Solar Photocatalysis for Emerging Micro-Pollutants Abatement and Water Disinfection: A Mini-Review
Abstract
:1. Introduction
2. Solar Photocatalytic Approaches for Water and Wastewater Treatment
2.1. TiO2 Photocatalysis
Emerging Micro-Pollutant | Lab-Scale Photocatalytic Process | Catalyst Concentration/Light Intensity | Aqueous Matrix | Degradation Level | Reference | |
---|---|---|---|---|---|---|
Endocrine disrupting compounds (EDCs) | Bisphenol-A (BPA) and 17α-ethynylestradiol (EE2) | Various TiO2 photocatalysts (doping with N, P, Ca, Ag, Na, K, Pt) | 125–1000 mg/L/17.4 × 10−8 − 5.8 × 10−8 einstein/(L s) | Wastewater | Up to 90% in 60 min | [2] |
17α-ethynylestradiol (EE2) | TiO2 | 500–1000 mg/L/5.8 × 10−7 einstein/(L s) | Wastewater | Up to 89.9% in 90 min | [21] | |
Pharmaceutical micro-contaminants | Clofibric acid | Silver loaded activated carbon (Ag–AC) nanocomposites | 10 mg/L/natural sunlight * | Water | 97% after 80 min | [23] |
Diclofenac and memantine | Solar-assisted photocatalysis using hydrothermal TiO2–SnS2 | 5, 27.5 and 50% wt. SnS2/450 W xenon arc lamp * | Water | 59.8% for diclofenac and <5.3% for memantine after 60 min | [24] | |
Acetaminophen, ibuprofen and antipyrine | TiO2-activated carbon heterostructures | 250 mg/L/600 W/m2 (107.14 klx) | Water | Complete conversion within 3–6 h | [25] | |
Diclofenac | Immobilized TiO2-based zeolite composite photocatalyst (TiO2–FeZ) | Thin films with immobilized composite with TiO2: FeZ wt% = 74.6: 25.4/124.78 ± 0.11 mW/cm2 | Water | 99.7% after 180 min | [26] | |
Acetaminophen | TiO2/activated carbon heterostructures | 250 mg/L/600 W/m2 (107.14 klx) | Water | Complete conversion after 6 h | [27] | |
Ibuprofen, acetaminophen and antipyrine | ZnO/sepiolite heterostructured materials | 250 mg/L/intensity at 450 W/m2 | Wastewater | 70–100% in 10 h | [28] | |
Emerging Micro-Pollutant | Pilot-Scale Photocatalytic Process (CPC) | Catalyst Concentration/Light Intensity | Aqueous Matrix | Degradation Level | Reference | |
Endocrine disrupting compounds (EDCs) | Endocrine disruptors | Solar photo-Fenton process assisted with ferrioxalate | Molar ratio Fe/oxalic acid = 3/mean solar intensity = 30 W/m2 | Wastewater | Up to 79% of TOC (total organic carbon) removal in 2 h | [29,30] |
Pharmaceutical micro-contaminants | Nalidixic acid | Solar photo-Fenton and biological treatment (immobilized biomass reactor) | 20 mg/L of Fe2+ and 300 mg/L of H2O2/natural sunlight * | Pharmaceutical wastewater | Complete removal after 190 min | [31] |
Atenolol, hydrochlorothiazide, ofloxacin and trimethoprim | Ozone and solar TiO2-photocatalytic oxidation | Ozone dosage = 18–25 mg/L; TiO2 P25 = 200 mg L/QUV up to 40 kJ/L | Water and wastewater | Complete removal of pharmaceuticals and about 70% TOC removal | [32] | |
Acetaminophen, antipyrine, caffeine, ketorolac, metoprolol, sulfamethoxazole, carbamazepine, hydrochlorothiazide and diclofenac | Solar heterogeneous photocatalysis with TiO2, solar photo-Fenton | Ozone concentration in the gas phase = 13 mg/L; TiO2 = 250 mg/L; Fe(III) = 2.8 mg/L or Fe3O4 = 150 mg/L/QUV = 30–38 kJ/L | Wastewater | 80–100% after 180 min | [33] | |
Phenol, dichloroacetic acid and pyrimethanil | Two titania (the commercial P25 and a homemade catalyst, TiEt-450) | P25 = 200 mg/L and TiEt-450 = 500 mg/L/mean solar intensity = 30 W/m2 | Deionized water (DW) and natural ground water (NW) | Up to complete removal in t30w = 50–100 min | [13] | |
