Author Contributions
Conceptualization, X.Z. and J.Z.; methodology, J.Z. and X.Z.; software, Y.W. and J.Z.; validation, Y.W., J.X. and J.Z.; formal analysis, J.X. and J.Z.; investigation, J.Z.; resources, X.Z.; data curation, J.X. and J.Z.; writing—original draft preparation, J.Z., J.X. and Y.W.; writing—review and editing, X.Z., J.Z., J.X. and Y.W.; visualization, J.Z.; supervision, X.Z. and J.Z.; project administration, X.Z. and J.Z.; funding acquisition, X.Z. All authors have read and agreed to the published version of the manuscript.
Figure 1.
The brief workflow of the CIRF network. The architecture consists of two branches: the reconstruction branch at the top and the fusion branch at the bottom. During training, both branches are calculated simultaneously, and their total loss is added by an adjustable weight. However, in model inference, only the fusion branch is retained.
Figure 1.
The brief workflow of the CIRF network. The architecture consists of two branches: the reconstruction branch at the top and the fusion branch at the bottom. During training, both branches are calculated simultaneously, and their total loss is added by an adjustable weight. However, in model inference, only the fusion branch is retained.
Figure 2.
The brief workflow of PDE. The overall architecture comprises two parallel branches for feature decomposition, the ViT branch and the CNN branch, which are also connected with each other to form information complementation. Here, the inputs are two modalities of single-channel gray-scale images denoted as , where . In the experiments, we fix , , . Therefore, after data pre-processing, the input tensor dimension can be written as while the output tensor will be . The complementary process is illustrated by feature map transformations shown at the top of the figure.
Figure 2.
The brief workflow of PDE. The overall architecture comprises two parallel branches for feature decomposition, the ViT branch and the CNN branch, which are also connected with each other to form information complementation. Here, the inputs are two modalities of single-channel gray-scale images denoted as , where . In the experiments, we fix , , . Therefore, after data pre-processing, the input tensor dimension can be written as while the output tensor will be . The complementary process is illustrated by feature map transformations shown at the top of the figure.
Figure 3.
The architecture of RFCNN. In this figure, the yellow box and the yellow line respectively represent different CNN modules with a small kernel size of 3 × 3. Notably, the ELU and ReLU6 activation functions are specifically used to enhance expressivity and prevent gradient explosion. By adding residuals, RFCNN can effectively accomplish detail-feature fusion tasks from to .
Figure 3.
The architecture of RFCNN. In this figure, the yellow box and the yellow line respectively represent different CNN modules with a small kernel size of 3 × 3. Notably, the ELU and ReLU6 activation functions are specifically used to enhance expressivity and prevent gradient explosion. By adding residuals, RFCNN can effectively accomplish detail-feature fusion tasks from to .
Figure 4.
Visualization of training dataset flipping via a three-color-leaf example. (a) Original image; (b) counterclockwise rotation; (c) counterclockwise rotation; (d) clockwise rotation; (e) Left-right mirror symmetry; (f) Up-down mirror symmetry.
Figure 4.
Visualization of training dataset flipping via a three-color-leaf example. (a) Original image; (b) counterclockwise rotation; (c) counterclockwise rotation; (d) clockwise rotation; (e) Left-right mirror symmetry; (f) Up-down mirror symmetry.
Figure 5.
The results of all algorithms on the multi-modal image pairs from Atlas dataset. (a1) Source T1 image; (a2) Source T2 image; (b1) U2Fusion; (b2) DenseFuse; (b3) IFCNN; (b4) NestFuse; (b5) RFN-Nest; (b6) PAPCNN; (b7) ReLP; (b8) TIF; (b9) CDDFuse; (b10) CIRF.
Figure 5.
The results of all algorithms on the multi-modal image pairs from Atlas dataset. (a1) Source T1 image; (a2) Source T2 image; (b1) U2Fusion; (b2) DenseFuse; (b3) IFCNN; (b4) NestFuse; (b5) RFN-Nest; (b6) PAPCNN; (b7) ReLP; (b8) TIF; (b9) CDDFuse; (b10) CIRF.
Figure 6.
The results of all algorithms on the CT-MR image pairs from Atlas dataset. (a1) Source CT image; (a2) Source MR image; (b1) U2Fusion; (b2) DenseFuse; (b3) IFCNN; (b4) NestFuse; (b5) RFN-Nest; (b6) PAPCNN; (b7) ReLP; (b8) TIF; (b9) CDDFuse; (b10) CIRF.
