Examining the Effects of Altitude on Workload Demands in Professional Basketball Players during the Preseason Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Variables
- Locomotion: This represents the displacements realized by the players, and it was measured in meters/minute—relative distance (RD)—and at different intensities (walking, 0–6 km/h; jogging, 6–12 km/h; running, 12–18 km/h; high-intensity running (HIR), 18–21 km/h; sprinting, 21–24 km/h; and maximum sprinting, >24 km/h).
- Speed and speed changes: This represents the velocity of displacements and the positive and negative changes on them. The velocity of displacements was measured in km/h with two variables: average speed (SpeedAVG) and maximum speed (SpeedMAX). On the other hand, speed changes were measured by total accelerations (TAcc) and decelerations (TDec), in counts/min; maximum acceleration (AccMAX) and deceleration (DecMAX), in m/s2; and relative distance covered in acceleration (RDAcc) and deceleration (RDDec), in meters/minute. The threshold to detect accelerations and decelerations was positive or negative changes in speed of 0.1 m/s2, respectively.
- Neuromuscular load: This represents the impact of displacements on the muscle body concerning the force of gravity. The measured variables were as follows: Player load, measured by RealTrack Systems (PLRT) in a.u./min; total impacts and at different intensities (low, 0–3 g; moderate, 3–5 g; high, 5–8 g; very high, >8 g); and steps and jumps, in counts/min. PLRT was represented in arbitrary units (a.u.) and was calculated directly by the manufacturer’s software (SPROTM, version 989, RealTrack Systems, Almeria, Spain) using the following equation, at a sampling frequency of 100 Hz, where PLn is the PL calculated at the current instant in time; n is the current instant in time; n − 1 is the previous instant in time; Xn, Yn, and Zn are the values of body load in each axis of movement at the current time; and Xn−1, Yn−1, and Zn−1 are the values of body load in each axis of movement at the previous instant in time [27]:
- Heart rate telemetry: This represents the physiological effect of external load. It was measured by maximum heart rate (HRMAX) and mean heart rate (HRAVG) in beats per minute (bpm), as well as in the percentage of time spent at different intensities (very low, 50–60% HRMAX; low, 60–70% HRMAX; moderate, 70–80% HRMAX; high, 80–90% HRMAX; very high, 90–95% HRMAX; and maximum, 95–100% HRMAX). Data were extracted at the end of each session. To determine individual HRMAX percentages, each player’s HRMAX was established using previously gathered data from laboratory evaluations conducted under the supervision of the medical team staff before the start of the assessment.
2.4. Equipment
2.5. Procedures
2.6. Data Analysis
3. Results
3.1. Effects of Altitude on Internal and External Workload Demands
3.2. Combined Effect of Altitude and Playing Position
3.3. Specific Effects of Altitude by Playing Position
4. Discussion
