Triple-Binder-Stabilized Marine Deposit Clay for Better Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Molding and Curing of Specimens
2.2.2. Compressive Strength Test
2.2.3. Mass Loss by Wet–Dry Cycles
2.2.4. Microstructural Investigation
2.2.5. Sustainability Investigation
3. Results and Discussion
3.1. Compressive Strength and Porosity
3.2. Mass Loss by Dry–Wet Cycles
3.3. Microstructural Analysis (SEM)
3.4. Sustainability Assessment
4. Conclusions
- The incorporation of hydrated lime into cement: Slag-treated soils improved the strength and durability performance of the composites and ensured the satisfaction of weight loss and minimum compressive strength according to the requirements of USACE and MacLean and Lewis [31].
- As the curing period increased, the CCLS specimens’ porosity declined due to pozzolanic reactions, and further improvement in ALM was observable.
- SEM pictures revealed the formation of “needle-like crystals” with a high aspect ratio between the particles, which resulted from the primary hydration. These crystals are responsible for the improvement in UCS and ALM.
- The incorporation of hydrated lime appeared to accelerate the pozzolanic reactions at earlier stages, resulting in a reduction in ALM.
- Environmental assessment of all proposed mixes resulted in the reduction of embodied energy and eCO2 emission.
- Reusing unsuitable soil and hazardous wastes will reduce environmental and financial impacts. Improving soil with additives will facilitate the use of the available soil on site. In addition to the environmental contribution of cement usage reduction, using waste material, such as copper slag, will enable safe disposal of those harmful materials.
5. Recommendations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cabello Eras, J.J.; Gutiérrez, A.S.; Capote, D.H.; Hens, L.; Vandecasteele, C. Improving the environmental performance of an earthwork project using cleaner production strategies. J. Clean. Prod. 2013, 47, 368–376. [Google Scholar] [CrossRef]
- Lafebre, H.; Songonuga, O.; Kathuria, A. Contaminated Soil Management at Cconstruction Sites. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 1998, 2, 115–119. [Google Scholar] [CrossRef]
- Magnusson, S.; Lundberg, K.; Svedberg, B.; Knutsson, S. Sustainable management of excavated soil and rock in urban areas—A literature review. J. Clean. Prod. 2015, 93, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Capobianco, O.; Costa, G.; Baciocchi, R. Assessment of the Environmental Sustainability of a Treatment Aimed at Soil Reuse in a Brownfield Regeneration Context. J. Ind. Ecol. 2018, 22, 1027–1038. [Google Scholar] [CrossRef]
- Alter, H. The composition and environmental hazard of copper slags in the context of the Basel Convention. Resour. Conserv. Recycl. 2005, 43, 353–360. [Google Scholar] [CrossRef]
- Zain, M.F.M.; Islam, M.N.; Radin, S.S.; Yap, S.G. Cement-based solidification for the safe disposal of blasted copper slag. Cem. Concr. Compos. 2004, 26, 845–851. [Google Scholar] [CrossRef]
- Shi, C.; Meyer, C.; Behnood, A. Utilization of copper slag in cement and concrete. Resour. Conserv. Recycl. 2008, 52, 1115–1120. [Google Scholar] [CrossRef]
- Al-Jabri, K.S.; Hisada, M.; Al-Saidy, A.H.; Al-Oraimi, S.K. Performance of high strength concrete made with copper slag as a fine aggregate. Constr. Build. Mater. 2009, 23, 2132–2140. [Google Scholar] [CrossRef]
