A Simple Laser-Induced Breakdown Spectroscopy Method for Quantification and Classification of Edible Sea Salts Assisted by Surface-Hydrophilicity-Enhanced Silicon Wafer Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Salt Samples and ICP-OES Analysis
2.2. LIBS Analysis
3. Results and Discussion
3.1. Quantification of Mg and Ca
3.2. Classification Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurlansky, M. Salt A World History; Walker and Co.: New York, NY, USA, 2002. [Google Scholar]
- Drake, S.L.; Drake, M.A. Comparison of salty taste and time intensity of sea and land salts from around the world. J. Sens. Stud. 2011, 26, 25–34. [Google Scholar] [CrossRef]
- Atkinson, M.J.; Bingman, C. Elemental composition of commercial sea salts. J. Aquaric. Aquat. Sci. 1997, 8, 39–43. [Google Scholar]
- Herrador, M.A.; Gonzalez, G.A.; Asuero, A.G. Inorganic indicators of the origin of edible salts marketed in Spain from a chemometric approach. J. Food Prot. 1998, 61, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Glavis-Sánchez, A.C.; Lopes, J.A.; Delgadillo, I.; Rangel, A.O.S.S. Fourier transform near-infrared spectroscopy application for sea salt quality evaluation. J. Agric. Food Chem. 2011, 59, 11109–11116. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Ham, K.-S.; Han, S.-H.; Yoo, J.; Jeong, S. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra. Spectrochim. Acta Part B 2014, 101, 57–67. [Google Scholar] [CrossRef]
- Singh, V.K.; Rai, N.K.; Pandhija, S.; Rai, A.K.; Pai, P.K. Investigation of Common Indian edible Salts Suitable for Kidney Disease by Laser Induced Breakdown Spectroscopy. Lasers Med. Sci. 2009, 24, 917–924. [Google Scholar] [CrossRef]
- Ramaswamy, K.; Killilea, D.W.; Kapahi, P.; Kahn, A.J.; Chi, T.; Stoller, M.L. The Elementome of Calcium-Based Unitary Stones and its Role in Urolithiasis. Nat. Rev. Urol. 2015, 12, 543–557. [Google Scholar] [CrossRef]
- Houston, M.C.; Harper, K.J. Potassium, Magnesium, and Calcium: Their Role in Both the Causes and Treatment of Hypertension. J. Clin. Hypertens. 2008, 10, 3–11. [Google Scholar] [CrossRef]
- Miller, G.D.; Anderson, J.J.B. The Role of Calcium in Prevention of Chronic Disease. J. Am. Coll. Nutr. 1999, 18, 371S–372S. [Google Scholar] [CrossRef]
- Heller, H.J. The Role of Calcium in the Prevention of Kidney Stones. J. Am. Coll. Nutr. 1999, 18, 373S–378S. [Google Scholar] [CrossRef]
- Gao, T.-C.; Cho, J.-Y.; Feng, L.-Y.; Chanmuang, S.; Park, S.-Y.; Ham, K.-S.; Auh, C.-K.; Pai, T.-K. Mineral-Rich Solar Sea Salt Generates Less Oxidative Stress in Rats than Mineral-Deficient Salt. Food Sci. Biotechnol. 2014, 23, 951–956. [Google Scholar] [CrossRef]
- Ju, J.; Song, J.-L.; Park, E.-S.; Do, M.-S.; Park, K.-Y. Korean Solar Salts Reduce Obesity and Alter its Related Markers in Diet-Induced Obese Mice. Nutr. Res. Pract. 2016, 10, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.P.V.; Engel, M.E.; Mangrum, J.P.; Jackson, G.P. Origin determination of eastern oyster (Crassostrea virginica) using a combination of whole-body compound specific isotope analysis and heavy metal analysis. Anal. Methods 2021, 13, 3493–3503. [Google Scholar] [CrossRef]
- Zhou, P.; Li, Z.; Ouyang, L.; Gong, X.; Meng, P.; Dai, M.; Wang, Z.; Wang, Y. A multi-element stable isotope approach coupled with chemometrics for the determination of Tieguanyin tea geographical origin and harvest season. Anal. Method 2019, 11, 346–352. [Google Scholar] [CrossRef]
- Cui, L.-L.; Chen, H.; Chen, Z.-P.; Yuan, Y.-W.; Han, S.-L.; Fu, Y.-N.; Hou, H.-W.; Hu, Q.-Y. Geographical origin classification of tobacco by stable isotope and multi-elemental analysis in combination with chemometric methods. Microchem. J. 2023, 193, 109136. [Google Scholar] [CrossRef]
- Fortes, F.J.; Moros, J.; Lucena, P.; Cabalín, L.M.; Laserna, J.J. Laser-induced breakdown spectroscopy. Anal. Chem. 2013, 85, 640–669. [Google Scholar] [CrossRef]
