Thiran Filters for Wideband DSP-Based Multi-Beam True Time Delay RF Sensing Applications
Abstract
:1. Introduction
1.1. Review: Fractional Delay Filters
1.2. Wideband Beamformer Structure
1.3. Contribution of the Paper
1.4. Organization of the Paper
2. Review: Analog DVM Beamformers
3. Digital DVM Beamfomers Using Thiran Filters
4. A Fast DVM Algorithm for Thiran Fractional Delays
Algorithm 1 ddvm |
|
4.1. Arithmetic Complexity of the DVM Algorithm
4.2. Comparison Results for the Arithmetic Complexities of DVM Algorithms
5. Thiran Fractional Delays for Twiddle Filter Realization
5.1. Analog RC Lattice APFs
5.2. Digital Fractional Delay APFs
5.3. Thiran IIR Filter Blocks
5.4. Higher-Order Thiran APFs
6. Simulation of Thiran Fractional Delays
Phase Responses and Group Delay Profiles of Thiran Filters
7. SFGs for the Fast Digital DVM Algorithm Using Thiran Fractional Delays
7.1. An Point DVM with Thiran Twiddle-Filters
7.2. An Point DVM with Thiran Twiddle-Filters
7.3. Preliminary FPGA Digital Hardware Architectures
7.3.1. FPGA Realization of Thiran Filter Blocks
7.3.2. Synthesis and Mapping to FPGA Fabric
7.3.3. Post Place Route Timing
8. Future Work
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
DVM | |
ADC | Analog to digital converter |
APF | All-pass filter |
ASIC | Application-specific integrated circuit |
AWGN | Additive white Gaussian noise |
CMOS | Complementary metal-oxide semiconductor |
Complex Laplace variable | |
Complex z-variable | |
Complex polynomial of order | |
CLB | Configurable logic block |
Critical path delay | |
DAC | Digital to analog converter |
Delay (integer and fractional parts) | |
DFT | Discrete Fourier transform |
Digital integer delays at node i | |
Digital fractional delay at node i | |
DSP | Digital signal processing |
DOA | Directions of Arrival |
Discrete-time APF | |
DVM | Delay Vandemonde matrix |
FFT | Fast Fourier transform |
FPGA | Field programmable gate array |
FIFO | first in first out |
FIR | Finite impulse response |
IIR | Infinite impulse response |
Input vector or signals to DVM | x |
Latency of addition/subtraction core | |
Latency of multiplier core | |
LNA | Low noise amplifier |
LPF | Low pass filter |
LUT | Look-up table |
Nodes of DVM | |
Number of APFs in cascade | M |
Order of i-th APF | |
Order of DVM | |
Output vectors or beamformed signals | y |
Phase function at | |
Phase rotation | |
RF | Radio frequency |
RAM | Random access memory |
Sampling period | |
SFG | Signal flow graph |
SNR | Signal-to-noise ratio |
Smallest fractional delay | |
SoC | System on chip |
Temporal frequency | |
The i-th node in the SFG | i |
Thiran APF at node i | |
Time delay at node i | |
TTD | True time delay |
Twiddle Filter at node i | |
VLSI | Very large scale integration |
References
- Dalrymple, T.; Buck, J.; Buxa, P.; McCann, J.; Neidhard, R.; Scalzi, G.; Shreffler, C.; Spendley, D.; Watson, P. Transformational Element Level Arrays (TELA) Testbed (Preprint). 2007, p. 27. Available online: https://api.semanticscholar.org/CorpusID:107691946 (accessed on 28 December 2023).