Ofloxacin, sulfamethoxazole, carbamazepine, flumequine and ibuprofen | Two titania (the commercial P25 and a homemade catalyst, TiEt-450) | P25 = 200 mg/L and TiEt-450 = 500 mg/L/mean solar intensity = 30 W/m2 | Deionized water (DW) and natural ground water (NW) | Up to complete removal in t30w = 30 min | [13] | |
Ibuprofen | TiO2 | 0.1–1 g/L/QUV up to 60 kJ/L | Water | Total elimination when approximately 80% of TOC still remain in solution (QUV = 60 kJ/L) | [22] | |
Acetaminophen, antipyrine, atrazine, caffeine, carbamazepine, diclofenac, flumequine, hydroxybiphenyl, ibuprofen, isoproturon, ketorolac, ofloxacin, progesterone, sulfamethoxazole and triclosan | Solar photo-Fenton | Fe = 5 mg/L/mean solar intensity = 30 W/m2 | Wastewater | Complete elimination in t30w = 60–300 min | [34] | |
Various contaminants including antibiotics | Conventional photo-Fenton at pH3 and modified photo-Fenton at neutral pH | Fe = 5 mg/L; H2O2 = 50 mg/L/mean solar intensity = 30 W/m2 | Wastewater | Removal of over 95% in t30w up to 150 min | [35] | |
Propranolol | TiO2 | 0.1–0.4 g/L/QUV up to 1.5 kJ/L | Water | 81% in 240 min | [36] | |
Pesticides | Imazalil, acetamiprid and thiabendazole | TiO2 supported on glass beads | QUV = 20–40 kJ/L | Wastewater | 90–100% | [37] |
Emerging Micro-Pollutant | Pilot-Scale (Solar Raceway Pond Reactors) | Catalyst Concentration/Light Intensity | Aqueous Matrix | Reference | ||
Pharmaceutical micro-contaminants | Contaminants of emerging concern (CECs)—Various antibiotics | Photo-Fenton at neutral pH | Fe3+ = 5.6 mg/L and H2O2 = 30 mg/L/mean solar intensity = 30 W/m2 | Wastewater | Over 80% degradation after 15 min | [38] |
Microorganism | Lab-Scale Photocatalytic Process | Catalyst Concentration/Light Intensity | Aqueous Matrix | Inactivation Level | Reference | |
---|---|---|---|---|---|---|
Bacteria | Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus | Silver-loaded activated carbon (Ag–AC) nanocomposites | 10 mg/L/natural sunlight * | Water | Satisfactory antimicrobial activity (agar diffusion method) | [23] |
Escherichia coli, Salmonella sp., Shigella sp. and Vibrio cholerae | Bare and metal-ion (silver, copper and iron)-doped TiO2 photocatalysts | 0.1–1.0 g/L/average intensity of radiation = 37.6 mW/cm2 | Wastewater | 86.8–100% in 180 min | [39] | |
Escherichia coli, total coliforms, Enterococci, Vibrio owensii, Vibrio alfacsensis and Vibrio harveyi | Ink-jet printed composite TiO2/SiO2 thin film | UV dose up to 44.91 Wh/m2 | Water/marine water | Up to 99% in 100 min | [40] | |
Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus | N-doped TiO2 photocatalysts | 25–100 mg/L/irradiance = 1.31 × 10−2 W/m2 | Water | 4–6 Logs in 15–60 min (depending on the bacterium and catalyst concentration) | [9] | |
Escherichia coli and Klebsiella pneumoniae | Mn-, Co- and Mn/Co-doped TiO2 catalysts | 25–250 mg/L/irradiance = 1.31 × 10−2 W/m2 | Water | 5–6 Logs in 15–30 min (depending on the bacterium and catalyst concentration) | [19] | |
Staphylococcus aureus | Fe-, Al- and Cr-doped TiO2 catalysts | 5–50 mg/L/irradiance = 1.31 × 10−2 W/m2 | Water | 5 Logs in 6–30 min | [41] | |
Vibrio cholerae | Ag@ZnO core–shell-structured nanocomposites | 0.5 mg/L/ * | Water | Almost 98% in at 40–60 min | [5] | |
Escherichia coli | Ag core–TiO2 shell-structured (Ag@TiO2) nanoparticles | 0.4 g/L/average light intensity = 970 × 102 lux | Water | 8 Logs in 15 min | [42] | |