4.1. Effects of Altitude on Internal and External Workload
4.2. Specific Demands between Playing Positions
4.3. Limitations
5. Conclusions and Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petway, A.J.; Freitas, T.T.; Calleja-González, J.; Leal, D.M.; Alcaraz, P.E. Training Load and Match-Play Demands in Basketball Based on Competition Level: A Systematic Review. PLoS ONE 2020, 15, e0229212. [Google Scholar] [CrossRef]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity Demands and Physiological Responses Encountered During Basketball Match-Play: A Systematic Review. Sports Med. 2018, 48, 111–135. [Google Scholar] [CrossRef]
- O’Grady, C.J.; Fox, J.L.; Dalbo, V.J.; Scanlan, A.T. A systematic review of the external and internal workloads experienced during games-based drills in basketball players. Int. J. Sports Physiol. Perform. 2020, 15, 603–616. [Google Scholar] [CrossRef]
- Fox, J.L.; O’Grady, C.J.; Scanlan, A.T. The relationships between external and internal workloads during basketball training and games. Int. J. Sports Physiol. Perform. 2020, 15, 1081–1086. [Google Scholar] [CrossRef]
- Castagna, C.; Chaouachi, A.; Rampinini, E.; Chamari, K.; Impellizzeri, F. Aerobic and Explosive Power Performance of Elite Italian Regional-Level Basketball Players. J. Strength Cond. Res. 2009, 23, 1982. [Google Scholar] [CrossRef]
- Tomlin, D.L.; Wenger, H.A. The Relationship between Aerobic Fitness and Recovery from High Intensity Intermittent Exercise. Sports Med. 2001, 31, 1–11. [Google Scholar] [CrossRef]
- Mancha-Triguero, D.; Garcia-Rubio, J.; González-Calleja, J.; Ibanez, S.J. Physical Fitness in Basketball Players: A Systematic Review. J. Sports Med. Phys. Fit. 2019, 59, 1513–1525. [Google Scholar] [CrossRef]
- Millet, G.P.; Roels, B.; Schmitt, L.; Woorons, X.; Richalet, J.P. Combining Hypoxic Methods for Peak Performance. Sports Med. 2010, 40, 1–25. [Google Scholar] [CrossRef]
- Faiss, R.; Girard, O.; Millet, G.P. Advancing Hypoxic Training in Team Sports: From Intermittent Hypoxic Training to Repeated Sprint Training in Hypoxia. Br. J. Sports Med. 2013, 47, i45–i50. [Google Scholar] [CrossRef] [PubMed]
- Billaut, F.; Gore, C.J.; Aughey, R.J. Enhancing Team-Sport Athlete Performance. Sports Med. 2012, 42, 751–767. [Google Scholar] [CrossRef] [PubMed]
- Czuba, M.; Zając, A.; Maszczyk, A.; Roczniok, R.; Poprzęcki, S.; Garbaciak, W.; Zając, T. The Effects of High Intensity Interval Training in Normobaric Hypoxia on Aerobic C99apacity in Basketball Players. J. Hum. Kinet. 2013, 39, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.Y.; Wu, K.C.; Yang, A.L.; Chen, Y.L. Simulated Altitude Training and Sport Performance: Protocols and Physiological Effects. Appl. Sci. 2023, 13, 11381. [Google Scholar] [CrossRef]
- Brocherie, F.; Girard, O.; Faiss, R.; Millet, G.P. Effects of Repeated-Sprint Training in Hypoxia on Sea-Level Performance: A Meta-Analysis. Sports Med. 2017, 47, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.K.; Hamlin, M.J.; Elliot, C.A. Effect of High-Intensity Intermittent Hypoxic Training on 3-on-3 Female Basketball Player’s Performance. J. Sci. Sport Exerc. 2022, 4, 386–396. [Google Scholar] [CrossRef]