Figure 6.
The results of all algorithms on the CT-MR image pairs from Atlas dataset. (a1) Source CT image; (a2) Source MR image; (b1) U2Fusion; (b2) DenseFuse; (b3) IFCNN; (b4) NestFuse; (b5) RFN-Nest; (b6) PAPCNN; (b7) ReLP; (b8) TIF; (b9) CDDFuse; (b10) CIRF.
Figure 7.
The results of all algorithms on the SPECT-CT/MR image pairs from Atlas dataset. (a1) Source CT/MR image; (a2) Source SPECT image; (b1) U2Fusion; (b2) DenseFuse; (b3) IFCNN; (b4) NestFuse; (b5) RFN-Nest; (b6) PAPCNN; (b7) ReLP; (b8) TIF; (b9) CDDFuse; (b10) CIRF.
Figure 7.
The results of all algorithms on the SPECT-CT/MR image pairs from Atlas dataset. (a1) Source CT/MR image; (a2) Source SPECT image; (b1) U2Fusion; (b2) DenseFuse; (b3) IFCNN; (b4) NestFuse; (b5) RFN-Nest; (b6) PAPCNN; (b7) ReLP; (b8) TIF; (b9) CDDFuse; (b10) CIRF.
Figure 8.
The results of all algorithms on the multi-modal MR image pairs from IXI dataset. (a1) Source PD image; (a2) Source T2 image; (b1) U2Fusion; (b2) DenseFuse; (b3) IFCNN; (b4) NestFuse; (b5) RFN-Nest; (b6) PAPCNN; (b7) ReLP; (b8) TIF; (b9) CDDFuse; (b10) CIRF.
Figure 8.
The results of all algorithms on the multi-modal MR image pairs from IXI dataset. (a1) Source PD image; (a2) Source T2 image; (b1) U2Fusion; (b2) DenseFuse; (b3) IFCNN; (b4) NestFuse; (b5) RFN-Nest; (b6) PAPCNN; (b7) ReLP; (b8) TIF; (b9) CDDFuse; (b10) CIRF.
Figure 9.
The results of all algorithms on the CT-MR image pairs from RIRE dataset. (a1) Source CT image; (a2) Source MR image; (b1) U2Fusion; (b2) DenseFuse; (b3) IFCNN; (b4) NestFuse; (b5) RFN-Nest; (b6) PAPCNN; (b7) ReLP; (b8) TIF; (b9) CDDFuse; (b10) CIRF.
Figure 9.
The results of all algorithms on the CT-MR image pairs from RIRE dataset. (a1) Source CT image; (a2) Source MR image; (b1) U2Fusion; (b2) DenseFuse; (b3) IFCNN; (b4) NestFuse; (b5) RFN-Nest; (b6) PAPCNN; (b7) ReLP; (b8) TIF; (b9) CDDFuse; (b10) CIRF.
Figure 10.
The results of eight metrics of all computed algorithms (a) ; (b) ; (c) ; (d) ; (e) ; (f) ; (g) ; (h) .
Figure 10.
The results of eight metrics of all computed algorithms (a) ; (b) ; (c) ; (d) ; (e) ; (f) ; (g) ; (h) .
Table 1.
Details of the three datasets.
Table 1.
Details of the three datasets.
Datasets | Image Pairs | Training | Testing |
---|
Atlas | Multi-modal MR | 2976 | 62 |
CT-MR | - | 140 |
SPECT-CT/MR | - | 388 |
IXI | Multi-modal MR | 3504 | 432 |
RIRE | CT-MR | 2538 | 53 |
Table 2.
The metric values of CIRF using different masking ratios (, ) in Atlas Dataset.
Table 2.
The metric values of CIRF using different masking ratios (, ) in Atlas Dataset.
Ratio | | | | | | | | |
---|
0 | 92.705 | 24.709 | 1.769 | 1.478 | 0.889 | 0.549 | 0.679 | 0.143 |
0.1 | 91.686 | 24.975 | 1.761 | 1.483 | 0.885 | 0.539 | 0.673 | 0.230 |
0.2 | 92.980 | 26.700 | 1.758 | 1.456 | 0.743 | 0.502 | 0.671 | 0.252 |
0.3 | 91.946 | 26.698 | 1.749 | 1.458 | 0.862 | 0.500 | 0.662 | 0.308 |
0.4 | 93.808 | 27.799 | 1.736 | 1.441 | 0.442 | 0.460 | 0.658 | 0.311 |
0.5 | 92.734 | 29.311 | 1.733 | 1.460 | 0.854 | 0.494 | 0.658 | 0.320 |
Table 3.