Escherichia coli | TiO2 P-25, PC500, Ruana and Bi2WO6 | 0.05–1 g/L/solar UV irradiance up to 40 W/m2 | Water | 6 Logs in 15–120 min | [6] | |
Heterotrophic bacteria | TiO2 | 0.5 g/L/solar UV irradiance = 14–27 W/m2 | Dairy wastewater | 41–97% in 30 min | [43] | |
Escherichia coli | Neutral solar heterogeneous photo-Fenton (HPF) over hybrid iron/montmorillonite/alginate beads | 0–20 beads with 10 ppm of H2O2/irradiation intensity = 1200 W m−2 | Water | 7 Logs in 1 h | [44] | |
Fungi | Fusarium sp. | TiO2 | 35 mg/L/average solar UV-A irradiance = 25.78 W/m2 | Water | 3 Logs in 1-6 h | [45] |
Viruses | Phages MS2, UX174 and PR772 | TiO2 | 50 mg/L/average solar UV-A irradiance = 19–33 W/m2 | Water | 3 Logs in 1 h | [46] |
Phage MS2 | Mn-, Co- and Mn/Co-doped TiO2 catalysts | 100 mg/L/average solar UV-A irradiance = 12.7–13.4 W/m2 | Wastewater | Up to 4 Logs in 60 min | [47] | |
Phage MS2 | Iron (hydr)oxide-mediated Fenton-like processes | 200 mg/L of iron oxides and 50 μM of H2O2/irradiance = 320 W/m2 | Water | 5 Logs in 240 min | [48] | |
Parasites | Cryptosporidium parvum oocysts | TiO2 | 100–200 mg/L/irradiance = 500 W/m2 | Water and simulated WWTP effluent | 99 up to 50% in 5 h, in water and wastewater, respectively | [10] |
Microorganism | Pilot-Scale Photocatalytic Process (CPC) | Catalyst Concentration/Light Intensity | Aqueous Matrix | Inactivation Level | Reference | |
Bacteria | Escherichia coli, Enterococcus faecalis | Synthetized Ag modified BiVO4 composite | 0.2–1 g/L/average solar UVA irradiance = 27 ± 2 W/m2 | Water and secondary effluents | 6 Logs in 60 min | [12] |
Enterococcus faecium and Klebsiella pneumoniae | Immobilized TiO2 reduced graphene oxide | loading ofTiO2-rGO = 0.89 mg/cm2/average solar UVA irradiance up to 40 W/m2 | Rainwater | 8–9 Logs in 240 min | [49] | |
Escherichia coli K12 | Industrial TiO2-coated paper matrix fixed on a tubular support in the focus of the CPC | Coated at a dose of 20 g TiO2/m2/average solar UVA irradiance = 22 W/m2 | Water | 6 Logs in 90 min | [50] | |
Escherichia coli | TiO2 (Degussa P25) in suspension or TiO2 supported on Ahlstrom paper (NW10) fixed | 50 mg/L (suspension) and dose = 11.8 g/m2 (fixed)/average solar UVA irradiance up to 40 W/m2 | Water | Up to 6 Logs in 50 min | [51] | |
Escherichia coli | Suspended TiO2 | 100 mg/L * | Urban and simulated urban effluents | Up to 5.5 Logs when Quv = 12 kJ/L | [52] | |
Aeromonas hydrophila | Thin film fixed-bed reactor (TFFBR) coated with P25 DEGUSSA TiO2 | Density of TiO2 = 20.50 g/m2/solar irradiance = 980–1100 W/m2 | Water | Up to 5 Logs in 30 min, depending on operating conditions | [20] | |
Fungi | Fusarium solani | Synthetized Ag modified BiVO4 composite | 0.2–1 g/L/average solar UVA irradiance = 27 ± 2 W/m2 | Water and secondary effluents | Almost 3 Logs in 240 min | [12] |
Fusarium solani | Suspended TiO2 | 100 mg/L * | Urban and simulated urban effluents | Up to 2.5 Logs when Quv = 5 kJ/L | [52] | |
Microorganism | Pilot-Scale (Solar Raceway Pond Reactors) | Catalyst Concentration/Light Intensity | Aqueous Matrix | Inactivation Level | Reference | |
Bacteria | Total Coliforms, Escherichia coli and Enterococcus sp. | Solar photo-Fenton | Fe2+ = 2.5–20 mg/L and H2O2 = 30 or 50 mg/L/average solar UVA = 13–34 W/m2 | Secondary wastewater effluents | 4–5 Logs in 11–15 h | [53] |
