’ accidents and incidents in Australia. Saf. Sci. 2021, 139, 105273. [Google Scholar] [CrossRef]
- Watkins, S.; Burry, J.; Mohamed, A.; Marino, M.; Prudden, S.; Fisher, A.; Kloet, N.; Jakobi, T.; Clothier, R. Ten questions concerning the use of drones in urban environments. Build. Environ. 2020, 167, 106458. [Google Scholar] [CrossRef]
- Mintchev, S.; de Rivaz, S.; Floreano, D. Insect-Inspired Mechanical Resilience for Multicopters. IEEE Robot. Autom. Lett. 2017, 2, 1248–1255. [Google Scholar] [CrossRef]
- Dilaveroğlu, L.; Özcan, O. MiniCoRe: A Miniature, Foldable, Collision Resilient Quadcopter. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar] [CrossRef]
- Klaptocz, A.; Briod, A.; Daler, L.; Zufferey, J.-C.; Floreano, D. Euler spring collision protection for flying robots. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013. [Google Scholar] [CrossRef]
- Yan, G.; Dees, J. (Advanced LLC). Self-righting Frame and Aeronautical Vehicle. US Patent 8528854B2, 28 April 2011. [Google Scholar]
- Briod, A.; Kornatowski, P.; Zufferey, J.-C.; Floreano, D. A Collision-resilient Flying Robot. J. Field Robot. 2014, 31, 496–509. [Google Scholar] [CrossRef]
- Shin, H.; Ott, Z.; Beuken, L.G.; Ranganathan, B.N.; Humbert, J.S.; Bergbreiter, S. Bio-Inspired Large-Area Soft Sensing Skins to Measure UAV Wing Deformation in Flight. Adv. Funct. Mater. 2021, 31, 2100679. [Google Scholar] [CrossRef]
- Klaptocz, A.; Daler, L.; Briod, A.; Zufferey, J.C.; Floreano, D. An Active Uprighting Mechanism for Flying Robots. IEEE Trans. Robot. 2012, 28, 1152–1157. [Google Scholar] [CrossRef]
- Klaptocz, A. Design of Flying Robots for Collision Absorption and Self-Recovery. Ph.D. Thesis, Ecole Polytechnique F´ed´erale de Lausanne, Lausanne, Switzerland, 2012. [Google Scholar]
- Salaan, C.J.; Okada, Y.; Hozumi, K.; Ohno, K.; Tadokoro, S. Improvement of UAV’s flight performance by reducing the drag force of spherical shell. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016. [Google Scholar] [CrossRef]
- Kovač, M.; Schlegel, M.; Zufferey, J.-C.; Floreano, D. Steerable Miniature Jumping Robot. Auton. Robot. 2010, 28, 295–306. [Google Scholar] [CrossRef]
- Aoki, T.; Ito, S.; Sei, Y. Development of quadruped walking robot with spherical shell-mechanical design for rotational locomotion. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015. [Google Scholar] [CrossRef]
- Turner, N.; Goodwine, B.; Sen, M. A review of origami applications in mechanical engineering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 230, 2345–2362. [Google Scholar] [CrossRef]
- Li, S.; Fang, H.; Sadeghi, S.; Bhovad, P.; Wang, K. Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties. Adv. Mater. 2019, 31, 1805282. [Google Scholar] [CrossRef]
- Fang, H.; Wang, K.; Li, S. Asymmetric energy barrier and mechanical diode effect from folding multi-stable stacked-origami. Extrem. Mech. Lett. 2017, 17, 7–15. [Google Scholar] [CrossRef]
- Ma, J.; You, Z. Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation. J. Appl. Mech. 2014, 81, 011003. [Google Scholar] [CrossRef]
- Jules, T.; Lechenault, F.; Adda-Bedia, M. Curving origami with mechanical frustration. Extrem. Mech. Lett. 2021, 46, 101315. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, H.; Huang, J.-L.; Paik, J. Generalized modeling of origami folding joints. Extrem. Mech. Lett. 2021, 45, 101213. [Google Scholar] [CrossRef]
- Sadeghi, S.; Li, S. Dynamic folding of origami by exploiting asymmetric bi-stability. Extrem. Mech. Lett. 2020, 40, 100958. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Kim, S.-R.; Kim, J.-S.; Park, J.-J.; Cho, K.-J. Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure. Soft Robot. 2017, 4, 163–180. [Google Scholar] [CrossRef]
- Kornatowski, P.M.; Mintchev, S.; Floreano, D. An origami-inspired cargo drone. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017. [Google Scholar] [CrossRef]
- Le, P.; Molina, J.; Hirai, S. Application of Japanese Origami Ball for Floating Multirotor Aerial Robot. Int. J. Mec. Aerosp. Ind. Mech. Manuf. Eng. 2014, 8, 1747–1750. [Google Scholar]
- Çakmak, U.; Graz, I.; Moser, R.; Fischlschweiger, M.; Major, Z. Embedded NiTi Wires for Improved Dynamic Thermomechanical Performance of Silicone Elastomers. Materials 2020, 13, 5076. [Google Scholar] [CrossRef]
