Sex-Based Effects on Muscle Oxygenation During Repeated Maximal Intermittent Handgrip Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Familiarization Visit
2.4. Experimental Visit
2.5. Near-Infrared Spectroscopy (NIRS)
2.6. Statistical Analysis
3. Results
3.1. Deoxy[heme]
3.2. Tissue Oxygen Saturation
3.3. Force-Deoxygenation Ratio
4. Discussion
4.1. Muscle Oxygenation
4.2. Force-Deoxygenation Ratio
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FD | Force-deoxygenation ratio |
HHb | Deoxy[heme] |
MVC | Maximal voluntary contraction |
NIRS | Near-infrared spectroscopy |
O2Hb | Oxy[heme] |
StO2 | Tissue oxygen saturation |
SHG | Sustained handgrip task |
THb | Total[heme] |
VOT | Vascular occlusion test |
References
- McGrath, R.P.; Kraemer, W.J.; Snih, S.A.; Peterson, M.D. Handgrip Strength and Health in Aging Adults. Sports Med. 2018, 48, 1993–2000. [Google Scholar] [CrossRef]
- Rantanen, T.; Harris, T.; Leveille, S.G.; Visser, M.; Foley, D.; Masaki, K.; Guralnik, J.M. Muscle Strength and Body Mass Index as Long-Term Predictors of Mortality in Initially Healthy Men. J. Gerontol. Ser. A 2000, 55, M168–M173. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Snih, S.A.; Markides, K.S.; Ottenbacher, K.J.; Raji, M.A. Hand Grip Strength and Incident ADL Disability in Elderly Mexican Americans over a Seven-Year Period. Aging Clin. Exp. Res. 2004, 16, 481–486. [Google Scholar] [CrossRef]
- Beaudart, C.; Reginster, J.-Y.; Petermans, J.; Gillain, S.; Quabron, A.; Locquet, M.; Slomian, J.; Buckinx, F.; Bruyère, O. Quality of Life and Physical Components Linked to Sarcopenia: The SarcoPhAge Study. Exp. Gerontol. 2015, 69, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.; Khang, A.R.; Lee, H.W.; Son, S.M.; Kang, Y.H. Relative Handgrip Strength as a Marker of Metabolic Syndrome: The Korea National Health and Nutrition Examination Survey (KNHANES) VI (2014–2015). Diabetes Metab. Syndr. Obes. Targets Ther. 2018, 11, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Lawman, H.G.; Troiano, R.P.; Perna, F.M.; Wang, C.-Y.; Fryar, C.D.; Ogden, C.L. Associations of Relative Handgrip Strength and Cardiovascular Disease Biomarkers in US Adults, 2011–2012. Am. J. Prev. Med. 2016, 50, 677–683. [Google Scholar] [CrossRef]
- Carson, R.G. Get a Grip: Individual Variations in Grip Strength Are a Marker of Brain Health. Neurobiol. Aging 2018, 71, 189–222. [Google Scholar] [CrossRef]
- Fransson-Hall, C.; Byström, S.; Kilbom, A. Characteristics of Forearm-hand Exposure in Relation to Symptoms among Automobile Assembly Line Workers. Am. J. Ind. Med. 1996, 29, 15–22. [Google Scholar] [CrossRef]
- Demura, S.; Nakada, M.; Nagasawa, Y. Gender Difference in Subjective Muscle-Fatigue Sensation during Sustained Muscle Force Exertion. Tohoku J. Exp. Med. 2008, 215, 287–294. [Google Scholar] [CrossRef]
- Clark, B.C.; Manini, T.M.; Thé, D.J.; Doldo, N.A.; Ploutz-Snyder, L.L. Gender Differences in Skeletal Muscle Fatigability Are Related to Contraction Type and EMG Spectral Compression. J. Appl. Physiol. 2003, 94, 2263–2272. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.K.; Enoka, R.M. Sex Differences in the Fatigability of Arm Muscles Depends on Absolute Force during Isometric Contractions. J. Appl. Physiol. 2001, 91, 2686–2694. [Google Scholar] [CrossRef]