- Fulton, C.; Yeary, M.; Thompson, D.; Lake, J.; Mitchell, A. Digital Phased Arrays: Challenges and Opportunities. Proc. IEEE 2016, 104, 487–503. [Google Scholar] [CrossRef]
- Hoffmann, T.; Fulton, C.; Yeary, M.; Saunders, A.; Thompson, D.; Murmann, B.; Chen, B.; Guo, A. IMPACT—A common building block to enable next generation radar arrays. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Hu, Z.; Guo, N.; Qiu, R.; Bonior, J.; Liou, L.; Lin, D.; Longbrake, M.; Buxa, P.; Dalrymple, T.; Hary, S.; et al. Robust wideband beamforming. In Proceedings of the IEEE 2010 National Aerospace & Electronics Conference, Dayton, OH, USA, 14–16 July 2010; pp. 60–64. [Google Scholar] [CrossRef]
- Hu, Z.; Guo, N.; Qiu, R.; Bonior, J.; Liou, L.; Lin, D.; Longbrake, M.; Buxa, P.; Dalrymple, T.; Hong, S.; et al. Deisgn of look-up table based architecture for wideband beamforming. In Proceedings of the 2010 International Waveform Diversity and Design Conference, Niagara Falls, ON, Canada, 8–13 August 2010; pp. 000001–000005. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, F.; Shi, J.; He, J.; Truong, T.K. 2D-DOA Estimation for Coherent Signals via a Polarized Uniform Rectangular Array. IEEE Signal Process. Lett. 2023, 30, 893–897. [Google Scholar] [CrossRef]
- Perera, S.; Ariyarathna, V.; Udayanga, N.; Madanayake, A.; Wu, G.; Belostotski, L.; Cintra, R.; Rappaport, T. Wideband N-beam Arrays with Low-Complexity Algorithms and Mixed-Signal Integrated Circuits. IEEE J. Sel. Top. Signal Process. 2018, 12, 368–382. [Google Scholar] [CrossRef]
- Ariyarathna, V.; Udayanga, N.; Madanayake, A.; Perera, S.M.; Belostotski, L.; Cintra, R. Design methodology of an analog 9-beam squint-free wideband IF multi-beamformer for mmW applications. In Proceedings of the IEEE 2017 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 29–31 May 2017; pp. 236–241. [Google Scholar] [CrossRef]
- Perera, S.M.; Madanayake, A.; Cintra, R. Efficient and Self-Recursive Delay Vandermonde Algorithm for Multi-beam Antenna Arrays. IEEE Open J. Signal Process. 2020, 1, 64–76. [Google Scholar] [CrossRef]
- Perera, S.M.; Madanayake, A.; Cintra, R. Radix-2 Self-recursive Algorithms for Vandermonde-type Matrices and True-Time-Delay Multi-Beam Antenna Arrays. IEEE Access 2020, 8, 25498–25508. [Google Scholar] [CrossRef]
- Perera, S.M.; Lingsch, L.; Madanayake, A.; Mandal, S.; Mastronardi, N. A Fast DVM Algorithm for Wideband Time-Delay Multi-Beam Beamformers. IEEE Trans. Signal Process. 2022, 70, 5913–5925. [Google Scholar] [CrossRef]
- Laakso, T.; Valimaki, V.; Karjalainen, M.; Laine, U. Splitting the unit delay [FIR/all pass filters design]. IEEE Signal Process. Mag. 1996, 13, 30–60. [Google Scholar] [CrossRef]
- Cain, G.; Murphy, N.; Tarczynski, A. Evaluation of several variable FIR fractional-sample delay filters. In Proceedings of the ICASSP ’94. IEEE International Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia, 19–22 April 1994; Volume 3, pp. III/621–III/624. [Google Scholar] [CrossRef]
- Pei, S.C.; Tseng, C.C. An efficient design of a variable fractional delay filter using a first-order differentiator. IEEE Signal Process. Lett. 2003, 10, 307–310. [Google Scholar] [CrossRef]
- Pei, S.C.; Wang, P.H. Closed-form design of allpass fractional delay filters. In Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, FL, USA, 13–17 May 2002; Volume 2, pp. II–1561–II–1564. [Google Scholar] [CrossRef]
- Johansson, H.; Lowenborg, P. Reconstruction of nonuniformly sampled bandlimited signals by means of digital fractional delay filters. IEEE Trans. Signal Process. 2002, 50, 2757–2767. [Google Scholar] [CrossRef]
- Tseng, C.C. Design of FIR and IIR Fractional Order Simpson Digital Integrators. Signal Process. 2007, 87, 1045–1057. [Google Scholar] [CrossRef]
