A NARX Model-Based Condition Monitoring Method for Rotor Systems
Abstract
:1. Introduction
2. The NARX Model and NRSFs of a Nonlinear System
2.1. The NARX Model of a Nonlinear System
2.2. The NRSFs Representation of Nonlinear System
3. Condition Monitoring Method for Rotor Systems
3.1. Problem Statement
3.2. Solution of Existing Problems
3.3. Condition Monitoring Procedure
4. Experimental Study
4.1. The Misaligned Rotor System Experiment
4.2. Comparison to the Traditional Method
5. Conclusions
- (1)
- NRSF-based methods are more suitable for situations where the prior conditions are insufficient and the fault characteristics are unknown since they do not have to consider the truncation order of NOFRF;
- (2)
- The NFI values at four misalignment levels were 0.076, 0.21, 0.25, and 0.45, which have a monotonic trend with the severity of the misaligned fault validating the proposed method’s efficiency over the second harmonic method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Wang, X.; Liu, R.; Wang, B. Influence of temperature on nonlinear dynamic characteristics of spiral-grooved gas-lubricated thrust bearing-rotor systems for microengine. Tribol. Int. 2013, 61, 138–143. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Q.; Fu, D.; Zhang, H. Study on adaptive torsional vibration suppression methods for helicopter/turboshaft engine system with variable rotor speed. Asian J. Control 2021, 23, 1490–1502. [Google Scholar] [CrossRef]
- Misté, G.A.; Garavello, A.; Benini, E.; Gonzalez-Alcoy, M. A Methodology for Determining the Optimal Rotational Speed of a Variable RPM Main Rotor/Turboshaft Engine System. J. Am. Helicopter Soc. 2015, 60, 1–11. [Google Scholar] [CrossRef]
- Yao, H.; Han, Q.; Li, L.; Wen, B. Detection of rubbing location in rotor system by super-harmonic responses. J. Mech. Sci. Technol. 2012, 26, 2431–2437. [Google Scholar] [CrossRef]
- Zhang, W.; Meng, G.; Chen, D.; Zhou, J.; Chen, J. Nonlinear dynamics of a rub-impact micro-rotor system with scale-dependent friction model. J. Sound Vib. 2008, 309, 756–777. [Google Scholar] [CrossRef]
- Hua, C.; Rao, Z.; Ta, N.; Zhu, Z. Nonlinear dynamics of rub-impact on a rotor-rubber bearing system with the Stribeck friction model. J. Mech. Sci. Technol. 2015, 29, 3109–3119. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Hou, L.; Zhang, Z. Periodic response analysis of a misaligned rotor system by harmonic balance method with alternating frequency/time domain technique. Sci. China Technol. Sci. 2016, 59, 1717–1729. [Google Scholar] [CrossRef]
- Patel, T.H.; Darpe, A.K. Experimental investigations on vibration response of misaligned rotors. Mech. Syst. Signal Process. 2009, 23, 2236–2252. [Google Scholar] [CrossRef]
- Sekhar, A.S.; Prabhu, B.S. Effects of coupling misalignment on vibrations of rotating machinery. J. Sound Vib. 1995, 185, 655–671. [Google Scholar] [CrossRef]
- Peng, Z.K.; Lang, Z.Q.; Billings, S.A. Crack detection using nonlinear output frequency response functions. J. Sound Vib. 2007, 301, 777–788. [Google Scholar] [CrossRef]
- Xiang, L.; Gao, X.; Hu, A. Nonlinear dynamics of an asymmetric rotor-bearing system with coupling faults of crack and rub-impact under oil-film forces. Nonlinear Dyn. 2016, 86, 1057–1067. [Google Scholar] [CrossRef]
- Cheng, C.M.; Peng, Z.K.; Zhang, W.M.; Meng, G. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review. Mech. Syst. Signal Process. 2017, 87, 340–364. [Google Scholar]
- Liu, Y.; Zhao, Y.L.; Li, J.T.; Lu, H.H.; Ma, H. Feature extraction method based on NOFRFs and its application in faulty rotor system with slight misalignment. Nonlinear Dyn. 2020, 99, 1763–1777. [Google Scholar] [CrossRef]
- Lu, H.; Feng, K.; Liang, H.; Liu, Y.; Li, J.; Zhao, Y. An improved NOFRFs-based fault feature extraction method and its application to quantitative diagnosis in rotor rub-impact. J. Sound Vib. 2021, 513, 116406. [Google Scholar] [CrossRef]