2.2. Slurry or Immobilized Catalysts?
2.3. Photocatalysts Other than TiO2
2.4. Heterogeneous Photo-Fenton Systems
2.5. Transformation By-Products
3. The Intriguing Role of the Water Matrix
4. Type of Waterborne Pathogens Tested in Solar Photocatalysis
5. Antibiotic-Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs)
Antibiotic Resistant Bacteria (ARB) | Aqueous Matrix | Treatment | Removal Level | Reference |
---|---|---|---|---|
Escherichia coli | Wastewater | Solar TiO2 photocatalysis | 93.17% removal after 10 min | [11] |
Escherichia coli | Water | Solar photocatalysis using Fe-doped ZnO nanoparticles | More than 99.9% removal after 90 min | [63] |
Escherichia coli | Wastewater | Solar photocatalysis using N-doped TiO2 nanoparticles | More than 5 Log bacterial reduction after 10 min of irradiation | [91] |
Klebsiella pneumoniae | Wastewater | Solar photocatalysis using Mn-, Co- and binary Mn/Co-TiO2 nanoparticles | Bacterial decrease from 4 to 6 Logs upon 90 min of exposure to simulated solar irradiation | [15] |
Bacillus sp. | Water | Solar photocatalysis using Ag@SnO2@ZnO core–shell nanocomposites | 7 Log bacterial reduction within 210 min with a catalyst concentration of 500 mg/L | [64] |
Escherichia coli | Wastewater | UV irradiation | Total inactivation after 60 min | [90] |
Escherichia coli | Wastewater | Chlorination | Total inactivation after 120 min | [90] |
Heterotrophic bacteria resistant to various antibiotics | Wastewater | Chlorination | Total inactivation | [89] |
Antibiotic Resistance Genes (ARGs) | Aqueous Matrix | Treatment | Removal Level | Reference |
blaTEM, ermB, qnrS, sulI and tetW | Wastewater | Wastewater treatment plant (WWTP) | Incomplete removal | [85] |
tetA, tetB, tetE, tetG, tetH, tetS, tetT, tetX, sul1, sul2, qnrB and ermC | Wastewater | WWTP | Proliferation of ARGs through biological WWTP* processes | [87] |
sul1, tetX, tetG and intI1 | Municipal wastewater effluent | Chlorination | Reduction of ARGs in the range 1.20–1.49 Logs | [92] |
sul1, tetX, tetG and intI1 | Municipal wastewater effluent | UV/chlorination | Reduction of ARGs up to 2 Logs | [92] |
mecA, ermB, sul1, tetA, tetW and tetX | Wastewater | WWTP | Incomplete removal | [93] |
tetA, tetB, tetE, tetM, tetZ, tetW, sul1, sul2, sul3, gryA, qnrC, qnrD and parC | Wastewater | WWTP | Concentrations of the selected ARGs were kept relatively constant during treatment procedures | [14] |
tetO, tetQ, tetW, tetH and tetZ | Wastewater | WWTP | Detectable ARGs in the effluents and possible proliferation | [86] |
ereA, ereB, ermA, ermB, tetA, tetB, tetM and tetO | Wastewater | Chlorination | Limited removal levels (0.1–0.4 Logs) | [89] |
6. Pilot-Scale Application
7. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Sivakumar, M.; Yang, S.; Enever, K.; Ramezanianpour, M. Application of solar energy in water treatment processes: A review. Desalination 2018, 428, 116–145. [Google Scholar] [CrossRef] [Green Version]
- Dimitroula, H.; Daskalaki, V.M.; Frontistis, Z.; Kondarides, D.I.; Panagiotopoulou, P.; Xekoukoulotakis, N.P.; Mantzavinos, D. Solar photocatalysis for the abatement of emerging micro-contaminants in wastewater: Synthesis, characterization and testing of various TiO2 samples. Appl. Catal. B Environ. 2012, 283–291. [Google Scholar] [CrossRef]
- Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Das, S.; Sinha, S.; Suar, M.; Yun, S.-I.; Mishra, A.; Tripathy, S.K. Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core–shell structure nanocomposites. J. Photochem. Photobiol. B Biol. 2015, 142, 68–76. [Google Scholar] [CrossRef]
- Helali, S.; Polo-López, M.I.; Fernández-Ibáñez, P.; Ohtani, B.; Amano, F.; Malato, S.; Guillard, C. Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. J. Photochem. Photobiol. A Chem. 2014, 276, 31–40. [Google Scholar] [CrossRef]