- Çakmak, U.; Major, Z.; Fischlschweiger, M. Mechanical Consequences of Dynamically Loaded NiTi Wires under Typical Actuator Conditions in Rehabilitation and Neuroscience. J. Funct. Biomater. 2021, 12, 4. [Google Scholar] [CrossRef]
- Kim, N.-G.; Han, M.-W.; Iakovleva, A.; Park, H.-B.; Chu, W.-S.; Ahn, S.-H. Hybrid composite actuator with shape retention capability for morphing flap of unmanned aerial vehicle (UAV). Compos. Struct. 2020, 243, 112227. [Google Scholar] [CrossRef]
- Han, M.; Ahn, S. Blooming Knit Flowers: Loop-Linked Soft Morphing Structures for Soft Robotics. Adv. Mat. 2017, 29, 1606580. [Google Scholar] [CrossRef]
- Han, M.-W.; Rodrigue, H.; Cho, S.; Song, S.-H.; Wang, W.; Chu, W.-S.; Ahn, S.-H. Woven type smart soft composite for soft morphing car spoiler. Compos. Part B-Eng. 2016, 86, 285–298. [Google Scholar] [CrossRef]
- Han, M.; Kim, M.; Ahn, S. Shape memory textile composites with multi-mode actuations for soft morphing skins. Compos. Part B-Eng. 2020, 198, 108170. [Google Scholar] [CrossRef]
- Domingo, R.; García, M.; Gómez, M.R. Determination of energy during the dry drilling of PEEK GF30 considering the effect of torque. Procedia Eng. 2013, 63, 687–693. [Google Scholar] [CrossRef]
- Tadashi, O.; Ayako, K.; Masaki, M.; Kazushi, Y.; Masuo, M.; Hiroyuki, H. Barrier, Adsorptive, and Mechanical Properties of Containers Molded from PET/PP Blends for Use in Pharmaceutical Solutions. Mater. Sci. Appl. 2013, 2013, 37632. [Google Scholar] [CrossRef]
- Stachiv, I.; Alarcon, E.; Lamac, M. Shape Memory Alloys and Polymers for MEMS/NEMS Applications: Review on Recent Findings and Challenges in Design, Preparation, and Characterization. Metals 2021, 11, 415. [Google Scholar] [CrossRef]
- Han, M.W.; Rodrigue, H.; Kim, H.I.; Song, S.H.; Ahn, S.H. Shape Memory Alloy/Glass Fiber Woven Composite for Soft Morphing Winglets of Unmanned Aerial Vehicles. Compos. Struct. 2016, 140, 202–212. [Google Scholar] [CrossRef]
- Domenech, A. A classical experiment revisited: The bounce of balls and superballs in three dimensions. Am. J. Phys. 2005, 73, 28–36. [Google Scholar] [CrossRef]
- Cross, R. Measurements of the horizontal coefficient of restitution for a superball and a tennis ball. Am. J. Phys. 2002, 70, 482–489. [Google Scholar] [CrossRef]
- Gilchrist, A.; Mills, N.J. Modelling of the impact response of motorcycle helmets. Int. J. Impact Eng. 1994, 15, 201–218. [Google Scholar] [CrossRef]
- Azhar, H.; Ariffin, A.H.; Syazwan, S.M.; Wong, S.V. Estimating Energy Absorbing Performance of Motorcycle Safety Helmet. Appl. Mech. Mater. 2014, 663, 574–578. [Google Scholar] [CrossRef]
- Shuaeib, F.; Hamouda, A.; Hamdan, M.; Umar, R.R.; Hashmi, M. Motorcycle helmet: Part II. Materials and design issues. J. Mater. Process. Tech. 2002, 123, 422–431. [Google Scholar] [CrossRef]
PEEK | PET | PP | |
---|---|---|---|
Density (kg/m3) | 1320 | 1380 | 900 |
Tensile strength (MPa) | 110 | - | 27 |
Tensile modulus (GPa) | 4.482 | 1.2 | 1.2 |
Flexural modulus (GPa) | 4.14 | 2.3 | 1.15 |
Flexural strength (MPa) | 179 | 67 | 33 |
Melting temperature (°C) | 334 | 231 | - |
Property of NiTi | Martensite | Austenite |
---|---|---|
Density (g/cm3) | ~6.45 | |
Poisson’s ratio | ~0.33 | |
Ultimate tensile strength (MPa) | Up to 1900 | |
Young’s modulus (GPa) | 25–40 | 60–83 |
Yield strength (MPa) | 70–140 | 195–690 |
Thermal conductivity (W/(m·K)) | 8.6 | 18 |
Coefficient of thermal expansion (K−1) | 6.6 | 11 |
Electric resistivity (Ω·cm) | 76 | 82 |
Phase transition temperature (°C) | Start (Ms): 52 | Start (As): 68 |
Finish (Mf): 42 | Finish (Af): 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.-Y.; Lee, Y.-A.; Jang, J.; Han, M.-W. Origami and Kirigami Structure for Impact Energy Absorption: Its Application to Drone Guards. Sensors 2023, 23, 2150. https://doi.org/10.3390/s23042150
Park C-Y, Lee Y-A, Jang J, Han M-W. Origami and Kirigami Structure for Impact Energy Absorption: Its Application to Drone Guards. Sensors. 2023; 23(4):2150. https://doi.org/10.3390/s23042150
Chicago/Turabian StylePark, Chan-Young, Yoon-Ah Lee, Jinwoo Jang, and Min-Woo Han. 2023. "Origami and Kirigami Structure for Impact Energy Absorption: Its Application to Drone Guards" Sensors 23, no. 4: 2150. https://doi.org/10.3390/s23042150