- Westmacott, A.; Sanal-Hayes, N.E.M.; McLaughlin, M.; Mair, J.L.; Hayes, L.D. High-Intensity Interval Training (HIIT) in Hypoxia Improves Maximal Aerobic Capacity More Than HIIT in Normoxia: A Systematic Review, Meta-Analysis, and Meta-Regression. Int. J. Environ. Res. Public Health 2022, 19, 14261. [Google Scholar] [CrossRef] [PubMed]
- Pojskić, H.; Hanstock, H.G.; Tang, T.-H.; Rodríguez-Zamora, L. Acute Exposure to Normobaric Hypoxia Impairs Balance Performance in Sub-Elite but Not Elite Basketball Players. Front. Physiol. 2021, 12, 748153. [Google Scholar] [CrossRef] [PubMed]
- Saugy, J.J.; Schmitt, L.; Fallet, S.; Faiss, R.; Vesin, J.-M.; Bertschi, M.; Heinzer, R.; Millet, G.P. Sleep Disordered Breathing During Live High-Train Low in Normobaric Versus Hypobaric Hypoxia. High Alt. Med. Biol. 2016, 17, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.L.; Scanlan, A.T.; Stanton, R. A Review of Player Monitoring Approaches in Basketball: Current Trends and Future Directions. J. Strength Cond. Res. 2017, 31, 2021–2029. [Google Scholar] [CrossRef]
- Ibáñez, S.J.; Piñar, M.I.; García, D.; Mancha-Triguero, D. Physical Fitness as a Predictor of Performance during Competition in Professional Women’s Basketball Players. Int. J. Environ. Res. Public Health 2023, 20, 988. [Google Scholar] [CrossRef]
- Reina, M.; García-Rubio, J.; Esteves, P.T.; Ibáñez, S.J. How External Load of Youth Basketball Players Varies According to Playing Position, Game Period and Playing Time. Int. J. Perform. Anal. Sport 2020, 20, 917–930. [Google Scholar] [CrossRef]
- Fernández-Cortes, J.A.; Mandly, M.G.; García-Rubio, J.; Ibáñez, S.J. Contribution of Professional Basketball Players According to the Specific Position and the Competition Phase. E-Balonmano. Com 2021, 17, 223–232. [Google Scholar]
- Fox, J.L.; Stanton, R.; Sargent, C.; O’Grady, C.J.; Scanlan, A.T. The Impact of Contextual Factors on Game Demands in Starting, Semiprofessional, Male Basketball Players. Int. J. Sports Physiol. Perform. 2020, 15, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Manzi, V.; D’Ottavio, S.; Impellizzeri, F.M.; Chaouachi, A.; Chamari, K.; Castagna, C. Profile of Weekly Training Load in Elite Male Professional Basketball Players. J. Strength Cond. Res. 2010, 24, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Bordón, J.C.; Bravo, I.R.; López-Gajardo, M.Á.; García, J.D. Monitorización de La Carga de Entrenamiento Por Posición y Tareas En Baloncesto Profesional Masculino. E-Balonmano Com Rev. Cienc. Deporte 2021, 17, 145–152. [Google Scholar] [CrossRef]
- Puente, C.; Abián-Vicén, J.; Areces, F.; López, R.; Del Coso, J. Physical and Physiological Demands of Experienced Male Basketball Players During a Competitive Game. J. Strength Cond. Res. 2017, 31, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Montero, I.; León, O.G. A guide for naming research studies in Psychology. Int. J. Clin. Health Psychol. 2007, 7, 847–862. [Google Scholar]