- Roepstorff, C.; Thiele, M.; Hillig, T.; Pilegaard, H.; Richter, E.A.; Wojtaszewski, J.F.; Kiens, B. Higher Skeletal Muscle α2AMPK Activation and Lower Energy Charge and Fat Oxidation in Men than in Women during Submaximal Exercise. J. Physiol. 2006, 574, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.A.; Larsen, F.J.; Schiffer, T.A.; Morales-Alamo, D.; Ekblom, B.; Calbet, J.A.; Holmberg, H.-C.; Boushel, R. Superior Intrinsic Mitochondrial Respiration in Women than in Men. Front. Physiol. 2018, 9, 1133. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, A.; Fulford, J.; DiMenna, F.J.; Jones, A.M. Influence of Hyperoxia on Muscle Metabolic Responses and the Power–Duration Relationship during Severe-intensity Exercise in Humans: A 31P Magnetic Resonance Spectroscopy Study. Exp. Physiol. 2010, 95, 528–540. [Google Scholar] [CrossRef]
- Ansdell, P.; Brownstein, C.G.; Škarabot, J.; Hicks, K.M.; Howatson, G.; Thomas, K.; Hunter, S.K.; Goodall, S. Sex Differences in Fatigability and Recovery Relative to the Intensity–Duration Relationship. J. Physiol. 2019, 597, 5577–5595. [Google Scholar] [CrossRef]
- Beltrame, T.; Villar, R.; Hughson, R.L. Sex Differences in the Oxygen Delivery, Extraction, and Uptake during Moderate-Walking Exercise Transition. Appl. Physiol. Nutr. Metab. 2017, 42, 994–1000. [Google Scholar] [CrossRef]
- Keller, J.L.; Traylor, M.K.; Gray, S.M.; Hill, E.C.; Weir, J.P. Sex Differences in NIRS Derived Values of Reactive Hyperemia Persist after Experimentally Controlling for the Ischemic Vasodilatory Stimulus. J. Appl. Physiol. 2023, 135, 3–14. [Google Scholar] [CrossRef]
- Marshall, P.W.; Metcalf, E.; Hagstrom, A.D.; Cross, R.; Siegler, J.C.; Enoka, R.M. Changes in Fatigue Are the Same for Trained Men and Women after Resistance Exercise. Med. Sci. Sports Exerc. 2020, 52, 196–204. [Google Scholar] [CrossRef]
- Keller, J.L.; Kennedy, K.G. Men Exhibit Faster Skeletal Muscle Tissue Desaturation than Women before and after a Fatiguing Handgrip. Eur. J. Appl. Physiol. 2021, 121, 3473–3483. [Google Scholar] [CrossRef]
- Mantooth, W.P.; Mehta, R.K.; Rhee, J.; Cavuoto, L.A. Task and Sex Differences in Muscle Oxygenation during Handgrip Fatigue Development. Ergonomics 2018, 61, 1646–1656. [Google Scholar] [CrossRef] [PubMed]
- Russ, D.W.; Kent-Braun, J.A. Sex Differences in Human Skeletal Muscle Fatigue Are Eliminated under Ischemic Conditions. J. Appl. Physiol. 2003, 94, 2414–2422. [Google Scholar] [CrossRef] [PubMed]
- Barstow, T.J. Understanding near Infrared Spectroscopy and Its Application to Skeletal Muscle Research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.L.; Kennedy, K.G.; Hill, E.C.; Fleming, S.R.; Colquhoun, R.J.; Schwarz, N.A. Handgrip Exercise Induces Sex-specific Mean Arterial Pressure and Oxygenation Responses but Similar Performance Fatigability. Clin. Physiol. Funct. Imaging 2022, 42, 127–138. [Google Scholar] [CrossRef]
- Nakada, M.; Demura, S.; Yamaji, S.; Minami, M.; Kitabayashi, T.; Nagasawa, Y. Relationships between Force Curves and Muscle Oxygenation Kinetics during Repeated Handgrip. J. Physiol. Anthropol. Appl. Hum. Sci. 2004, 23, 191–196. [Google Scholar] [CrossRef]
- Demura, S.; Yamaji, S.; Nagasawa, Y.; Nakada, M. Different Gripping Intervals in Reproducibility of Force-Decreasing Curve and Muscle Oxygenation Kinetics during Sustained Maximal Gripping. Percept. Mot. Skills 2011, 112, 561–572. [Google Scholar] [CrossRef]
- Renziehausen, J. Time of Day Effects on Maximal Effort Strength/Power and Fatigability Assessments. Electron. Theses Diss. 2023, 2020, 1644. [Google Scholar]
