Effects of Severe Water Stress on Maize Growth Processes in the Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Overview
2.2. Experiments
2.2.1. Phenology
2.2.2. Soil Moisture
2.2.3. LAI and Aboveground Biomass
2.2.4. IPAR and RUE
2.2.5. Evapotranspiration (ET), the Irrigation Water-Use Efficiency (IWUE), the Water-Use Efficiency (WUE), and the Crop Response Factor (ky)
2.3. Statistical Analyses
3. Results
3.1. Weather Condition Analysis
3.2. Effects of Different Irrigation Treatments on Maize Growth
3.3. Water Stress on Maize
3.4. Maize Developmental Stages
3.5. LAI and Aboveground Biomass
3.6. Grain Yield and Unit Kernel Weight
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ammani, A.A.; Ja’Afaru, A.K.; Aliyu, J.A.; Arab, A.I. Climate Change and Maize Production: Empirical Evidence from Kaduna State, Nigeria. J. Agric. Ext. 2012, 16, 1–8. [Google Scholar] [CrossRef]
- Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; et al. How do various maize crop models vary in their responses to climate change factors? Glob. Chang. Boil. 2014, 20, 2301–2320. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Cabral, N.Y.Z.; Kumar, L.; Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 2017, 7, 5910. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.G.; Thornton, P.K. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob. Environ. Chang. 2003, 13, 51–59. [Google Scholar] [CrossRef]
- Shan, L.; Deng, X.; Kang, S. Current situation and perspective of agricultural water used in semiarid area of China. J. Hydraul. Eng. 2002, 27–31. [Google Scholar] [CrossRef]
- Bradford, K.J.; Hsiao, T.C. Physiological Responses to Moderate Water Stress. Physiol. Plant Ecol. II 1982, 12, 263–324. [Google Scholar]
- Hsiao, T.C. Plant Responses to Water Stress. Annu. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Kramer, P.J. Water stress and plant growth. Agron. J. 1963, 55, 31–35. [Google Scholar] [CrossRef]
- Liu, S.; Mo, X.; Lin, Z.; Xu, Y.; Ji, J.; Wen, G.; Richey, J. Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agric. Water Manag. 2010, 97, 1195–1209. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, P.; Chen, X.; Guo, J.; Jia, Z. Effect of Different Mulches under Rainfall Concentration System on Corn Production in the Semi-arid Areas of the Loess Plateau. Sci. Rep. 2016, 6, 19019. [Google Scholar] [CrossRef]
- Ritchie, J.T. Soil water balance and plant water stress. In Understanding Options for Agricultural Production; Springer: Berlin/Heidelberg, Germany, 1998; pp. 41–54. [Google Scholar] [CrossRef]
- Song, L.; Zhang, C. Changing Features of Precipitation over Nothwest China During the 20th Century. J. Glaciol. Geocryol. 2003, 25, 143–148. [Google Scholar] [CrossRef]
- Tezara, W.; Mitchell, V.J.; Driscoll, S.D.; Lawlor, D.W. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 1999, 401, 914–917. [Google Scholar] [CrossRef]
- Bu, L.; Zhang, R.; Chang, Y.; Xue, J.; Han, M. Response of photosynthetic characteristics to water stress of maize leaf in seeding. Acta Ecol. Sin. 2010, 30, 1184–1191. [Google Scholar] [CrossRef]
- Chang, J.; Yang, D.; Tan, W.; Yueshang, L.U. Effects of water stress on maize leaf photosynthesis. J. Northeast Agric. Univ. 2008, 39, 1–5. [Google Scholar] [CrossRef]
- Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodrigues, M.L.; Ricardo, C.P.P.; Osório, M.L.; Carvalho, I.; Faria, T.; Pinheiro, C. How Plants Cope with Water Stress in the Field. Photosynthesis and Growth. Ann. Bot. 2002, 89, 907–916. [Google Scholar] [CrossRef]