- Hellmann, F.; Verdi, M.; Schlemper Junior, B.R.; Caponi, S. 50th Anniversary of the Declaration of Helsinki: The Double Standard Was Introduced. Arch. Med. Res. 2014, 45, 600–601. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; García-Rubio, J.; Ibáñez, S.J.; Pino-Ortega, J. Static and Dynamic Reliability of WIMU PROTM Accelerometers According to Anatomical Placement. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 233, 238–248. [Google Scholar]
- Pino-Ortega, J.; Bastida-Castillo, A.; Gómez-Carmona, C.D.; Rico-González, M. Validity and Reliability of an Eight Antennae Ultra-Wideband Local Positioning System to Measure Performance in an Indoor Environment. Sports Biomech. 2024, 23, 145–155. [Google Scholar] [CrossRef]
- Schelling, X.; Torres, L. Accelerometer Load Profiles for Basketball-Specific Drills in Elite Players. J. Sports Sci. Med. 2016, 15, 585–591. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Aughey, R.J.; Hammond, K.; Varley, M.C.; Schmidt, W.F.; Bourdon, P.C.; Buchheit, M.; Simpson, B.; Garvican-Lewis, L.A.; Kley, M.; Soria, R.; et al. Soccer Activity Profile of Altitude versus Sea-Level Natives during Acclimatisation to 3600 m (ISA3600). Br. J. Sports Med. 2013, 47, i107–i113. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, M.; Hopkins, W.; Hollings, S. Effects of Altitude on Performance of Elite Track-and-Field Athletes. Int. J. Sports Physiol. Perform. 2015, 10, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, R.S. Physiological Responses to Exercise at Altitude : An Update. Sports Med. 2008, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Khodaee, M.; Grothe, H.L.; Seyfert, J.H.; VanBaak, K. Athletes at High Altitude. Sports Health 2016, 8, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Inness, M.W.H.; Billaut, F.; Aughey, R.J. Live-High Train-Low Improves Repeated Time-Trial and Yo-Yo IR2 Performance in Sub-Elite Team-Sport Athletes. J. Sci. Med. Sport 2017, 20, 190–195. [Google Scholar] [CrossRef]
- Coppel, J.; Hennis, P.; Gilbert-Kawai, E.; Grocott, M.P. The Physiological Effects of Hypobaric Hypoxia versus Normobaric Hypoxia: A Systematic Review of Crossover Trials. Extreme Physiol. Med. 2015, 4, 2. [Google Scholar] [CrossRef]
Variables | Altitude | Playing Position | F (p-Value) | ωp2 (Rating) | Post Hoc | ||
---|---|---|---|---|---|---|---|
Guard | Forward | Centers | |||||
RD (m/min) | 2320 masl | 50.84 ± 8.30 | 48.03 ± 6.23 | 47.36 ± 5.28 | 0.70 (0.49) | 0 | |
10 masl | 40.16 ± 12.84 | 42.35 ± 9.52 | 41.74 ± 12.01 | ||||
F (p) | 23.35 (<0.01) | Interaction F (p value); ωp2 (rating) | |||||
ωp2 (rating) | 0.11 (moderate) | 0.50 (0.61); 0 | |||||
RDWalking (0–6 km/h) (m/min) | 2320 masl | 26.68 ± 3.24 | 26.40 ± 3.28 | 27.91 ± 2.83 | 2.97 (0.05) | 0.01 (trivial) | e f |
10 masl | 20.46 ± 6.25 | 21.93 ± 4.74 | 23.77 ± 6.04 | ||||
F (p) | 41.98 (<0.01) | Interaction F (p value); ωp2 (rating) | |||||