The metric values of CIRF using different (masking ratio = 0.1, ) in Atlas Dataset.
Table 3.
The metric values of CIRF using different (masking ratio = 0.1, ) in Atlas Dataset.
| | | | | | | | |
---|
0.1 | 83.998 | 18.678 | 1.632 | 1.489 | 0.894 | 0.555 | 0.638 | 0.256 |
0.2 | 89.120 | 21.384 | 1.732 | 1.466 | 0.880 | 0.531 | 0.660 | 0.232 |
0.3 | 91.686 | 24.975 | 1.761 | 1.483 | 0.885 | 0.539 | 0.673 | 0.230 |
0.4 | 94.165 | 23.402 | 1.778 | 1.443 | 0.787 | 0.491 | 0.674 | 0.208 |
0.5 | 97.534 | 28.796 | 1.790 | 1.458 | 0.779 | 0.488 | 0.684 | 0.207 |
0.6 | 97.995 | 27.097 | 1.790 | 1.438 | 0.764 | 0.451 | 0.682 | 0.202 |
0.7 | 100.142 | 26.650 | 1.802 | 1.437 | 0.753 | 0.436 | 0.686 | 0.184 |
0.8 | 100.008 | 23.018 | 1.796 | 1.418 | 0.724 | 0.395 | 0.675 | 0.217 |
0.9 | 104.269 | 25.418 | 1.787 | 1.422 | 0.411 | 0.358 | 0.677 | 0.185 |
Table 4.
The metric values of CIRF using different (masking ratio = 0.1, ) in Atlas Dataset.
Table 4.
The metric values of CIRF using different (masking ratio = 0.1, ) in Atlas Dataset.
| | | | | | | | |
---|
0.1 | 92.022 | 25.153 | 1.761 | 1.461 | 0.878 | 0.519 | 0.670 | 0.243 |
0.2 | 91.686 | 24.975 | 1.761 | 1.483 | 0.885 | 0.539 | 0.673 | 0.230 |
0.3 | 91.863 | 24.283 | 1.761 | 1.476 | 0.867 | 0.537 | 0.676 | 0.210 |
0.4 | 92.272 | 23.768 | 1.768 | 1.466 | 0.806 | 0.523 | 0.675 | 0.223 |
0.5 | 92.088 | 24.461 | 1.762 | 1.473 | 0.782 | 0.534 | 0.674 | 0.210 |
0.6 | 91.952 | 26.342 | 1.758 | 1.493 | 0.887 | 0.544 | 0.673 | 0.218 |
0.7 | 90.754 | 23.280 | 1.751 | 1.490 | 0.884 | 0.536 | 0.670 | 0.227 |
0.8 | 94.179 | 27.839 | 1.767 | 1.465 | 0.846 | 0.529 | 0.677 | 0.217 |
0.9 | 90.745 | 23.266 | 1.755 | 1.481 | 0.841 | 0.536 | 0.667 | 0.242 |
1.0 | 89.141 | 21.417 | 1.747 | 1.487 | 0.887 | 0.535 | 0.667 | 0.239 |
Table 5.
The metric values of CIRF using different masking ratio (, ) in IXI Dataset.
Table 5.
The metric values of CIRF using different masking ratio (, ) in IXI Dataset.
Ratio | | | | | | | | |
---|
0 | 72.361 | 39.814 | 1.872 | 2.347 | 0.744 | 0.740 | 0.981 | 0.047 |
0.1 | 72.122 | 36.206 | 1.809 | 2.251 | 0.709 | 0.727 | 0.945 | 0.160 |
Table 6.
The metric values of CIRF using different (masking ratio = 0, ) in IXI Dataset.
Table 6.
