A Sensor Fusion Approach to Observe Quadrotor Velocity
Abstract
:1. Introduction
2. Quadrotor Mathematical Model and Available Measurements
2.1. Quadrotor Dynamics
2.2. Available Measurements
2.2.1. Quadrotor’s Specific Translational Acceleration
2.2.2. Quadrotor’s Attitude and Angular Velocity
2.2.3. Optical Flow
2.2.4. Height Sensor
3. Nonlinear Observer Design
- is positively invariant;
- A1 For all and the map satisfies,
- A2 The dynamic systemhas a (globally) asymptotically stable equilibrium at uniformly in and .
Cartesian Velocity Observer
4. Results
4.1. Determination of the Parameter
4.2. Optical Flow Algorithm Design
4.3. Quadrotor Trajectories
4.4. Measurements
4.5. Observer Evaluation
4.6. Observer Gains
5. Conclusions
- The designed observer can estimate the linear speeds of the aircraft for different trajectories with precision.
- The optical flow was obtained without using image features or patterns compared to other research works.
- The application of Lyapunov’s theory through a correct proposed Lyapunov function demonstrates asymptotic convergence to zero of the nonlinear observer error.
- As mentioned initially, this article was intended to compensate for the overall information loss in indoor flights by observing the vehicle’s translational velocities. The observed velocity is precise enough so that the main objective has been successfully fulfilled.
- As previously evoked in the introduction, this research project surpassed the performance of the observer proposed in [17], mainly in flight trajectories, in which, at certain moments, the MAV does not make any displacements, remaining in stationary or hover flight, thanks to the incorporation of the Optical Flow into the observation algorithm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyapunov, A.M. The general problem of the stability of motion. Int. J. Control. 1992, 55, 531–534. [Google Scholar] [CrossRef]
- Khalil, H.K. Control of Nonlinear Systems; Prentice Hall: New York, NY, USA, 2002. [Google Scholar]
- Astolfi, A.; Karagiannis, D.; Ortega, R. Nonlinear and Adaptive Control with Applications; Springer: Cham, Switzerland, 2008; Volume 187. [Google Scholar]
- Van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control; Communications and Control Engineering; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Sasiadek, J.; Hartana, P. Sensor fusion for navigation of an autonomous unmanned aerial vehicle. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’04), New Orleans, LA, USA, 26 April–1 May 2004; Volume 4, pp. 4029–4034. [Google Scholar]
- Jetto, L.; Longhi, S.; Venturini, G. Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots. IEEE Trans. Robot. Autom. 1999, 15, 219–229. [Google Scholar] [CrossRef]
- Harriman, D.W.; Harrison, J.C. Gravity-induced errors in airborne inertial navigation. J. Guid. Control. Dyn. 1986, 9, 419–426. [Google Scholar] [CrossRef]
- Noordin, A.; Mohd Basri, M.A.; Mohamed, Z. Adaptive PID Control via Sliding Mode for Position Tracking of Quadrotor MAV: Simulation and Real-Time Experiment Evaluation. Aerospace 2023, 10, 512. [Google Scholar] [CrossRef]
- Okasha, M.; Kralev, J.; Islam, M. Design and Experimental Comparison of PID, LQR and MPC Stabilizing Controllers for Parrot Mambo Mini-Drone. Aerospace 2022, 9, 298. [Google Scholar] [CrossRef]
- Rubio Scola, I.; Guijarro Reyes, G.A.; Garcia Carrillo, L.R.; Hespanha, J.P.; Burlion, L. A Robust Control Strategy With Perturbation Estimation for the Parrot Mambo Platform. IEEE Trans. Control. Syst. Technol. 2021, 29, 1389–1404. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, J.; Zhang, H. Attitude Control for Quadrotors Under Unknown Disturbances Using Triple-Step Method and Nonlinear Integral Sliding Mode. IEEE Trans. Ind. Electron. 2023, 70, 5004–5012. [Google Scholar] [CrossRef]
- Naseer, F.; Ullah, G.; Siddiqui, M.A.; Jawad Khan, M.; Hong, K.S.; Naseer, N. Deep Learning-Based Unmanned Aerial Vehicle Control with Hand Gesture and Computer Vision. In Proceedings of the 2022 13th Asian Control Conference (ASCC), Jeju, Republic of Korea, 4–7 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Nascimento, T.; Saska, M. Embedded fast nonlinear model predictive control for micro aerial vehicles. J. Intell. Robot. Syst. 2021, 103, 1–11. [Google Scholar] [CrossRef]
- McGuire, K.; de Croon, G.; de Wagter, C.; Remes, B.; Tuyls, K.; Kappen, H. Local histogram matching for efficient optical flow computation applied to velocity estimation on pocket drones. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3255–3260. [Google Scholar] [CrossRef]
- Hoang, M.L.; Carratù, M.; Paciello, V.; Pietrosanto, A. Fusion Filters between the No Motion No Integration Technique and Kalman Filter in Noise Optimization on a 6DoF Drone for Orientation Tracking. Sensors 2023, 23, 5603. [Google Scholar] [CrossRef]