ωp2 (rating) | 0.18 (high) | 0.27 (0.77); 0 | |||||
RDJogging (6–12 km/h) (m/min) | 2320 masl | 17.05 ± 4.70 | 15.44 ± 3.72 | 14.33 ± 4.20 | 1.99 (0.14) | 0 | |
10 masl | 13.99 ± 5.43 | 14.14 ± 4.58 | 13.21 ± 5.14 | ||||
F (p) | 5.50 (0.02) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0.02 (low) | 0.26 (0.77); 0 | |||||
RDRunning (12–18 km/h) (m/min) | 2320 masl | 6.33 ± 2.23 | 5.17 ± 2.06 | 4.01 ± 2.17 | 7.53 (<0.01) | 0.06 (moderate) | b d |
10 masl | 4.82 ± 2.13 | 5.39 ± 2.03 | 4.09 ± 2.08 | ||||
F (p) | 1.23 (0.27) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 1.70 (0.19); 0 | |||||
RDHIR (18–21 km/h) (m/min) | 2320 masl | 0.62 ± 0.35 | 0.70 ± 0.71 | 0.88 ± 0.86 | 0.08 (0.93) | 0 | |
10 masl | 0.67 ± 0.56 | 0.68 ± 0.48 | 0.54 ± 0.47 | ||||
F (p) | 1.01 (0.32) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 1.51 (0.22); 0 | |||||
RDSprinting (21–24 km/h) (m/min) | 2320 masl | 0.14 ± 0.12 | 0.25 ± 0.28 | 0.18 ± 0.25 | 1.71 (0.18) | 0 | |
10 masl | 0.18 ± 0.21 | 0.18 ± 0.23 | 0.11 ± 0.14 | ||||
F (p) | 0.64 (0.42) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 1.01 (0.37); 0 | |||||
RDHighSprinting (>24 km/h) (m/min) | 2320 masl | 0.02 ± 0.02 | 0.07 ± 0.09 | 0.06 ± 0.10 | 2.17 (0.12) | 0 | |
10 masl | 0.03 ± 0.05 | 0.03 ± 0.07 | 0.02 ± 0.06 | ||||
F (p) | 2.62 (0.11) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 1.77 (0.17); 0 | |||||
HRAVG (bpm) | 2320 masl | 137.01 ± 10.94 | 132.83 ± 9.61 | 141.01 ± 11.25 | 4.04 (0.02) | 0.03 (low) | f |
10 masl | 128.27 ± 12.39 | 127.97 ± 14.84 | 132.26 ± 11.77 | ||||
F (p) | 13.08 (<0.01) | Interaction F (p value); ωp2 (rating) | |||||
ωp2 (rating) | 0.06 (moderate) | 0.52 (0.60); 0 | |||||
HRMAX (bpm) | 2320 masl | 170.69 ± 13.59 | 175.67 ± 10.91 | 178.03 ± 11.15 | 1.26 (0.29) | 0 | |
10 masl | 172.36 ± 16.31 | 174.79 ± 14.96 | 174.35 ± 13.56 | ||||
F (p) | 0.18 (0.67) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 0.40 (0.67); 0 | |||||
50–60%HRMAX (%) | 2320 masl | 8.60 ± 6.29 | 18.30 ± 11.96 | 11.14 ± 13.06 | 6.74 (<0.01) | 0.05 (low) | c d |
10 masl | 20.88 ± 9.08 | 23.06 ± 9.81 | 18.51 ± 9.32 | ||||
F (p) | 21.89 (<0.01) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0.10 (moderate) | 1.54 (0.22); 0 | |||||
60–70%HRMAX (%) | 2320 masl | 23.87 ± 12.19 | 24.46 ± 8.70 | 20.76 ± 9.26 | 0.26 (0.77) | 0 | |
10 masl | 24.52 ± 6.94 | 21.81 ± 6.68 | 27.56 ± 12.84 | ||||
F (p) | 1.03 (0.31) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 2.79 (0.09); 0 | |||||
70–80%HRMAX (%) | 2320 masl | 24.07 ± 5.53 | 20.55 ± 9.39 | 23.43 ± 9.59 | 1.96 (0.14) | 0 | |
10 masl | 18.64 ± 7.87 | 17.30 ± 7.65 | 19.31 ± 6.12 | ||||
F (p) | 10.15 (<0.01) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0.05 (low) | 0.22 (0.80); 0 | |||||
80–90%HRMAX (%) | 2320 masl | 26.67 ± 12.57 | 20.47 ± 9.95 | 24.54 ± 10.18 | 5.11 (0.01) | 0.04 (low) | a f |
10 masl | 17.50 ± 10.41 | 13.90 ± 9.43 | 19.90 ± 11.03 | ||||
F (p) | 16.12 (<0.01) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0.08 (moderate) | 0.49 (0.61); 0 | |||||