- Peng, Z.K.; Lang, Z.Q.; Wolters, C.; Billings, S.A.; Worden, K. Feasibility study of structural damage detection using NARMAX modelling and Nonlinear Output Frequency Response Function based analysis. Mech. Syst. Signal Process. 2011, 25, 1045–1061. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, L.; Song, H.; Lin, R.; Jin, Y.; Chen, Y. Nonlinear dynamics analysis of a dual-rotor-bearing-casing system based on a modified HB-AFT method. Mech. Syst. Signal Process. 2023, 185, 109805. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, Z.; Liu, H.P.; Zhu, Y.P. The NRSF-SVM based method for nonlinear rotor bearing fault diagnosis. In Proceedings of the 30th Chinese Control and Decision Conference, Shenyang, China, 9–11 June 2018. [Google Scholar]
- Billings, S.A. Nonlinear System Identification: NARMAX Methods Nonlinear System Dentification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains; John Wiley and Sons: Chichester, UK, 2013; pp. 337–367. [Google Scholar]
- Leonyaritis, I.J.; Billings, S.A. Input-output parametric models for non-linear systems Part I: Deterministic non-linear systems. Int. J. Control 1985, 41, 303–328. [Google Scholar] [CrossRef]
- Ge, X.; Luo, Z.; Ma, Y.; Liu, H.P.; Zhu, Y.P. A novel data-driven model based parameter estimation of nonlinear systems. J. Sound Vib. 2019, 453, 188–200. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Zhu, Y.; Wang, F.; Luo, Z. The NARX Model-Based System Identification on Nonlinear, Rotor-Bearing Systems. Appl. Sci. 2017, 7, 911. [Google Scholar] [CrossRef]
- Worden, K.; Manson, G.; Tomlinson, G.R. A Harmonic Probing Algorithm for The Multi-input Volterra Series. J. Sound Vib. 1997, 201, 67–84. [Google Scholar] [CrossRef]
- Peng, Z.k.; Lang, Z.Q. The Nonlinear Output Frequency Response Functions of One-Dimensional Chain Type Structures. J. Appl. Mech. 2010, 77, 1007. [Google Scholar] [CrossRef]
- Peng, Z.K.; Lang, Z.Q.; Billings, S.A. Analysis of Locally Nonlinear MDOF Systems Using Nonlinear Output Frequency Response Functions. J. Vib. Acoust. 2009, 131, 051007. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Y.; Lang, Z.Q.; Liu, Z.; Liu, Y. On-line Rotor Systems Condition Monitoring Using Nonlinear Output Frequency Response Functions under Harmonic Excitations. IEEE Trans. Ind. Inform. 2022, 18, 6798–6808. [Google Scholar] [CrossRef]
- Li, Y.Q.; Luo, Z.; He, F.X.; Zhu, Y.P.; Ge, X.B. Modeling of rotating machinery: A novel frequency sweep system identification approach. J. Sound Vib. 2021, 494, 115882. [Google Scholar] [CrossRef]
- Chen, S.; Chng, E.S.; Alkadhimi, K. Regularized orthogonal least squares algorithm for constructing radial basis function networks. Int. J. Control 1996, 64, 829–837. [Google Scholar] [CrossRef]
- Gu, Y.; Wei, H.L.; Balikhin, M.M. Nonlinear predictive model selection and model averaging using information criteria. Syst. Sci. Control Eng. 2018, 6, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Combet, F.; Gelman, L. An automated methodology for performing time synchronous averaging of a gearbox signal without speed sensor. Mech. Syst. Signal Process. 2007, 21, 2590–2606. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.S.; Zhu, Y.P.; Luo, H.T.; Luo, Z. Structural damage detection of spacecraft equipment based on data driven modelling and nonlinear output frequency response function. In Proceedings of the 2022 4th International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 24–27 August 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Yu, C.; Zhu, Y.-P.; Luo, Z. A NARX Model-Based Condition Monitoring Method for Rotor Systems. Sensors 2023, 23, 6878. https://doi.org/10.3390/s23156878
Gao Y, Yu C, Zhu Y-P, Luo Z. A NARX Model-Based Condition Monitoring Method for Rotor Systems. Sensors. 2023; 23(15):6878. https://doi.org/10.3390/s23156878
Chicago/Turabian StyleGao, Yi, Changshuai Yu, Yun-Peng Zhu, and Zhong Luo. 2023. "A NARX Model-Based Condition Monitoring Method for Rotor Systems" Sensors 23, no. 15: 6878. https://doi.org/10.3390/s23156878