Doppler Radar Sensor-Based Fall Detection Using a Convolutional Bidirectional Long Short-Term Memory Model
Abstract
:1. Introduction
- The proposed deep learning model CB-LSTM utilizes the CNN and BiLSTM network architectures, extracting the spatial features and temporal sequential features of the radar frequency spectrum, respectively, enhancing the accuracy and reliability of the detection.
- In order to make the fall data used here closer to daily life, we comprehensively simulated various fall states, where the non-fall data consisted of everyday activities that are easily confused with falling.
- Extensive experiments were conducted to evaluate the performance of our proposed method. The results of the ablation experiments and comparative experiments demonstrated that our proposed CB-LSTM model achieved good fall detection accuracy, providing effective technical support for the preventing falls among the elderly.
2. Data Processing
2.1. Radar Signal
2.2. Radar Frequency Spectrogram
2.3. Signal Denoising
3. Proposed Model for Fall Detection
3.1. CB-LSTM Model
3.2. Optimizer and Training Parameters
3.3. Loss Function
3.4. Quantitative Evaluation
4. Experimental Setup
5. Results
6. Limitations and Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Y.; Hu, H.; Tian, B. New fast fall detection method based on spatio-temporal context tracking of head by using depth images. Sensors 2015, 15, 23004–23019. [Google Scholar] [CrossRef]
- Desai, K.; Mane, P.; Dsilva, M.; Zare, A.; Shingala, P.; Ambawade, D. A novel machine learning based wearable belt for fall detection. In Proceedings of the 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 2–4 October 2020; pp. 502–5050. [Google Scholar]
- Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J. Robust video surveillance for fall detection based on human shape deformation. IEEE Trans. Circuits Syst. Video Technol. 2011, 21, 611–622. [Google Scholar] [CrossRef]
- Singh, A.; Rehman, S.U.; Yongchareon, S.; Chong, P.H.J. Sensor technologies for fall detection systems: A review. IEEE Sens. J. 2020, 20, 6889–6919. [Google Scholar] [CrossRef]
- Erol, B.; Amin, M.G. Fall motion detection using combined range and Doppler features. In Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 29 August–2 September 2016; pp. 2075–2080. [Google Scholar]
- Zhang, R.; Cheng, L.; Wang, S.; Lou, Y.; Gao, Y.; Wu, W.; Ng, D.W.K. Integrated sensing and communication with massive MIMO: A unified tensor approach for channel and target parameter estimation. IEEE Trans. Wirel. Commun. 2024. early access. [Google Scholar] [CrossRef]
- Ma, Y.; Miao, C.; Long, W.; Zhang, R.; Chen, Q.; Zhang, J.; Wu, W. Time-Modulated Arrays in Scanning Mode Using Wideband Signals for Range-Doppler Estimation With Time-Frequency Filtering and Fusion. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 980–990. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, F.; Wu, C.; Wang, B.; Liu, K.R. DeFall: Environment-independent passive fall detection using WiFi. IEEE Internet Things J. 2021, 9, 8515–8530. [Google Scholar] [CrossRef]
- Mastorakis, G.; Makris, D. Fall detection system using Kinect’s infrared sensor. J. Real-Time Image Process. 2014, 9, 635–646. [Google Scholar] [CrossRef]
- Erol, B.; Amin, M.G. Radar data cube processing for human activity recognition using multisubspace learning. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3617–3628. [Google Scholar] [CrossRef]
- Ogawa, Y.; Naito, K. Fall detection scheme based on temperature distribution with IR array sensor. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 4–6 January 2020; pp. 1–5. [Google Scholar]
- Qiao, X.; Feng, Y.; Liu, S.; Shan, T.; Tao, R. Radar point clouds processing for human activity classification using convolutional multilinear subspace learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5121117. [Google Scholar] [CrossRef]
- He, M.; Nian, Y.; Zhang, Z.; Liu, X.; Hu, H. Human fall detection based on machine learning using a THz radar system. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–5. [Google Scholar]
- Wang, B.; Guo, L.; Zhang, H.; Guo, Y.X. A millimetre-wave radar-based fall detection method using line kernel convolutional neural network. IEEE Sens. J. 2020, 20, 13364–13370. [Google Scholar] [CrossRef]
- Trange, A. FMCW mmWave Radar for Detection of Pulse, Breathing and Fall within Home Care. Master of Science Thesis, School of Electrical Engineering and Computer Science, Stockholm, Sweden, 2021. [Google Scholar]
- Anishchenko, L.; Zhuravlev, A.; Chizh, M. Fall detection using multiple bioradars and convolutional neural networks. Sensors 2019, 19, 5569. [Google Scholar] [CrossRef]
- Feng, X.; Shan, Z.; Zhao, Z.; Xu, Z.; Zhang, T.; Zhou, Z.; Deng, B.; Guan, Z. Millimeter-Wave Radar Monitoring for Elder’s Fall Based on Multi-View Parameter Fusion Estimation and Recognition. Remote Sens. 2023, 15, 2101. [Google Scholar] [CrossRef]