- Aoudjit, L.; Martins, P.; Madjene, F.; Petrovykh, D.; Lanceros-Mendez, S. Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor. J. Hazard. Mater. 2018, 344, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Miralles-Cuevas, S.; Oller, I.; Pérez, J.S.; Malato, S. Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Res. 2014, 64, 23–31. [Google Scholar] [CrossRef]
- Makropoulou, T.; Panagiotopoulou, P.; Venieri, D. N-doped TiO2 photocatalysts for bacterial inactivation in water. J. Chem. Technol. Biotechnol. 2018, 93, 2518–2526. [Google Scholar] [CrossRef]
- Abeledo-Lameiro, M.J.; Ares-Mazás, E.; Gómez-Couso, H. Evaluation of solar photocatalysis using TiO2 slurry in the inactivation of Cryptosporidium parvum oocysts in water. J. Photochem. Photobiol. B Biol. 2016, 163, 92–99. [Google Scholar] [CrossRef]
- Rizzo, L.; Della Sala, A.; Fiorentino, A.; Puma, G.L. Disinfection of urban wastewater by solar driven and UV lamp–TiO2 photocatalysis: Effect on a multi drug resistant Escherichia coli strain. Water Res. 2014, 53, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Booshehri, A.Y.; Polo-Lopez, M.; Castro-Alférez, M.; He, P.; Xu, R.; Rong, W.; Malato, S.; Fernández-Ibáñez, P. Assessment of solar photocatalysis using Ag/BiVO 4 at pilot solar Compound Parabolic Collector for inactivation of pathogens in well water and secondary effluents. Catal. Today 2017, 281, 124–134. [Google Scholar] [CrossRef]
- Carbajo, J.; Jiménez, M.; Miralles, S.; Malato, S.; Faraldos, M.; Bahamonde, A. Study of application of titania catalysts on solar photocatalysis: Influence of type of pollutants and water matrices. Chem. Eng. J. 2016, 291, 64–73. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X.; Meng, W. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 2015, 119, 1379–1385. [Google Scholar] [CrossRef]
- Venieri, D.; Gounaki, I.; Bikouvaraki, M.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Solar photocatalysis as disinfection technique: Inactivation of Klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile. J. Environ. Manag. 2017, 195, 140–147. [Google Scholar] [CrossRef]
- Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [Google Scholar] [CrossRef]
- Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S.A.; Poulios, I.; Mantzavinos, D. Advanced oxidation processes for water treatment: Advances and trends for R&D. J. Chem. Technol. Biotechnol. 2008, 83, 769–776. [Google Scholar] [CrossRef]
- Carp, O. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Venieri, D.; Fraggedaki, A.; Kostadima, M.; Chatzisymeon, E.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Appl. Catal. B Environ. 2014, 154-155, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.J.; Reed, R.H.; Rasul, M.G. Thin-film fixed-bed reactor for solar photocatalytic inactivation of Aeromonas hydrophila: Influence of water quality. BMC Microbiol. 2012, 12, 285. [Google Scholar] [CrossRef] [Green Version]
- Fanourgiakis, S.; Frontistis, Z.; Chatzisymeon, E.; Venieri, D.; Mantzavinos, D. Simultaneous removal of estrogens and pathogens from secondary treated wastewater by solar photocatalytic treatment. Glob. Nest J. 2014, 16, 543–552. [Google Scholar]
- Méndez-Arriaga, F.; Maldonado, M.I.; Gimenez, J.; Esplugas, S.; Malato, S. Abatement of ibuprofen by solar photocatalysis process: Enhancement and scale up. Catal. Today 2009, 144, 112–116. [Google Scholar] [CrossRef]
- Devi, T.B.; Mohanta, D. Ahmaruzzaman Biomass derived activated carbon loaded silver nanoparticles: An effective nanocomposites for enhanced solar photocatalysis and antimicrobial activities. J. Ind. Eng. Chem. 2019, 76, 160–172. [Google Scholar] [CrossRef]