- Russo, R.E.; Mao, X.; Gonzalez, J.J.; Zorba, V.; Yoo, J. Laser ablation in analytical chemistry. Anal. Chem. 2013, 85, 6162–6177. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012, 66, 347–479. [Google Scholar] [CrossRef]
- Kim, H.; Ngo, V.T.; Kumar, S.; Lee, W.B.; Park, J.; Han, S.-H.; Nam, S.-H.; Ham, K.-S.; Lee, Y. Laser-induced breakdown spectroscopy for rapid accurate analysis of Mg, Ca, and K in edible sea salts. Appl. Opt. 2019, 58, 9940–9948. [Google Scholar] [CrossRef]
- Tognoni, E.; Palleschi, V.; Corsi, M.; Cristoforetti, G.; Omenetto, N.; Gornushkin, I.; Smith, B.W.; Winefordner, J.D. From sample to signal in laser-induced breakdown spectroscopy: A complex route to quantitative analysis. In Laser Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications, 1st ed.; Miziolek, A.W., Palleschi, V., Schechter, I., Eds.; Cambridge University Press: New York, NY, USA, 2006; p. 166. [Google Scholar]
- Bae, D.; Nam, S.-H.; Han, S.-H.; Yoo, J.; Lee, Y. Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 2015, 113, 70–78. [Google Scholar] [CrossRef]
- Rajavelu, H.; Vasa, N.J.; Seshadri, S. LIBS technique combined with blow gas and vacuum suction to remove particle cloud and enhance emission intensity during characterization of powder samples. Spectrochim. Acta Part B 2021, 181, 106215. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Tools and Techniques; Elsevier Inc.: Burlington, MA, USA, 2011; p. 137. [Google Scholar]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- IUPAC Gold Book, Pooled Standard Deviation. Available online: https://goldbook.iupac.org/terms/view/P04758 (accessed on 24 February 2014).
Sample Code | Origin | Type | Concentration (ppm) | |
---|---|---|---|---|
Mg | Ca | |||
A | Australia | Sea salt | 75.57 ± 0.17 | 363.5 ± 4.7 |
C1 | Jiangsu, China | Refined salt | Not detected | 134.2 ± 2.4 |
C2 | Shandong, China | Sea salt | 3487 ± 10 | 1701 ± 22 |
K1 | Goheung, South Korea | Sea salt | 15,110 ± 230 | 1540.6 ± 9.5 |
K2 | Sinan, South Korea | Sea salt | 7166 ± 95 | 2210 ± 25 |
V | Ho Chi Minh, Vietnam | Sea salt | 22,650 ± 120 | 2092 ± 25 |
Element | Variable | RSD (%) | RMSE (mg/kg) |
---|---|---|---|
Mg | IMg | 23.1 | 1300 |
IMg/ITot | 19.3 | 1700 | |
IMg/INa | 15.2 | 1300 | |
Ca | ICa | 34.2 | 370 |
ICa/ITot | 30.7 | 410 | |
ICa/INa | 23.1 | 390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.-B.; Moon, S.-H.; Kim, H.; Guthikonda, N.; Ham, K.-S.; Han, S.-H.; Nam, S.-H.; Lee, Y.-H. A Simple Laser-Induced Breakdown Spectroscopy Method for Quantification and Classification of Edible Sea Salts Assisted by Surface-Hydrophilicity-Enhanced Silicon Wafer Substrates. Sensors 2023, 23, 9280. https://doi.org/10.3390/s23229280
Choi H-B, Moon S-H, Kim H, Guthikonda N, Ham K-S, Han S-H, Nam S-H, Lee Y-H. A Simple Laser-Induced Breakdown Spectroscopy Method for Quantification and Classification of Edible Sea Salts Assisted by Surface-Hydrophilicity-Enhanced Silicon Wafer Substrates. Sensors. 2023; 23(22):9280. https://doi.org/10.3390/s23229280
Chicago/Turabian StyleChoi, Han-Bum, Seung-Hyun Moon, Hyang Kim, Nagaraju Guthikonda, Kyung-Sik Ham, Song-Hee Han, Sang-Ho Nam, and Yong-Hoon Lee. 2023. "A Simple Laser-Induced Breakdown Spectroscopy Method for Quantification and Classification of Edible Sea Salts Assisted by Surface-Hydrophilicity-Enhanced Silicon Wafer Substrates" Sensors 23, no. 22: 9280. https://doi.org/10.3390/s23229280
APA StyleChoi, H.-B., Moon, S.-H., Kim, H., Guthikonda, N., Ham, K.-S., Han, S.-H., Nam, S.-H., & Lee, Y.-H. (2023). A Simple Laser-Induced Breakdown Spectroscopy Method for Quantification and Classification of Edible Sea Salts Assisted by Surface-Hydrophilicity-Enhanced Silicon Wafer Substrates. Sensors, 23(22), 9280. https://doi.org/10.3390/s23229280