90–95%HRMAX (%) | 2320 masl | 8.44 ± 6.82 | 7.54 ± 6.24 | 13.15 ± 7.67 | 5.18 (0.01) | 0.04 (low) | e f |
10 masl | 6.05 ± 5.09 | 5.28 ± 6.40 | 7.14 ± 7.60 | ||||
F (p) | 10.48 (<0.01) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0.05 (low) | 1.40 (0.25); 0 | |||||
95–100%HRMAX (%) | 2320 masl | 4.89 ± 8.28 | 4.17 ± 5.35 | 5.44 ± 5.55 | 0.18 (0.84) | 0 | |
10 masl | 3.15 ± 4.39 | 2.65 ± 5.26 | 1.57 ± 2.50 | ||||
F (p) | 7.98 (0.01) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0.04 (low) | 0.91 (0.41); 0 | |||||
SpeedMAX (km/h) | 2320 masl | 18.76 ± 1.32 | 19.50 ± 1.89 | 19.59 ± 2.08 | 0.94 (0.39) | 0 | |
10 masl | 19.41 ± 2.39 | 19.31 ± 3.16 | 20.21 ± 4.60 | ||||
F (p) | 0.62 (0.43) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 0.48 (0.62); 0 | |||||
SpeedAVG (km/h) | 2320 masl | 4.29 ± 0.39 | 4.18 ± 0.36 | 3.98 ± 0.33 | 5.08 (0.01) | 0.04 (low) | b d |
10 masl | 4.34 ± 0.56 | 4.31 ± 0.60 | 4.04 ± 0.53 | ||||
F (p) | 0.94 (.33) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 0.11 (0.89); 0 | |||||
TImpacts (n/min) | 2320 masl | 89.24 ± 16.45 | 85.74 ± 14.75 | 90.16 ± 16.64 | 0.70 (0.50) | 0 | |
10 masl | 81.42 ± 19.84 | 83.25 ± 21.91 | 86.75 ± 23.54 | ||||
F (p) | 2.12 (0.15) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 0.24 (0.78); 0 | |||||
TImpactsLow (0–3 g) (n/min) | 2320 masl | 77.64 ± 15.04 | 77.70 ± 14.20 | 81.39 ± 16.37 | 1.17 (0.31) | 0 | |
10 masl | 70.50 ± 17.69 | 74.67 ± 19.21 | 78.03 ± 20.93 | ||||
F (p) | 2.51 (0.12) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 0.19 (0.83); 0 | |||||
TImpactsModerate (3–5 g) (n/min) | 2320 masl | 8.67 ± 1.92 | 6.14 ± 1.78 | 6.54 ± 1.60 | 9.15 (<0.01) | 0.08 (moderate) | a b |
10 masl | 7.96 ± 2.61 | 6.54 ± 2.82 | 6.65 ± 2.70 | ||||
F (p) | 0.03 (0.87) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 0.70 (0.50); 0 | |||||
TImpactsHigh (5–8 g) (n/min) | 2320 masl | 2.65 ± 0.74 | 1.69 ± 0.97 | 2.02 ± 1.03 | 9.07 (<0.01) | 0.08 (moderate) | a b |
10 masl | 2.65 ± 1.12 | 1.85 ± 1.11 | 1.89 ± 1.08 | ||||
F (p) | 0.01 (0.95) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 0.31 (0.73); 0 | |||||
TImpactsVeryHigh (>8 g) (n/min) | 2320 masl | 0.28 ± 0.11 | 0.21 ± 0.20 | 0.21 ± 0.16 | 5.34 (0.01) | 0.04 (low) | a b |
10 masl | 0.31 ± 0.18 | 0.19 ± 0.15 | 0.17 ± 0.14 | ||||
F (p) | 0.17 (0.68) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 0.53 (0.59); 0 | |||||
Total Steps (n/min) | 2320 masl | 33.99 ± 7.76 | 28.09 ± 4.96 | 28.20 ± 5.58 | 4.73 (0.01) | 0.04 (low) | a b |
10 masl | 30.39 ± 8.99 | 27.39 ± 8.63 | 26.93 ± 10.18 | ||||
F (p) | 2.16 (0.14) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 0.44 (0.64); 0 | |||||
Total Jumps (n/min) | 2320 masl | 0.86 ± 0.43 | 0.74 ± 0.42 | 0.82 ± 0.54 | 0.31 (0.73) | 0 | |
10 masl | 0.64 ± 0.33 | 0.65 ± 0.38 | 0.56 ± 0.28 | ||||
F (p) | 8.39 (<0.01) | Interaction F (p value); ωp2 (rating) | |||||
ωp2 (rating) | 0.04 (low) | 0.83 (0.44); 0 | |||||