- Kovacic, M.; Papac, J.; Kusic, H.; Karamanis, P.; Bozic, A.L. Degradation of polar and non-polar pharmaceutical pollutants in water by solar assisted photocatalysis using hydrothermal TiO2-SnS2. Chem. Eng. J. 2020, 382, 122826. [Google Scholar] [CrossRef]
- Peñas-Garzón, M.; Gómez-Avilés, A.; Belver, C.; Rodriguez, J.; Bedia, J. Degradation pathways of emerging contaminants using TiO2-activated carbon heterostructures in aqueous solution under simulated solar light. Chem. Eng. J. 2020, 392, 124867. [Google Scholar] [CrossRef]
- Salaeh, S.; Perisic, D.J.; Biosic, M.; Kusic, H.; Babic, S.; Stangar, U.L.; Dionysiou, D.D.; Bozic, A.L. Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chem. Eng. J. 2016, 304, 289–302. [Google Scholar] [CrossRef]
- Peñas-Garzón, M.; Gómez-Avilés, A.; Bedia, J.; Rodriguez, J.J.; Belver, C. Effect of Activating Agent on the Properties of TiO2/Activated Carbon Heterostructures for Solar Photocatalytic Degradation of Acetaminophen. Materials 2019, 12, 378. [Google Scholar] [CrossRef] [Green Version]
- Akkari, M.; Aranda, P.; Belver, C.; Bedia, J.; Amara, A.B.H.; Ruiz-Hitzky, E. ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Appl. Clay Sci. 2018, 156, 104–109. [Google Scholar] [CrossRef]
- Foteinis, S.; Monteagudo, J.M.; Durán, A.; Chatzisymeon, E. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale. Sci. Total Environ. 2018, 612, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Expósito, A.J.; Durán, A.; Monteagudo, J.M.; Acevedo, A.; Durán, A. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant. Chemosphere 2016, 150, 254–257. [Google Scholar] [CrossRef]
- Sirtori, C.; Zapata, A.; Oller, I.; Gernjak, W.; Agüera, A.; Malato, S. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Res. 2009, 43, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Márquez, G.; Rodríguez, E.; Maldonado, M.I.; Álvarez, P.M. Integration of ozone and solar TiO2-photocatalytic oxidation for the degradation of selected pharmaceutical compounds in water and wastewater. Sep. Purif. Technol. 2014, 136, 18–26. [Google Scholar] [CrossRef]
- Gimeno, O.; García-Araya, J.; Beltrán, F.; Rivas, F.; Espejo, A. Removal of emerging contaminants from a primary effluent of municipal wastewater by means of sequential biological degradation-solar photocatalytic oxidation processes. Chem. Eng. J. 2016, 290, 12–20. [Google Scholar] [CrossRef]
- Klamerth, N.; Rizzo, L.; Malato, S.; Maldonado, M.I.; Aguera, A.; Fernandezalba, A.R. Degradation of fifteen emerging contaminants at μgL−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Res. 2010, 44, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Klamerth, N.; Malato, S.; Agüera, A.; Fernández-Alba, A. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Res. 2013, 47, 833–840. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz, N.; Dantas, R.F.; Giménez, J.; Esplugas, S. Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: Solar and artificial light. Appl. Catal. B Environ. 2013, 130, 249–256. [Google Scholar] [CrossRef]
- Jiménez-Tototzintle, M.; Oller, I.; Hernández-Ramírez, A.; Malato, S.; Maldonado, M. Remediation of agro-food industry effluents by biotreatment combined with supported TiO2/H2O2 solar photocatalysis. Chem. Eng. J. 2015, 273, 205–213. [Google Scholar] [CrossRef]
- Soriano-Molina, P.; Plaza-Bolaños, P.; Lorenzo, A.; Agüera, A.; Sánchez, J.G.; Malato, S.; Pérez, J.S. Assessment of solar raceway pond reactors for removal of contaminants of emerging concern by photo-Fenton at circumneutral pH from very different municipal wastewater effluents. Chem. Eng. J. 2019, 366, 141–149. [Google Scholar] [CrossRef]
- Mecha, A.C.; Onyango, M.S.; Ochieng, A.; Momba, M.N.B. UV and solar photocatalytic disinfection of municipal wastewater: Inactivation, reactivation and regrowth of bacterial pathogens. Int. J. Environ. Sci. Technol. 2019, 16, 3687–3696. [Google Scholar] [CrossRef]