- Olkkonen, T.J.; Olkkonen, H. Complex Hilbert Transform Filter. J. Signal Inf. Process. 2011, 2, 112–116. [Google Scholar] [CrossRef]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comp. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Yavne, R. An economical method for calculating the discrete fourier transform. In AFIPS ’68 (Fall, Part I): Proceedings of the December 9–11, 1968, Fall Joint Computer Conference, Part I; Association for Computing Machinery: New York, NY, USA, 1968; pp. 115–125. [Google Scholar] [CrossRef]
- Johnson, S.G.; Frigo, M. A modified split-radix fft with fewer arithmetic operations. IEEE Trans. 2007, 55, 111–119. [Google Scholar] [CrossRef]
- Oruc, H.; Phillips, G.M. Explicit factorization of the Vandermonde matrix. Linear Algebra Its Appl. 2000, 315, 113–123. [Google Scholar] [CrossRef]
- Oruc, H.; Akmaz, H.K. Symmetric functions and the Vandermonde matrix. J. Comput. Appl. Math. 2004, 172, 49–64. [Google Scholar] [CrossRef]
- Yang, S.L. On the LU factorization of the Vandermonde matrix. Discret. Appl. Math. 2005, 146, 102–105. [Google Scholar] [CrossRef]
- Gohberg, I.; Olshevsky, V. Complexity of multiplication with vectors for structured matrices. Linear Algebra Appl. 1994, 202, 163–192. [Google Scholar] [CrossRef]
- Gohberg, I.; Olshevsky, V. Fast algorithms with preprocessing for matrix-vector multiplication problems. J. Complex. 1994, 10, 411–427. [Google Scholar] [CrossRef]
- Pan, V.Y. Fast approximate computations with Cauchy matrices and polynomials. Math. Comput. 2017, 86, 2799–2826. [Google Scholar] [CrossRef]
- Boleya, D.L.; Luk, F.T.; Vandevoorde, D. A fast method to diagonalize a Hankel matrix. Linear Algebra Its Appl. 1998, 284, 41–52. [Google Scholar] [CrossRef]
- Backstrom, T. Vandermonde factorization of Toeplitz matrices and applications in filtering and warping. IEEE Trans. Signal Process. 2013, 61, 6257–6263. [Google Scholar] [CrossRef]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson/Prentice Hall Upper: Saddle River, NJ, USA, 2005. [Google Scholar]
- Backstrom, T.; Fischer, J.; Boley, D. Implementation and evaluation of the Vandermonde transform. In Proceedings of the in 2014 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014. [Google Scholar]
- Strang, G. Introduction to Applied Mathematics; SIAM, Wesley-Cambridge Press: Philadelphia, PA, USA, 1986. [Google Scholar]
- Loan, C.V. Computational Frameworks for the Fast Fourier Transform; SIAM Publications: Philadelphia, PA, USA, 1992. [Google Scholar]
- Golub, G.; Loan, C.V. Matrix Computations, 4th ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Rao, K.R.; Kim, D.; Hwang, J.J. Fast Fourier Transform: Algorithm and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Blahut, R.E. Fast Algorithms for Signal Processing; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Kailath, T.; Olshevsky, V. Displacement structure approach to polynomial Vandermonde and related matrices. Linear Algebra Appl. 1997, 261, 49–90. [Google Scholar] [CrossRef]
- Pan, V.Y. Structured Matrices and Polynomials: Unified Superfast Algorithms; Birkhauser: Boston, MA, USA, 2001. [Google Scholar]
- Parker, F. Inverses of Vandermonde matrices. Am. Math. Mon. 1964, 71, 410–411. [Google Scholar] [CrossRef]
- Björck, A.; Pereyra, V. Solution of Vandermonde systems of equations. Math. Comp. 1970, 24, 893–903. [Google Scholar] [CrossRef]
- Reichel, L.; Opfer, G. Chebyshev-Vandermonde systems. Math. Comput. 1991, 57, 703–721. [Google Scholar] [CrossRef]
- Bella, T.; Eidelman, Y.; Gohberg, I.; Koltracht, I.; Olshevsky, V. A Björck-Pereyra-type algorithm for Szegö-Vandermonde matrices based on properties of unitary Hessenberg matrices. Linear Algebra Appl. 2007, 420, 634–647. [Google Scholar] [CrossRef]
- Bella, T.; Eidelman, Y.; Gohberg, I.; Koltracht, I.; Olshevsky, V. A fast bjorck-pereyra-type algorithm for solving hessenberg-quasiseparable-vandermonde systems. SIAM J. Matrix Anal. Appl. 2009, 31, 790–815. [Google Scholar] [CrossRef]
- Perera, S.M. Quasiseparable Approach to Matrices of Vandermonde Type. Ph.D. Thesis, University of Connecticut, Storrs, CT, USA, 2012. [Google Scholar]