- Benzemrane, K.; Damm, G.; Santosuosso, G. Nonlinear adaptive observer for Unmanned Aerial Vehicle without GPS measurements. In Proceedings of the 2009 European Control Conference (ECC), Budapest, Hungary, 23–26 August 2009; pp. 597–602. [Google Scholar] [CrossRef]
- Gómez-Casasola, A.; Rodríguez-Cortés, H. Scale Factor Estimation for Quadrotor Monocular-Vision Positioning Algorithms. Sensors 2022, 22, 8048. [Google Scholar] [CrossRef] [PubMed]
- Borup, K.T.; Fossen, T.I.; Johansen, T.A. A nonlinear model-based wind velocity observer for unmanned aerial vehicles. IFAC-PapersOnLine 2016, 49, 276–283. [Google Scholar] [CrossRef]
- Hosen, J.; Helgesen, H.H.; Fusini, L.; Fossen, T.I.; Johansen, T. A Vision-aided Nonlinear Observer for Fixed-wing UAV Navigation. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA, 4–8 January 2016; pp. 1–19. [Google Scholar] [CrossRef]
- He, Y.; Wang, D.; Huang, F.; Zhang, R.; Min, L. Aerial-Ground Integrated Vehicular Networks: A UAV-Vehicle Collaboration Perspective. IEEE Trans. Intell. Transp. Syst. 2023. [Google Scholar] [CrossRef]
- Kalenberg, K.; Müller, H.; Polonelli, T.; Schiaffino, A.; Niculescu, V.; Cioflan, C.; Magno, M.; Benini, L. Stargate: Multimodal Sensor Fusion for Autonomous Navigation On Miniaturized UAVs. IEEE Internet Things J. 2024. [Google Scholar] [CrossRef]
- Mahony, R.; Kumar, V.; Corke, P. Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor. IEEE Robot. Autom. Mag. 2012, 19, 20–32. [Google Scholar] [CrossRef]
- Leishman, R.C.; Macdonald, J.C.; Beard, R.W.; McLain, T.W. Quadrotors and Accelerometers: State Estimation with an Improved Dynamic Model. IEEE Control. Syst. Mag. 2014, 34, 28–41. [Google Scholar] [CrossRef]
- Ma, Y.; Soatto, S.; Košecká, J.; Sastry, S. An Invitation to 3-D Vision: From Images to Geometric Models; Springer: Cham, Switzerland, 2004; Volume 26. [Google Scholar]
- Xie, N.; Lin, X.; Yu, Y. Position estimation and control for quadrotor using optical flow and GPS sensors. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 181–186. [Google Scholar] [CrossRef]
- Weiss, L.; Sanderson, A.; Neuman, C. Dynamic sensor-based control of robots with visual feedback. IEEE J. Robot. Autom. 1987, 3, 404–417. [Google Scholar] [CrossRef]
- Wu, Y. Optical Flow and Motion Analysis; Advanced Computer Vision Notes Series 6. 2001. Available online: http://www.eecs.northwestern.edu/~yingwu/teaching/EECS432/Notes/optical_flow.pdf (accessed on 1 May 2024).
- Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the IJCAI’81: 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; Volume 2, pp. 674–679. [Google Scholar]
- Barron, J.L.; Fleet, D.J.; Beauchemin, S.S. Performance of optical flow techniques. Int. J. Comput. Vis. 1994, 12, 43–77. [Google Scholar] [CrossRef]
- Spagl, M. Optische Positions-und Lagebestimmung einer Drohne im Geschlossenen Raum. Master’s Thesis, Hochschule Rosenheim Unoiversity of Applied Sciences, Rosenheim, Germany, 2021. [Google Scholar]
- Mitchell, H.B. Multi-Sensor Data Fusion: An Introduction; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Durrant-Whyte, H.F. Sensor models and multisensor integration. Int. J. Robot. Res. 1988, 7, 97–113. [Google Scholar] [CrossRef]
- Boudjemaa, R.; Forbes, A. Parameter Estimation Methods in Data Fusion; NPL Report CMSC 38/04. 2004. Available online: https://eprintspublications.npl.co.uk/2891/1/CMSC38.pdf (accessed on 1 May 2024).
- Noordin, A.; Mohd Basri, M.A.; Mohamed, Z. Position and attitude tracking of MAV quadrotor using SMC-based adaptive PID controller. Drones 2022, 6, 263. [Google Scholar] [CrossRef]
- Bramwell, A.R.S.; Balmford, D.; Done, G. Bramwell’s Helicopter Dynamics; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
Dimensions | (13.2 × 13.2 × 4.1 ) cm. |
Weight | (63) g. |
Motor type | Brushless (4). |
Flight time | (8) min. |
Camera | (Monocular / Vertical). |
Shutter speed | (60) fps. |
Resolution | (120 × 160) px. |
Focal length | (1) mm. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meza-Ibarra, J.R.; Martínez-Ulloa, J.; Moreno-Pacheco, L.A.; Rodríguez-Cortés, H. A Sensor Fusion Approach to Observe Quadrotor Velocity. Sensors 2024, 24, 3605. https://doi.org/10.3390/s24113605
Meza-Ibarra JR, Martínez-Ulloa J, Moreno-Pacheco LA, Rodríguez-Cortés H. A Sensor Fusion Approach to Observe Quadrotor Velocity. Sensors. 2024; 24(11):3605. https://doi.org/10.3390/s24113605
Chicago/Turabian StyleMeza-Ibarra, José Ramón, Joaquín Martínez-Ulloa, Luis Alfonso Moreno-Pacheco, and Hugo Rodríguez-Cortés. 2024. "A Sensor Fusion Approach to Observe Quadrotor Velocity" Sensors 24, no. 11: 3605. https://doi.org/10.3390/s24113605
APA StyleMeza-Ibarra, J. R., Martínez-Ulloa, J., Moreno-Pacheco, L. A., & Rodríguez-Cortés, H. (2024). A Sensor Fusion Approach to Observe Quadrotor Velocity. Sensors, 24(11), 3605. https://doi.org/10.3390/s24113605