- Levchuk, I.; Homola, T.; Moreno-Andrés, J.; Rueda-Márquez, J.J.; Dzik, P.; Moríñigo, M.Á.; Sillanpää, M.; Manzano, M.A.; Vahala, R. Solar photocatalytic disinfection using ink-jet printed composite TiO2/SiO2 thin films on flexible substrate: Applicability to drinking and marine water. Sol. Energy 2019, 191, 518–529. [Google Scholar] [CrossRef]
- Venieri, D.; Tournas, F.; Gounaki, I.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Inactivation ofStaphylococcus aureusin water by means of solar photocatalysis using metal doped TiO2 semiconductors. J. Chem. Technol. Biotechnol. 2017, 92, 43–51. [Google Scholar] [CrossRef]
- Sreeja, S.; K Shetty, V. Photocatalytic water disinfection under solar irradiation by Ag@TiO2 core-shell structured nanoparticles. Sol. Energy 2017, 157, 236–243. [Google Scholar] [CrossRef]
- Afsharnia, M.; Kianmehr, M.; Biglari, H.; Dargahi, A.; Karimi, A. Disinfection of dairy wastewater effluent through solar photocatalysis processes. Water Sci. Eng. 2018, 11, 214–219. [Google Scholar] [CrossRef]
- Barreca, S.; Vélez-Colmenares, J.; Pace, A.; Orecchio, S.; Pulgarin, C. Escherichia coli inactivation by neutral solar heterogeneous photo-Fenton (HPF) over hybrid iron/montmorillonite/alginate beads. J. Environ. Chem. Eng. 2015, 3, 317–324. [Google Scholar] [CrossRef]
- Sichel, C.; De Cara, M.; Tello, J.; Blanco, J.; Ibáñez, P.F. Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl. Catal. B Environ. 2007, 74, 152–160. [Google Scholar] [CrossRef]
- Misstear, D.B.; Gill, L.W. The inactivation of phages MS2, ΦX174 and PR772 using UV and solar photocatalysis. J. Photochem. Photobiol. B Biol. 2012, 107, 1–8. [Google Scholar] [CrossRef]
- Venieri, D.; Gounaki, I.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2. Appl. Catal. B Environ. 2015, 178, 54–64. [Google Scholar] [CrossRef]
- Nieto-Juarez, J.I.; Kohn, T. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark. Photochem. Photobiol. Sci. 2013, 12, 1596–1605. [Google Scholar] [CrossRef]
- Waso, M.; Khan, S.; Singh, A.; McMichael, S.; Ahmed, W.; Fernández-Ibáñez, P.; Byrne, J.; Khan, W. Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater. Water Res. 2020, 169, 115281. [Google Scholar] [CrossRef]
- Sichel, C.; Blanco, J.; Malato, S.; Ibáñez, P.F. Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection. J. Photochem. Photobiol. A Chem. 2007, 189, 239–246. [Google Scholar] [CrossRef]
- Gomes, A.I.; Santos, J.C.; Vilar, V.J.; Boaventura, R.A. Inactivation of Bacteria E. coli and photodegradation of humic acids using natural sunlight. Appl. Catal. B Environ. 2009, 88, 283–291. [Google Scholar] [CrossRef]
- García-Fernández, I.; Fernández-Calderero, I.; Polo-López, M.I.; Fernández-Ibáñez, P. Disinfection of urban effluents using solar TiO2 photocatalysis: A study of significance of dissolved oxygen, temperature, type of microorganism and water matrix. Catal. Today 2015, 240, 30–38. [Google Scholar] [CrossRef]
- De la Obra Jiménez, I.; Esteban García, B.; Rivas Ibáñez, G.; Casas López, J.L.; Sanchez Pérez, J.A. Continuous flow disinfection of WWTP secondary effluents by solar photo-Fenton at neutral pH in raceway pond reactors at pilot plant scale. Appl. Catal. B Environ. 2019, 247, 115–123. [Google Scholar] [CrossRef]
- Venieri, D.; Chatzisymeon, E.; Gonzalo, M.S.; Rosal, R.; Mantzavinos, D. Inactivation of Enterococcus faecalis by TiO2-mediated UV and solar irradiation in water and wastewater: Culture techniques never say the whole truth. Photochem. Photobiol. Sci. 2011, 10, 1744. [Google Scholar] [CrossRef] [Green Version]
- Karunakaran, C.; Vijayabalan, A.; Manikandan, G.; Gomathisankar, P. Visible light photocatalytic disinfection of bacteria by Cd–TiO2. Catal. Commun. 2011, 12, 826–829. [Google Scholar] [CrossRef]