- Nesmith, D.S.; Ritchie, J.T. Short-and Long-Term Responses of Corn to a Pre-Anthesis Soil Water Deficit. Agron. J. 1992, 84, 107–113. [Google Scholar] [CrossRef]
- Ge, T.; Sui, F.; Bai, L.; Lu, Y.-Y.; Zhou, G. Effects of Different Soil Water Content on the Photosynthetic Character and Pod Yields of Summer Maize. J. Shanghai Jiaotong Univ. 2005, 23, 143–147. [Google Scholar]
- Zhang, W.; Shen, X. Effects of water stress and rewatering on photosynthetic rate of maize leaf. Acta Agric. Boreall Sin. 1994, 44–47. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Hua, Q.I.; Zhang, Y.; Sun, S.X.; Yang, G.H. Effects of water stress on photosynthetic rate and water use efficiency of maize. Acta Agric. Boreali Sin. 2009, 24, 155–158. [Google Scholar] [CrossRef]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop. Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Chaves, M.M.; Marôco, J.P.; Pereira, J.S.; Chaves, M.M. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Boil. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Ge, T.; Sui, F.; Bai, L.; Tong, C.; Sun, N. Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiol. Plant. 2012, 34, 1043–1053. [Google Scholar] [CrossRef]
- He, J.; Wen, R.; Tian, S.; Su, Y.; He, X.; Su, Y.; Cheng, W.; Huang, K.; Zhang, S. Effects of drought stress and re-watering on growth and yield of various maize varieties at tasseling stage. J. South. Agric. 2017. [Google Scholar] [CrossRef]
- Salvador, R.J. Proposed standard system of nomenclature for maize grain filling events and concepts. Maydica 1995, 40, 141–146. [Google Scholar]
- Ding, D.; Cai, H.; Wang, J.; Zhang, X. A study on compensative growth of maize under regulated deficit irrigation. Agric. Res. Arid Areas 2006, 3, 64–67. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H.; Bentvelsen, C.; Uittenbogaard, G. Yield response to water [Near East]. Nat Mater. 1978. [Google Scholar] [CrossRef]
- Kang, S.; Shi, W.; Zhang, J. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crop. Res. 2000, 67, 207–214. [Google Scholar] [CrossRef]
- Kirda, C. Deficit Irrigation Scheduling Based on Plant Growth Stages Showing Water Stress Tolerance; Water Reports 2002; Food and Agricultural Organization of the United Nations, Deficit Irrigation Practices: Rome, Italy, 2002; Volume 22. [Google Scholar]
- Tariq, J.; Usman, K. Regulated deficit irrigation scheduling of maize crop. Sarhad J. Agric. 2009, 25, 441–450. [Google Scholar]
- Igbadun, H.E.; Tarimo, A.K.; Salim, B.A.; Mahoo, H.F. Evaluation of selected crop water production functions for an irrigated maize crop. Agric. Water Manag. 2007, 94, 1–10. [Google Scholar] [CrossRef]
- Hanway, J.J. How a Corn Plant Develops; Iowa State University Digital Press: Ames, IA, USA, 1966. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- McKee, G.W. A Coefficient for Computing Leaf Area in Hybrid Corn1. Agron. J. 1964, 56, 240. [Google Scholar] [CrossRef]
- Brown, D.M. CERES-Maize: A Simulation Model of Maize Growth and Development; Jones, C.A., Kiniry, J.R., Eds.; Texas A & M University Press: College Station, TX, USA, 1986. [Google Scholar]
- Monteith, J. Light Interception and Radiative Exchange in Crop Stands; Physiol Aspects Crop Yield Proc Symp 1969, acsesspublicati, (physiologicalas); Agronomy—Faculty Publications: Lincoln, NE, USA, 1969. [Google Scholar]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747. [Google Scholar] [CrossRef] [Green Version]