The metric values of CIRF using different (masking ratio = 0, ) in IXI Dataset.
| | | | | | | | |
---|
0.1 | 66.062 | 28.838 | 1.738 | 2.336 | 0.798 | 0.761 | 0.906 | 0.100 |
0.2 | 71.483 | 36.240 | 1.844 | 2.393 | 0.832 | 0.738 | 0.949 | 0.063 |
0.3 | 72.361 | 39.814 | 1.872 | 2.347 | 0.744 | 0.740 | 0.981 | 0.047 |
0.4 | 76.164 | 35.067 | 1.890 | 2.287 | 0.730 | 0.717 | 1.004 | 0.030 |
0.5 | 75.549 | 38.379 | 1.888 | 2.341 | 0.702 | 0.718 | 1.028 | 0.034 |
0.6 | 74.979 | 35.110 | 1.878 | 2.325 | 0.742 | 0.697 | 0.990 | 0.029 |
0.7 | 75.190 | 30.003 | 1.907 | 2.213 | 0.657 | 0.693 | 1.047 | 0.052 |
0.8 | 79.857 | 31.399 | 1.895 | 2.214 | 0.689 | 0.659 | 1.048 | 0.058 |
0.9 | 79.347 | 29.511 | 1.904 | 2.177 | 0.634 | 0.643 | 1.088 | 0.114 |
Table 7.
The metric values of CIRF using different (masking ratio = 0.1, ) in IXI Dataset.
Table 7.
The metric values of CIRF using different (masking ratio = 0.1, ) in IXI Dataset.
| | | | | | | | |
---|
0.1 | 72.160 | 34.644 | 1.889 | 2.336 | 0.730 | 0.733 | 1.004 | 0.033 |
0.2 | 72.361 | 39.814 | 1.872 | 2.347 | 0.744 | 0.740 | 0.981 | 0.047 |
0.3 | 70.964 | 32.695 | 1.870 | 2.315 | 0.734 | 0.735 | 0.970 | 0.033 |
0.4 | 72.028 | 30.786 | 1.876 | 2.223 | 0.683 | 0.728 | 0.993 | 0.033 |
0.5 | 70.364 | 31.237 | 1.854 | 2.278 | 0.715 | 0.731 | 0.974 | 0.040 |
0.6 | 72.816 | 33.506 | 1.881 | 2.288 | 0.713 | 0.735 | 0.991 | 0.036 |
0.7 | 73.270 | 33.861 | 1.877 | 2.269 | 0.710 | 0.728 | 0.990 | 0.032 |
0.8 | 72.297 | 29.842 | 1.873 | 2.221 | 0.680 | 0.733 | 0.978 | 0.044 |
0.9 | 69.995 | 28.954 | 1.847 | 2.213 | 0.671 | 0.732 | 0.955 | 0.056 |
1.0 | 73.257 | 33.528 | 1.878 | 2.272 | 0.694 | 0.728 | 0.993 | 0.031 |
Table 8.
The metric values of CIRF using different masking ratios (, ) in RIRE Dataset.
Table 8.
The metric values of CIRF using different masking ratios (, ) in RIRE Dataset.
Ratio | | | | | | | | |
---|
0 | 72.361 | 39.814 | 1.872 | 2.347 | 0.744 | 0.740 | 0.981 | 0.047 |
0.1 | 72.122 | 36.206 | 1.809 | 2.251 | 0.709 | 0.727 | 0.945 | 0.160 |
Table 9.
The metric values of CIRF using different (masking ratio = 0.1, ) in RIRE Dataset.
Table 9.
The metric values of CIRF using different (masking ratio = 0.1, ) in RIRE Dataset.
| | | | | | | | |
---|
0.1 | 62.308 | 15.467 | 1.709 | 1.462 | 0.474 | 0.574 | 0.593 | 0.177 |
0.2 | 67.920 | 16.578 | 1.838 | 1.466 | 0.656 | 0.562 | 0.627 | 0.189 |
0.3 | 79.581 | 18.465 | 1.862 | 1.514 | 0.468 | 0.560 | 0.630 | 0.147 |
0.4 | 71.692 | 18.962 | 1.887 | 1.485 | 0.409 | 0.541 | 0.649 | 0.205 |
0.5 | 73.452 | 17.282 | 1.909 | 1.485 | 0.656 | 0.519 | 0.648 | 0.223 |
0.6 | 77.384 | 18.085 | 1.921 | 1.518 | 0.668 | 0.505 | 0.664 | 0.215 |
0.7 | 74.868 | 16.913 | 1.921 | 1.462 | 0.619 | 0.488 | 0.644 | 0.239 |
0.8 | 74.641 | 16.254 | 1.916 | 1.446 | 0.591 | 0.452 | 0.631 | 0.242 |
0.9 | 78.625 | 17.103 | 1.918 | 1.456 | 0.613 | 0.415 | 0.649 | 0.258 |
Table 10.
The metric values of CIRF using different (masking ratio = 0.1, ) in RIRE Dataset.
Table 10.