- Lim, T.T.; Chu, J. Assessment of the use of spent copper slag for land reclamation. Waste Manag. Res. 2006, 24, 67–73. [Google Scholar] [CrossRef]
- Madany, I.M.; Al-Sayed, M.H.; Raveendran, E. Utilization of copper blasting grit waste as a construction material. Waste Manag. 1991, 11, 35–40. [Google Scholar] [CrossRef]
- Moura, W.; Masuero, A.; Molin, D.; Dal Vilela, A. Concrete performance with admixtures of electrical steel slag and copper slag concerning mechanical properties. Am. Concr. Inst. 1999, 186, 81–100. [Google Scholar]
- De Rojas, M.I.S.; Rivera, J.; Frías, M.; Marín, F. Use of recycled copper slag for blended cements. J. Chem. Technol. Biotechnol. 2008, 83, 209–217. [Google Scholar] [CrossRef]
- Al-Jabri, K.S.; Taha, R.A.; Al-Hashmi, A.; Al-Harthy, A.S. Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete. Constr. Build. Mater. 2006, 20, 322–331. [Google Scholar] [CrossRef]
- Pavez, O.; Rojas, F.; Palacious, J.; Nazer, A. Pozzolanic activity of copper slag. In Proceedings of the VI international conference on clean technologies for the mining industry, University of Concepcion, Concepcion, Chile, 18–21 April 2004. [Google Scholar]
- Taha, R.; Al-Rawas, A.; Al-Jabri, K.; Al-Harthy, A.; Hassan, H.; Al-Oraimi, S. An overview of waste materials recycling in the Sultanate of Oman. Resour. Conserv. Recycl. 2004, 41, 293–306. [Google Scholar] [CrossRef]
- Mobasher, B.; Devaguptapu, R.; Arino, A.M. Effect of copper slag on the hydration of blended cementitious mixtures. In Proceedings of the Materials Engineering Conference, Washington, DC, USA, 10–14 November 1996. [Google Scholar]
- Bharati, S.K.; Chew, S.H. Geotechnical Behavior of Recycled Copper Slag-Cement-Treated Singapore Marine Clay. Geotech. Geol. Eng. 2016, 34, 835–845. [Google Scholar] [CrossRef]
- Ekinci, A.; Scheuermann Filho, H.C.; Consoli, N.C. Copper Slag-Hydrated Lime-Portland Cement Stabilized Marine Deposited Clay. In Ground Improvement; Proceedings of the Institution of Civil Engineers: London, UK, 2019. [Google Scholar] [CrossRef]
- Dempsey, B.J.; Thompson, M.R. Durability properties of lime-soil Mixtures. Highw. Res. Board 1968, 235, 61–75. [Google Scholar]
- Zhang, Z.; Tao, M. Durability of cement stabilized low plasticity soils. J. Geotech. Geoenvironmental Eng. 2008, 134, 203–213. [Google Scholar] [CrossRef]
- Cuisinier, O.; Stoltz, G.; Masrouri, F. Long-term behavior of lime-treated clayey soil exposed to successive drying and wetting. In Proceedings of the Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, Atlanta, GA, USA, 23–26 February 2014. [Google Scholar]
- Consoli, N.C.; da Silva, K.; Filho, S.; Rivoire, A.B. Compacted clay-industrial wastes blends: Long term performance under extreme freeze-thaw and wet-dry conditions. Appl. Clay Sci. 2017, 146, 404–410. [Google Scholar] [CrossRef]
- Consoli, N.C.; Tomasi, L.F. The impact of dry unit weight and cement content on the durability of sand-cement blends. Proc. Inst. Civ. Eng.-Ground Improv. 2018, 171, 96–102. [Google Scholar] [CrossRef]
- Choquette, M.; Bérubé, M.A.; Locat, J. Mineralogical and microtextural changes associated with lime stabilization of marine clays from eastern Canada. Appl. Clay Sci. 1987, 2, 215–232. [Google Scholar] [CrossRef]
- Kamruzzaman, A.H.M.; Chew, S.H.; Lee, F.H. Structuration and destructuration behavior of cement-treated Singapore marine clay. J. Geotech. Geoenviron. Eng. 2009, 135, 573–589. [Google Scholar] [CrossRef]