- Andresen, J.A.; Alagarswamy, G.; Rotz, C.A.; Ritchie, J.T.; LeBaron, A.W. Weather Impacts on Maize, Soybean, and Alfalfa Production in the Great Lakes Region, 1895–1996. Agron. J. 2001, 93, 1059. [Google Scholar] [CrossRef]
- Bu, L.-D.; Liu, J.-L.; Zhu, L.; Luo, S.-S.; Chen, X.-P.; Li, S.-Q.; Hill, R.L.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Muchow, R.C.; Sinclair, T.R.; Bennett, J.M. Temperature and Solar Radiation Effects on Potential Maize Yield across Locations. Agron. J. 1990, 82, 338–343. [Google Scholar] [CrossRef]
- Farré, I.; Faci, J.M. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agric. Water Manag. 2006, 83, 135–143. [Google Scholar] [CrossRef]
- Kefale, D.; Ranamukhaarachchi, S. Response of maize varieties to drought stress at different phenological stages in Ethiopia. Trop. Sci. 2004, 44, 61–66. [Google Scholar] [CrossRef]
- Traoré, S.B.; Carlson, R.E.; Pilcher, C.D.; Rice, M.E. Bt and Non-Bt Maize Growth and Development as Affected by Temperature and Drought Stress. Agron. J. 2000, 92, 1027. [Google Scholar] [CrossRef]
- Abrecht, D.; Carberry, P. The influence of water deficit prior to tassel initiation on maize growth, development and yield. Field Crop. Res. 1993, 31, 55–69. [Google Scholar] [CrossRef]
- Boote, K.J.; Loomis, R.S.; Norman, J.M.; Arkebauer, T.J. Predicting Canopy Photosynthesis and Light-Use Efficiency from Leaf Characteristics. Yield Gains Major US Field Crops 1991, 75–94. [Google Scholar] [CrossRef]
- Kiniry, J.; Jones, C.; O’Toole, J.; Blanchet, R.; Cabelguenne, M.; Spanel, D. Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. Field Crop. Res. 1989, 20, 51–64. [Google Scholar] [CrossRef]
- Monteith, J.L.; Moss, C.J. Climate and the efficiency of crop production in britain. Philos. Trans. R. Soc. Lond. 1977, 281, 277–294. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Muchow, R.C. Radiation use efficiency. Adv. Agron. 1999, 65, 215–265. [Google Scholar] [CrossRef]
- Lindquist, J.L.; Arkebauer, T.J.; Walters, D.T.; Cassman, K.G.; Dobermann, A. Maize Radiation Use Efficiency under Optimal Growth Conditions. Agron. J. 2005, 97, 72. [Google Scholar] [CrossRef]
- Loomis, R.; Amthor, J. Yield Potential, Plant Assimilatory Capacity, and Metabolic Efficiencies. Crop. Sci. 1999, 39, 1584. [Google Scholar] [CrossRef]
- Otegui, M.; Andrade, F.; Suero, E. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crop. Res. 1995, 40, 87–94. [Google Scholar] [CrossRef]
- Earl, H.J.; Davis, R.F. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 1992, 95, 688–696. [Google Scholar] [CrossRef]
- Stone, P.J.; Wilson, D.R.; Reid, J.B.; Gillespie, R.N.; Stone, P.J.; Wilson, D.R.; Reid, J.B.; Gillespie, R.N. Water deficit effects on sweet corn. I. Water use, radiation use efficiency, growth, and yield. Crop Pasture Sci. 2001, 52, 103–113. [Google Scholar] [CrossRef]
- Alaei, Y.; Khabiri, E. Effects of two biologic fertilizers containing amino acids on leaf chlorophyll index in bread wheat cultivars in greenhouse. Medienwiss. Rez. Rev. 2012, 2, 1333–1336. [Google Scholar]
- Castrillo, M.; Calcagno, A.M. Effects of water stress and re watering on ribulose-1,5-bis-phosphate carboxylase activity, chlorophyll and protein contents in two cultivars of tomato. J. Hortic. Sci. 1989, 64, 717–724. [Google Scholar] [CrossRef]
- Fani, E. Changes chlorophyll b in response to drought stress in alfalfa (vs. Nick Urban) in climatic conditions of the south west Iran. Am. J. Biochem. Biotechnol. 2012, 1, 107–110. [Google Scholar]
- Anjum, S.A.; Xie, X.; Wang, L.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar] [CrossRef]