The metric values of CIRF using different (masking ratio = 0.1, ) in RIRE Dataset.
| | | | | | | | |
---|
0.1 | 71.200 | 17.396 | 1.888 | 1.491 | 0.680 | 0.551 | 0.638 | 0.206 |
0.2 | 73.346 | 19.670 | 1.897 | 1.489 | 0.403 | 0.552 | 0.653 | 0.173 |
0.3 | 68.477 | 16.624 | 1.863 | 1.477 | 0.651 | 0.548 | 0.614 | 0.226 |
0.4 | 71.697 | 18.221 | 1.885 | 1.544 | 0.706 | 0.552 | 0.637 | 0.186 |
0.5 | 70.296 | 18.061 | 1.878 | 1.542 | 0.624 | 0.552 | 0.632 | 0.186 |
0.6 | 69.733 | 19.324 | 1.871 | 1.539 | 0.429 | 0.557 | 0.628 | 0.215 |
0.7 | 72.654 | 18.500 | 1.894 | 1.552 | 0.691 | 0.552 | 0.644 | 0.217 |
0.8 | 69.656 | 16.727 | 1.873 | 1.469 | 0.650 | 0.555 | 0.628 | 0.201 |
0.9 | 68.291 | 16.391 | 1.856 | 1.469 | 0.652 | 0.550 | 0.616 | 0.217 |
1.0 | 69.401 | 16.830 | 1.870 | 1.483 | 0.659 | 0.558 | 0.629 | 0.197 |
Table 11.
The results of all computed algorithms on three datasets.
Table 11.
The results of all computed algorithms on three datasets.
Methods | | | | | | | | |
---|
CIRF | 83.566 ± 11.21 | 25.520 ± 14.29 | 1.817 ± 0.06 | 1.628 ± 0.72 | 0.769 ± 0.30 | 0.585 ± 0.16 | 0.683 ± 0.30 | 0.179 ± 0.13 |
CDDFuse | 71.144 ± 20.81 | 15.874 ± 10.47 | 1.412 ± 0.35 | 1.806 ± 0.61 | 0.837 ± 0.25 | 0.631 ± 0.14 | 0.593 ± 0.32 | 0.153 ± 0.12 |
U2Fusion | 57.930 ± 27.62 | 3.913 ± 3.11 | 1.278 ± 0.13 | 1.677 ± 0.59 | 0.718 ± 0.31 | 0.488 ± 0.30 | 0.507 ± 0.23 | 0.389 ± 0.21 |
DenseFuse | 53.216 ± 9.05 | 3.313 ± 3.27 | 1.339 ± 0.10 | 1.891 ± 0.60 | 0.772 ± 0.12 | 0.485 ± 0.32 | 0.499 ± 0.24 | 0.423 ± 0.23 |
IFCNN | 61.115 ± 15.42 | 7.147 ± 5.89 | 1.363 ± 0.12 | 1.698 ± 0.61 | 0.857 ± 0.08 | 0.617 ± 0.19 | 0.565 ± 0.26 | 0.146 ± 0.29 |
NestFuse | 66.902 ± 10.90 | 14.424 ± 8.09 | 1.480 ± 0.11 | 1.955 ± 0.68 | 0.857 ± 0.17 | 0.630 ± 0.16 | 0.599 ± 0.25 | 0.180 ± 0.16 |
RFN-Nest | 63.489 ± 10.25 | 8.350 ± 7.44 | 1.558 ± 0.20 | 1.625 ± 0.53 | 0.700 ± 0.30 | 0.424 ± 0.26 | 0.550 ± 0.26 | 0.479 ± 0.24 |
PAPCNN | 66.375 ± 19.16 | 12.104 ± 8.74 | 1.407 ± 0.14 | 1.588 ± 0.89 | 0.776 ± 0.14 | 0.542 ± 0.25 | 0.543 ± 0.31 | 0.251 ± 0.35 |
ReLP | 70.915 ± 16.98 | 19.235 ± 8.04 | 1.338 ± 0.23 | 1.827 ± 0.81 | 0.869 ± 0.05 | 0.603 ± 0.14 | 0.589 ± 0.21 | 0.157 ± 0.08 |
TIF | 84.423 ± 19.47 | 43.666 ± 24.94 | 1.708 ± 0.28 | 1.796 ± 0.58 | 0.781 ± 0.08 | 0.524 ± 0.13 | 0.672 ± 0.37 | 0.165 ± 0.11 |