PLRT (a.u./min) | 2320 masl | 0.70 ± 0.12 | 0.60 ± 0.08 | 0.61 ± 0.07 | 5.63 (<0.01) | 0.05 (low) | a b |
10 masl | 0.65 ± 0.15 | 0.58 ± 0.15 | 0.59 ± 0.15 | ||||
F (p) | 1.87 (0.17) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0 | 0.41 (0.67); 0 | |||||
TAcc (n/min) | 2320 masl | 32.24 ± 3.55 | 30.97 ± 2.93 | 32.37 ± 2.37 | 2.39 (0.09) | 0 | |
10 masl | 23.60 ± 4.80 | 23.26 ± 5.40 | 25.20 ± 5.55 | ||||
F (p) | 120.23 (<0.01) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0.39 (high) | 0.29 (.75); 0 | |||||
TDec (n/min) | 2320 masl | 32.23 ± 3.58 | 30.97 ± 2.91 | 32.42 ± 2.35 | 2.46 (0.08) | 0 | |
10 masl | 33.56 ± 7.78 | 23.27 ± 5.40 | 25.23 ± 5.57 | ||||
F (p) | 120.77 (<0.01) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0.39 (high) | 0.29 (0.74); 0 | |||||
AccMAX (m/s2) | 2320 masl | 5.15 ± 0.41 | 4.96 ± 0.52 | 5.09 ± 0.46 | 0.71 (0.49) | 0 | |
10 masl | 4.29 ± 0.98 | 4.35 ± 0.78 | 4.01 ± 0.47 | ||||
F (p) | 60.23 (<0.01) | Interaction F (p value); ωp2 (rating) | |||||
ωp2 (rating) | 0.24 (high) | 2.08 (0.13); 0 | |||||
DecMAX (m/s2) | 2320 masl | 5.03 ± 0.33 | 4.84 ± 0.47 | 4.87 ± 0.40 | 1.80 (0.17) | 0 | |
10 masl | 4.27 ± 0.99 | 4.26 ± 0.77 | 3.91 ± 0.44 | ||||
F (p) | 52.36 (<0.01) | Interaction F (p value); ωp2 (rating) | |||||
ωp2 (rating) | 0.21 (high) | 1.37 (.26); 0 | |||||
RD in Acceleration (m/min) | 2320 masl | 6.40 ± 1.18 | 5.15 ± 1.42 | 5.18 ± 1.41 | 5.74 (<0.01) | 0.04 (low) | a b |
10 masl | 4.01 ± 1.96 | 3.62 ± 1.78 | 2.78 ± 1.85 | ||||
F (p) | 61.52 (<0.01) | Interaction F (p value); ωp2 (rating) | |||||
ωp2 (rating) | 0.23 (high) | 1.50 (0.23); 0 | |||||
RD in Deceleration (m/min) | 2320 masl | 5.49 ± 1.14 | 4.75 ± 1.45 | 4.68 ± 1.44 | 5.11 (<0.01) | 0.03 (low) | a b |
10 masl | 3.49 ± 1.72 | 3.09 ± 1.53 | 2.19 ± 1.52 | ||||
F (p) | 70.94 (<0.01) | Interaction F (p-value); ωp2 (rating) | |||||
ωp2 (rating) | 0.26 (high) | 1.27 (0.28); 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez, S.J.; Gómez-Carmona, C.D.; González-Espinosa, S.; Mancha-Triguero, D. Examining the Effects of Altitude on Workload Demands in Professional Basketball Players during the Preseason Phase. Sensors 2024, 24, 3245. https://doi.org/10.3390/s24103245
Ibáñez SJ, Gómez-Carmona CD, González-Espinosa S, Mancha-Triguero D. Examining the Effects of Altitude on Workload Demands in Professional Basketball Players during the Preseason Phase. Sensors. 2024; 24(10):3245. https://doi.org/10.3390/s24103245
Chicago/Turabian StyleIbáñez, Sergio J., Carlos D. Gómez-Carmona, Sergio González-Espinosa, and David Mancha-Triguero. 2024. "Examining the Effects of Altitude on Workload Demands in Professional Basketball Players during the Preseason Phase" Sensors 24, no. 10: 3245. https://doi.org/10.3390/s24103245
APA StyleIbáñez, S. J., Gómez-Carmona, C. D., González-Espinosa, S., & Mancha-Triguero, D. (2024). Examining the Effects of Altitude on Workload Demands in Professional Basketball Players during the Preseason Phase. Sensors, 24(10), 3245. https://doi.org/10.3390/s24103245