- Chew, S.H.; Kamruzzaman, A.H.M.; Lee, F.H. Physicochemical and engineering behavior of cement treated clays. J. Geotech. Geoenviron. Eng. 2004, 130, 696–706. [Google Scholar] [CrossRef]
- Standards Australia. The Australian Earth Building Handbook; Standards Australia: Sydney, Australia, 2002. [Google Scholar]
- Standard New Zealand. Engineering Design of Earth Buildings; NZS 4297; Standard New Zealand: Wellington, New Zealand, 1998. [Google Scholar]
- Middleton, G.F. Earth Wall Construction, 4th ed.; CSIRO Division of Building, Construction and Engineering: North Ryde, Australia, 1992. [Google Scholar]
- USACE (US Army Corps of Engineers). Soil Stabilization for Pavements; USACE: Washington, DC, USA, 1994. [Google Scholar]
- MacLean, D.G.; Lewis, W.A. British practice in the design and specification of cement-stabilized bases and sub-bases for roads. Highw. Res. Rec. 1963, 36, 56–76. [Google Scholar]
- Bonnot, J. Semi-Rigid Pavements; Association Internationale Permanente des Congrès de la Route: Paris, France, 1991. [Google Scholar]
- ASTM. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); D2487-17; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM. Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes; C511; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Consoli, N.C.; Filho, H.C.S.; Godoy, V.B.; Rosenbach, C.M.D.C.; Carraro, J.A.H. Durability of rap-industrial waste mixtures under severe climate conditions. Soils Rocks 2018, 41, 149–156. [Google Scholar] [CrossRef]
- Consoli, N.C.; Vaz Ferreira, P.M.; Tang, C.S.; Veloso Marques, S.F.; Festugato, L.; Corte, M.B. A unique relationship determining strength of silty/clayey soils—Portland cement mixes. Soils Found. 2016, 56, 1082–1088. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; C39; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- ASTM. Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures; D559; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Hammond, G.; Jones, C. Inventory of Carbon and Energy Version 2.0; Sustainable Energy Research Team, University of Bath: Bath, UK, 2011. [Google Scholar]
- International Maritime Organization. Third IMO GHG Study 2014 e Executive Summary and Final Report; International Maritime Organization: London, UK, 2014. [Google Scholar]
- Rossit, G.; Lawson, M. Materials Life: The Embodied Energy of Building Materials. Cannon Des. 2012, 1, 14–35. [Google Scholar]
- Cabeza, L.F.; Barreneche, C.; Miró, L.; Morera, J.M.; Bartolí, E.; Inés Fernández, A. Low carbon and low embodied energy materials in buildings: A review. Renew. Sustain. Energy Rev. 2013, 23, 536–542. [Google Scholar] [CrossRef]
- Jiao, Y.; Lloyd, C.R.; Wakes, S.J. The relationship between total embodied energy and cost of commercial buildings. Energy Build. 2012, 52, 20–27. [Google Scholar] [CrossRef]
Properties | Marine Clay | Cement | Hydrated Lime | Copper Slag |
---|---|---|---|---|
Liquid limit (%) | 40 | - | - | - |
Plastic limit (%) | 21 | - | - | - |
Plasticity index (%) | 19 | - | - | Nonplastic |
Specific gravity | 2.61 | 3.12 | 2.17 | 3.45 |
Fine gravel (4.75 < diameter < 20 mm) (%) | 0 | 0 | 0 | 0 |
Coarse sand (2.00 < diameter < 4.75 mm) (%) | 2 | 0 | 0 | 10 |
Medium sand (0.425 < diameter < 2.00 mm) (%) | 3 | 0 | 0 | 82 |
Fine sand (0.075 < diameter < 0.425 mm) (%) | 27 | 0 | 5 | 8 |
Silt (0.002 < diameter < 0.075 mm) (%) | 19 | 90 | 90 | 0 |
Clay (diameter < 0.002 mm) (%) | 49 | 10 | 5 | 0 |