- Perera, S.M.; Madanayake, A.; Ogle, A.; Silverio, D.; Qi, J. A Fast Algorithm to Solve Delay Vandermonde Systems in Phased-Array Digital Receivers. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2288–2297. [Google Scholar] [CrossRef]
- Demmel, J.; Koev, P. The Accurate and Efficient Solution of a Totally Positive Generalized Vandermonde Linear System. SIAM J. Matrix Anal. Appl. 2005, 27, 142–152. [Google Scholar] [CrossRef]
- Olshevsky, V. Fast Algorithms for Structured Matrices: Theory and Applications. In Contemporary Mathematics; SIAM: Philadelphia, PA, USA, 2003; Volume 323. [Google Scholar]
- Wijenayake, C.; Madanayake, A.; Xu, Y.; Belostotski, L.; Bruton, L.T. A Steerable DC-1 GHz all-pass filter-Sum RF space-time 2-D beam filter in 65 nm CMOS. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS 2013), Beijing, China, 19–23 May 2013; pp. 1276–1279. [Google Scholar] [CrossRef]
- Ahmadi, P.; Maundy, B.; Elwakil, A.S.; Belostotski, L.; Madanayake, A. A New Second-Order All-Pass Filter in 130-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 249–253. [Google Scholar] [CrossRef]
- Steiner, K.A.; Yeary, M.B. A 1.6-GHz Sub-Nyquist-Sampled Wideband Beamformer on an RFSoC. IEEE Trans. Radar Syst. 2023, 1, 308–317. [Google Scholar] [CrossRef]
- Parhi, K.K. VLSI Digital Signal Processing Systems: Design and Implementation; Wiley-Interscience: Hoboken, NJ, USA, 1999. [Google Scholar]
- Pulipati, S.; Ariyarathna, V.; Silva, U.D.; Akram, N.; Alwan, E.; Madanayake, A.; Mandal, S.; Rappaport, T.S. A Direct-Conversion Digital Beamforming Array Receiver with 800 MHz Channel Bandwidth at 28 GHz using Xilinx RF SoC. In Proceedings of the 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel Aviv, Israel, 4–6 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Akram, N.; Madanayake, A.; Venkatakrishnan, S.B.; Volakis, J.L.; Psychogiou, D.; Marzetta, T.L.; Rappaport, T.S. Massive-MIMO and Digital mm-Wave Arrays on RF-SoCs using FDM for M-Fold Increase in Antennas per ADC/DAC. In Proceedings of the 2021 IEEE Space Hardware and Radio Conference (SHaRC), San Diego, CA, USA, 17–22 January 2021; pp. 25–27. [Google Scholar] [CrossRef]
- Akram, N.; Madanayake, A.; Pulipati, S.; Ariyarathna, V.; Venkatakrishnan, S.B.; Psychogiou, D.; Volakis, J.; Rappaport, T.S.; Marzetta, T.L. Frequency-Multiplexed Array Digitization for MIMO Receivers: 4-Antennas/ADC at 28 GHz on Xilinx ZCU-1285 RF SoC. IEEE Access 2021, 9, 142743–142753. [Google Scholar] [CrossRef]
Order | Site Type | Used | Available | Util % |
---|---|---|---|---|
3 | CLB LUTs | 418 | 425,280 | 0.10 |
LUT as Logic | 410 | 425,280 | 0.10 | |
LUT as Memory | 8 | 213,600 | <0.01 | |
LUT as Distributed RAM | 0 | |||
LUT as Shift Register | 8 | |||
CLB Registers | 158 | 850,560 | 0.02 | |
Registers as Flip Flop | 158 | 850,560 | 0.02 | |
Registers as Latch | 0 | 850,560 | 0.00 | |
CARRY8 | 51 | 53,160 | 0.10 | |
4 | CLB LUTs | 487 | 425,280 | 0.11 |
LUT as Logic | 471 | 425,280 | 0.11 | |
LUT as Memory | 16 | 213,600 | <0.01 | |
LUT as Distributed RAM | 0 | |||
LUT as Shift Register | 16 | |||
CLB Registers | 182 | 850,560 | 0.02 | |
Registers as Flip Flop | 182 | 850,560 | 0.02 | |
Registers as Latch | 0 | 850,560 | 0.00 | |
CARRY8 | 70 | 53,160 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera, S.M.; Rathnasekara, G.; Madanayake, A. Thiran Filters for Wideband DSP-Based Multi-Beam True Time Delay RF Sensing Applications. Sensors 2024, 24, 576. https://doi.org/10.3390/s24020576
Perera SM, Rathnasekara G, Madanayake A. Thiran Filters for Wideband DSP-Based Multi-Beam True Time Delay RF Sensing Applications. Sensors. 2024; 24(2):576. https://doi.org/10.3390/s24020576
Chicago/Turabian StylePerera, Sirani M., Gayani Rathnasekara, and Arjuna Madanayake. 2024. "Thiran Filters for Wideband DSP-Based Multi-Beam True Time Delay RF Sensing Applications" Sensors 24, no. 2: 576. https://doi.org/10.3390/s24020576