- Van Beekvelt, M.C.; Colier, W.N.; Wevers, R.A.; Van Engelen, B.G. Performance of Near-Infrared Spectroscopy in Measuring Local O2 Consumption and Blood Flow in Skeletal Muscle. J. Appl. Physiol. 2001, 90, 511–519. [Google Scholar] [CrossRef]
- Wizenberg, A.M.; Gonzalez-Rojas, D.; Rivera, P.M.; Proppe, C.E.; Laurel, K.P.; Stout, J.R.; Fukuda, D.H.; Billaut, F.; Keller, J.L.; Hill, E.C. Acute Effects of Continuous and Intermittent Blood Flow Restriction on Sprint Interval Performance and Muscle Oxygen Responses. J. Strength Cond. Res. 2023, 37, e546–e554. [Google Scholar] [CrossRef]
- Paradis-Deschênes, P.; Joanisse, D.R.; Billaut, F. Sex-Specific Impact of Ischemic Preconditioning on Tissue Oxygenation and Maximal Concentric Force. Front. Physiol. 2017, 7, 674. [Google Scholar] [CrossRef]
- Nuzzo, J.L. Sex Differences in Skeletal Muscle Fiber Types: A Meta-analysis. Clin. Anat. 2024, 37, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.J.; Billaut, F. Tissue Oxygenation in Men and Women during Repeated-Sprint Exercise. Int. J. Sports Physiol. Perform. 2012, 7, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Søgaard, K.; Orizio, C.; Sjøgaard, G. Surface Mechanomyogram Amplitude Is Not Attenuated by Intramuscular Pressure. Eur. J. Appl. Physiol. 2006, 96, 178–184. [Google Scholar] [CrossRef]
- Barnes, W.S. The Relationship between Maximum Isometric Strength and Intramuscular Circulatory Occlusion. Ergonomics 1980, 23, 351–357. [Google Scholar] [CrossRef]
- McNeil, C.J.; Allen, M.D.; Olympico, E.; Shoemaker, J.K.; Rice, C.L. Blood Flow and Muscle Oxygenation during Low, Moderate, and Maximal Sustained Isometric Contractions. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2015, 309, R475–R481. [Google Scholar] [CrossRef] [PubMed]
Total | Age (y) | Height (cm) | Body Mass (kg) | Bodyfat (%) | Adipose Tissue Thickness (cm) | Peak Force (kgf) | ||
---|---|---|---|---|---|---|---|---|
Males | (n = 15) | Mean ± SD | 23.5 ± 6.6 | 175.2 ± 6.9 | 84.6 ± 16.7 | 20.3 ± 7.5 | 0.4 ± 0.2 | 39.0 ± 7.3 |
Range | 19–44 | 162.5–190.5 | 53.3–124.4 | 11.2–35.9 | 0.3–1.0 | 22.1–53.6 | ||
Females | (n = 18) | Mean ± SD | 21.6 ± 1.7 | 165.1 ± 7.3 | 70.6 ± 16.1 | 30.5 ± 3.4 | 0.7 ± 0.2 | 29.8 ± 5.6 |
Range | 19–26 | 153.7–176.3 | 46.8–107.3 | 19.0–46.1 | 0.3–1.2 | 21.8–41.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebron, M.A.; Starling-Smith, J.M.; Hill, E.C.; Stout, J.R.; Fukuda, D.H. Sex-Based Effects on Muscle Oxygenation During Repeated Maximal Intermittent Handgrip Exercise. Sports 2025, 13, 42. https://doi.org/10.3390/sports13020042
Lebron MA, Starling-Smith JM, Hill EC, Stout JR, Fukuda DH. Sex-Based Effects on Muscle Oxygenation During Repeated Maximal Intermittent Handgrip Exercise. Sports. 2025; 13(2):42. https://doi.org/10.3390/sports13020042
Chicago/Turabian StyleLebron, Modesto A., Justine M. Starling-Smith, Ethan C. Hill, Jeffrey R. Stout, and David H. Fukuda. 2025. "Sex-Based Effects on Muscle Oxygenation During Repeated Maximal Intermittent Handgrip Exercise" Sports 13, no. 2: 42. https://doi.org/10.3390/sports13020042
APA StyleLebron, M. A., Starling-Smith, J. M., Hill, E. C., Stout, J. R., & Fukuda, D. H. (2025). Sex-Based Effects on Muscle Oxygenation During Repeated Maximal Intermittent Handgrip Exercise. Sports, 13(2), 42. https://doi.org/10.3390/sports13020042