Mean particle diameter (mm) | 0.0035 | 0.015 | 0.02 | 0.9 |
USCS class | CL | ML | ML | SP |
Compound | Portland Cement (%) | Lime (%) | Copper Slag (%) |
---|---|---|---|
SiO2 | 21.2 | - | 32.5 |
Al2O3 | 5.1 | 0.38 | 8.3 |
Fe2O3 | 2.5 | 0.3 | 43.5 |
CaO | 64.7 | 70.89 | 4 |
MgO | 0.9 | 1.95 | - |
K2O | 0.2 | - | - |
SO3 | 1.5 | - | 2.6 |
loss in ignition | 2.5 | 24.59 | - |
Name | Soil Type | Cement Contents (%) | Copper Slag Content (%) | Hydrated Lime Content (%) | Molding Dry Unit Weight (kN/m3) | Curing Periods (Days) | Test Type |
---|---|---|---|---|---|---|---|
Clay + Cement (CC) | Marine Deposited Clay | 7, 10 and 13 | - | - | 14.0, 16.0 | 7, 28, 60 | UCS, Wet-Dry Cycles * |
Clay + Cement + Slag (CCS) | 7 and 10 | 10% | - | 14.0, 16.0 | 7, 28, 60 | UCS, Wet-Dry Cycles * | |
Clay + Cement + Lime (CCL) | 7 and 10 | - | 5% | 14.0, 16.0 | 7, 28, 60 | UCS, Wet-Dry Cycles * | |
Clay + Cement + Lime + Slag (CCLS) | 7, 10 and 13 | 10% | 5% | 14.0, 16.0 | 7, 28, 60 | UCS, Wet-Dry Cycles *, SEM ** |
Process | Embodied Energy (MJ/kg) | eCO2 Emission (kg CO2/kg) |
---|---|---|
Production | ||
Cement | 4.50 | 0.74 |
Lime | 5.30 | 0.78 |
Copper Slag | 1.60 | 0.083 |
Water | 0.0009 | 0.000155 |
Transportation | ||
Cement through road | 0.35 | 0.32 |
Cement through seaway | 0.0162 | 0.007 |
Lime through road | 0.35 | 0.32 |
Lime through seaway | 0.0162 | 0.007 |
Copper slag through road | 0.0702 | 0.32 |
Water | 0.016 | 0.32 |
Quantities (kg/m3) | Embodied Energy (MJ/m3) | eCO2 Emission (kg CO2/m3) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mix | CC | CCS | CCL | CCLS | CC | CCS | CCL | CCLS | CC | CCS | CCL | CCLS |
Production | ||||||||||||
Cement | 145.00 | 131.00 | 138.00 | 131.00 | 652.50 | 589.50 | 621.00 | 589.50 | 107.30 | 96.94 | 102.12 | 96.94 |
Lime | 0.00 | 0.00 | 5.00 | 5.00 | 0.00 | 0.00 | 26.50 | 26.50 | 0.00 | 0.00 | 3.90 | 3.90 |
Copper Slag | 0.00 | 16.00 | 0.00 | 16.00 | 0.00 | 25.60 | 0.00 | 25.60 | 0.00 | 1.33 | 0.00 | 1.33 |
Water | 395.00 | 386.00 | 392.00 | 380.00 | 0.36 | 0.35 | 0.35 | 0.34 | 0.06 | 0.06 | 0.06 | 0.06 |
Transportation | ||||||||||||
Cement through road | 145.00 | 131.00 | 138.00 | 131.00 | 50.75 | 45.85 | 48.30 | 45.85 | 46.40 | 41.92 | 44.16 | 41.92 |
Cement through seaway | 145.00 | 131.00 | 138.00 | 131.00 | 2.35 | 2.12 | 2.24 | 2.12 | 1.02 | 0.92 | 0.97 | 0.92 |
Lime through road | 0.00 | 0.00 | 5.00 | 5.00 | 0.00 | 0.00 | 1.75 | 1.75 | 0.00 | 0.00 | 1.60 | 1.60 |
Lime through seaway | 0.00 | 0.00 | 5.00 | 5.00 | 0.00 | 0.00 | 0.08 | 0.08 | 0.00 | 0.00 | 0.04 | 0.04 |
Copper slag road | 0.00 | 16.00 | 0.00 | 16.00 | 0.00 | 1.12 | 0.00 | 1.12 | 0.00 | 5.12 | 0.00 | 5.12 |
Water | 395.00 | 386.00 | 392.00 | 380.00 | 6.32 | 6.18 | 6.27 | 6.08 | 126.40 | 123.52 | 125.44 | 121.60 |
Total | 712.27 | 670.72 | 706.49 | 698.95 | 281.18 | 269.80 | 278.28 | 273.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanafi, M.; Ekinci, A.; Aydin, E. Triple-Binder-Stabilized Marine Deposit Clay for Better Sustainability. Sustainability 2020, 12, 4633. https://doi.org/10.3390/su12114633
Hanafi M, Ekinci A, Aydin E. Triple-Binder-Stabilized Marine Deposit Clay for Better Sustainability. Sustainability. 2020; 12(11):4633. https://doi.org/10.3390/su12114633
Chicago/Turabian StyleHanafi, Mohamad, Abdullah Ekinci, and Ertug Aydin. 2020. "Triple-Binder-Stabilized Marine Deposit Clay for Better Sustainability" Sustainability 12, no. 11: 4633. https://doi.org/10.3390/su12114633