- Cornic, G.; Massacci, A. Leaf photosynthesis under drought stress. In Photosynthesis and the Environment; Springer: Berlin/Heidelberg, Germany, 1996; pp. 347–366. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Lee, D.-J. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol. Plant. 2009, 31, 937–945. [Google Scholar] [CrossRef]
Season | Time | ||
---|---|---|---|
Planting | Emergence | Harvest | |
2013 | June 12 | June 18 | October 7 |
2014 | June 12 | June 18 | October 10 |
2015 | June 11 | June 16 | October 3 |
2016 | June 13 | June 19 | September 27 |
Treatments | Growth Stages | Total Irrigation Water (mm) | ||||
---|---|---|---|---|---|---|
Seedling | Jointing | Heading | Grain Filling | |||
FullIRR | 110 | 110 | 110 | 110 | 440 | |
HighIRR | SDS | 0 | 110 | 110 | 110 | 330 |
JTS | 110 | 0 | 110 | 110 | 330 | |
HDS | 110 | 110 | 0 | 110 | 330 | |
GFS | 110 | 110 | 110 | 0 | 330 | |
LowIRR | SDS | 0 | 70 | 70 | 70 | 210 |
JTS | 70 | 0 | 70 | 70 | 210 | |
HDS | 70 | 70 | 0 | 70 | 210 | |
GFS | 70 | 70 | 70 | 0 | 210 |
Treatments | Ks1 | Ks2 | LAImax | Canopy Height (cm) | Biomass (kg/ha) | Unit Kernel Weight (g) | Kernels Per Spike | Yield (kg/ha) | |
---|---|---|---|---|---|---|---|---|---|
FullIRR | 1.00 | 3.4 a | 216 | 17,353 a | 0.277 a | 544 a | 7768 a | ||
HighIRR | SDS | 0.63 | 1.00 | 2.5 cd | 195 | 10,664 bc | 0.221 cd | 433 c | 4945 d |
JTS | 0.71 | 1.00 | 3.0 ab | 193 | 12,591 bc | 0.245 bc | 462 b | 5588 c | |
HDS | 0.49 | 1.00 | 3.1 ab | 211 | 14,276 ab | 0.255 ab | 458 b | 6212 b | |
GFS | 0.53 | 1.00 | 3.0 ab | 205 | 14,193 ab | 0.238 bc | 485 a | 5822 b | |
LowIRR | SDS | 0.33 | 0.92 | 2.1 d | 172 | 8678 d | 0.205 d | 368 d | 3573 f |
JTS | 0.25 | 0.95 | 2.7 bc | 162 | 9145 cd | 0.224 bcd | 366 d | 3868 e | |
HDS | 0.53 | 0.62 | 2.7 bc | 184 | 10,071 c | 0.240 b | 374 cd | 4455 de | |
GFS | 0.48 | 0.65 | 2.7 bc | 185 | 10,711 bc | 0.221 bcd | 456 b | 4676 de | |
F values (ANOVA) | -- | -- | 2.32 * | 2.18 | 6.09 * | 5.83 * | 3.63 * | 7.31 * |
Treatments | ET in Each Growth Stage (mm) | Total ET (mm) | IWUE (kg m−3) | WUE (kg m−3) | ky | ||||
---|---|---|---|---|---|---|---|---|---|
Seedling | Jointing | Heading | Grain Filling | ||||||
FullIRR | 125 a | 113 a | 112 a | 98 a | 448 a | 1.68 | 1.65 | -- | |
HighIRR | SDS | 39 de | 74 b | 119 a | 95 a | 326 b | 1.35 | 1.37 | 1.47 |
JTS | 123 a | 40 cd | 89 ab | 83 a | 336 b | 1.61 | 1.58 | 1.11 | |
HDS | 115 a | 106 a | 49 b | 64 ab | 334 b | 1.83 | 1.81 | 0.79 | |
GFS | 107 ab | 112 a | 111 a | 19 c | 350 b | 1.65 | 1.56 | 1.30 | |
LowIRR | SDS | 27 e | 48 bcd | 75 ab | 46 b | 196 c | 1.55 | 1.65 | 1.00 |
JTS | 74 bcd | 32 d | 51 b | 47 b | 203 c | 1.62 | 1.67 | 0.98 | |
HDS | 77 bc | 69 bc | 30 b | 40 b | 216 c | 2.04 | 1.99 | 0.82 | |
GFS | 66 cd | 67 bc | 76 ab | 15 c | 224 c | 2.07 | 1.97 | 0.85 | |
F values (ANOVA) | 9.95 * | 10.88 * | 3.01 * | 7.35 * | 45.5 * | 1.69 | 1.37 | 1.38 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Jin, J.; He, J. Effects of Severe Water Stress on Maize Growth Processes in the Field. Sustainability 2019, 11, 5086. https://doi.org/10.3390/su11185086
Song L, Jin J, He J. Effects of Severe Water Stress on Maize Growth Processes in the Field. Sustainability. 2019; 11(18):5086. https://doi.org/10.3390/su11185086
Chicago/Turabian StyleSong, Libing, Jiming Jin, and Jianqiang He. 2019. "Effects of Severe Water Stress on Maize Growth Processes in the Field" Sustainability 11, no. 18: 5086. https://doi.org/10.3390/su11185086