- Jokanović, B.; Amin, M. Fall detection using deep learning in range-Doppler radars. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 180–189. [Google Scholar] [CrossRef]
- Chen, V.C.; Li, F.; Ho, S.S.; Wechsler, H. Micro-Doppler effect in radar: Phenomenon, model, and simulation study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 2–21. [Google Scholar] [CrossRef]
- Patole, S.M.; Torlak, M.; Wang, D.; Ali, M. Automotive radars: A review of signal processing techniques. IEEE Signal Process. Mag. 2017, 34, 22–35. [Google Scholar] [CrossRef]
- Helen Victoria, A.; Maragatham, G.J.W.N. Activity recognition of FMCW radar human signatures using tower convolutional neural networks. Wirel. Netw. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Clemente, C.; Pallotta, L.; De Maio, A.; Soraghan, J.J.; Farina, A. A novel algorithm for radar classification based on Doppler characteristics exploiting orthogonal pseudo-Zernike polynomials. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 417–430. [Google Scholar] [CrossRef]
- Clemente, C.; Balleri, A.; Woodbridge, K.; Soraghan, J.J. Developments in target micro-Doppler signatures analysis: Radar imaging, ultrasound and through-the-wall radar. EURASIP J. Adv. Signal Process. 2013, 2013, 47. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Jing, X. A survey of deep learning-based human activity recognition in radar. Remote Sens. 2019, 11, 1068. [Google Scholar] [CrossRef]
- Gurbuz, S.Z.; Amin, M.G. Radar-based human-motion recognition with deep learning: Promising applications for indoor monitoring. IEEE Signal Process. Mag. 2019, 36, 16–28. [Google Scholar] [CrossRef]
- Stadelmayer, T.; Santra, A.; Weigel, R.; Lurz, F. Data-driven radar processing using a parametric convolutional neural network for human activity classification. IEEE Sens. J. 2021, 21, 19529–19540. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Ullah, A.; Muhammad, K.; Del Ser, J.; Baik, S.W.; de Albuquerque, V.H.C. Activity recognition using temporal optical flow convolutional features and multilayer LSTM. IEEE Trans. Ind. Electron. 2018, 66, 9692–9702. [Google Scholar] [CrossRef]
- Sadreazami, H.; Bolic, M.; Rajan, S. Contactless fall detection using time-frequency analysis and convolutional neural networks. IEEE Trans. Ind. Inform. 2021, 17, 6842–6851. [Google Scholar] [CrossRef]
Layer Type | No. of Channels | Feature Map Size |
---|---|---|
Input | - | (205, 450) |
Conv2d | 64 | (205, 450) |
Conv2d | 64 | (205, 450) |
Maxpool2d | 64 | (102, 225) |
Conv2d | 128 | (102, 225) |
Conv2d | 128 | (102, 225) |
Maxpool2d | 128 | (51, 112) |
Conv2d | 256 | (51, 112) |
Conv2d | 256 | (51, 112) |
Conv2d | 256 | (51, 112) |
Maxpool2d | 256 | (25, 56) |
Conv2d | 512 | (25, 56) |
Conv2d | 512 | (25, 56) |
Conv2d | 512 | (25, 56) |
Maxpool2d | 512 | (12, 28) |
Conv2d | 512 | (12, 28) |
Conv2d | 512 | (12, 28) |
Conv2d | 512 | (12, 28) |
Maxpool2d | 512 | (6, 14) |
Flatten | - | (1, 6 × 14 × 512) |
BiLSTM | - | (1, 256 × 512) |
FC | - | (1, 2) |
Transpose | - | (2, 1) |
Action Type | Quantity | Label |
---|---|---|
Walk | 326 | Non-fall |
Walk and squat down | 318 | Non-fall |
Walk, squat down, then stand up | 326 | Non-fall |
Direct fall | 656 | Fall |
Kneel and fall | 619 | Fall |
Walk and fall | 598 | Fall |
Sit and fall | 602 | Fall |
Accuracy | Precision | Recall | |
---|---|---|---|
LSTM | 0.9216 | 0.8932 | 0.8519 |
BiLSTM | 0.9461 | 0.9216 | 0.8868 |
CB-LSTM | 0.9883 | 0.9878 | 0.9918 |
Accuracy | Precision | Recall | |
---|---|---|---|
Wang, B. et al. [15] | 0.9874 | 0.9755 | 0.9963 |
Sadreazami, H. et al. [32] | 0.9583 | 0.9837 | 0.9437 |
Trange, A. [16] | 0.9200 | 0.9400 | 0.8500 |
Jokanović, B. et al. [19] | 0.9710 | 0.8795 | 0.8824 |
CB-LSTM | 0.9883 | 0.9878 | 0.9918 |
Label | Accuracy | Average Accuracy | |
---|---|---|---|
Walking | Non-fall | 0.9913 | 0.9870 |
Walk followed by squatting down | 0.9897 | ||
Walk, squat down, then stand up | 0.9799 | ||
Direct fall | Fall | 0.9949 | 0.9909 |
Falling from a kneeling position | 0.9899 | ||
Falling while walking | 0.9917 | ||
Falling from a sitting position | 0.9871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Du, J.; Zhu, B.; Greenwald, S.E.; Xu, L.; Yao, Y.; Bao, N. Doppler Radar Sensor-Based Fall Detection Using a Convolutional Bidirectional Long Short-Term Memory Model. Sensors 2024, 24, 5365. https://doi.org/10.3390/s24165365
Li Z, Du J, Zhu B, Greenwald SE, Xu L, Yao Y, Bao N. Doppler Radar Sensor-Based Fall Detection Using a Convolutional Bidirectional Long Short-Term Memory Model. Sensors. 2024; 24(16):5365. https://doi.org/10.3390/s24165365
Chicago/Turabian StyleLi, Zhikun, Jiajun Du, Baofeng Zhu, Stephen E. Greenwald, Lisheng Xu, Yudong Yao, and Nan Bao. 2024. "Doppler Radar Sensor-Based Fall Detection Using a Convolutional Bidirectional Long Short-Term Memory Model" Sensors 24, no. 16: 5365. https://doi.org/10.3390/s24165365