- Malato, S.; Maldonado, M.I.; Fernández-Ibáñez, P.; Oller, I.; Polo, I.; Sánchez-Moreno, R. Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Mater. Sci. Semicond. Process. 2016, 42, 15–23. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.; Hamilton, J.W.; Byrne, J.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Binas, V.; Venieri, D.; Kotzias, D.; Kiriakidis, G. Modified TiO2 based photocatalysts for improved air and health quality. J. Mater. 2017, 3, 3–16. [Google Scholar] [CrossRef]
- Papadimitriou, V.C.; Stefanopoulos, V.G.; Romanias, M.N.; Papagiannakopoulos, P.; Sambani, K.; Tudose, V.; Kiriakidis, G. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light. Thin Solid Films 2011, 520, 1195–1201. [Google Scholar] [CrossRef]
- Byrne, J.A.; Fernandez-Ibañez, P.A.; Dunlop, P.S.M.; Alrousan, D.M.A.; Hamilton, J.W.J. Photocatalytic Enhancement for Solar Disinfection of Water: A Review. Int. J. Photoenergy 2011, 2011, 1–12. [Google Scholar] [CrossRef]
- Ede, S.; Hafner, L.; Dunlop, P.; Byrne, J.; Will, G. Photocatalytic Disinfection of Bacterial Pollutants Using Suspended and Immobilized TiO2 Powders. Photochem. Photobiol. 2012, 88, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, P.; McMurray, T.A.; Hamilton, J.W.J.; Byrne, J.A. Photocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes. J. Photochem. Photobiol. A Chem. 2008, 196, 113–119. [Google Scholar] [CrossRef]
- Das, S.; Sinha, S.; Das, B.; Jayabalan, R.; Suar, M.; Mishra, A.; Tamhankar, A.J.; Lundborg, C.S.; Tripathy, S.K. Disinfection of Multidrug Resistant Escherichia coli by Solar-Photocatalysis using Fe-doped ZnO Nanoparticles. Sci. Rep. 2017, 7, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; JyotiMisraab, A.; Rahmanab, A.; Dasc, B.; Jayabalan, R.J.; Tamhankarbd, A.; Mishrab, A.; Lundborg, C.S.; Tripathy, S.K. Ag@SnO2@ZnO core-shell nanocomposites assisted solar-photocatalysis downregulates multidrug resistance in Bacillus sp.: A catalytic approach to impede antibiotic resistance. Appl. Catal. B Environ. 2019, 259, 118065. [Google Scholar] [CrossRef]
- Ayodhya, D.; Venkatesham, M.; Kumari, A.S.; Reddy, G.B.; Guttena, V. One-pot sonochemical synthesis of CdS nanoparticles: Photocatalytic and electrical properties. Int. J. Ind. Chem. 2015, 6, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo, W.; Li, Z.; et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010, 9, 559–564. [Google Scholar] [CrossRef]
- Eswar, N.K.; Ramamurthy, P.C.; Madras, G. Enhanced sunlight photocatalytic activity of Ag3PO4 decorated novel combustion synthesis derived TiO2nanobelts for dye and bacterial degradation. Photochem. Photobiol. Sci. 2015, 14, 1227–1237. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.-W.; Gao, Z.-D.; Han, K.; Liu, Y.; Song, Y.-Y. Synthesis of Magnetically Separable Ag3PO4/TiO2/Fe3O4 Heterostructure with Enhanced Photocatalytic Performance under Visible Light for Photoinactivation of Bacteria. Appl. Mater. Interfaces 2014, 6, 15122–15131. [Google Scholar] [CrossRef]
- Yang, X.; Qin, J.; Jiang, Y.; Li, R.; Li, Y.; Tang, H. Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria. RSC Adv. 2014, 4, 18627–18636. [Google Scholar] [CrossRef]
- Springer-Verlag GmbH Germany. Advances in Photocatalytic Disinfection. In Frontiers of Green Catalytic Selective Oxidations; Springer-Verlag GmbH Germany: Heidelberg, Germany, 2017; pp. 1–16. Available online: https://link.springer.com/book/10.1007/978-3-662-53496-0 (accessed on 30 November 2020).
- IWA Publishing 2nd edition. Wastewater and Biosolids Management. Available online: https://www.iwapublishing.com/books/9781789061659/wastewater-and-biosolids-management-2nd-edition (accessed on 28 May 2020).
- Ioannidou, E.; Frontistis, Z.; Antonopoulou, M.; Venieri, D.; Konstantinou, I.K.; Kondarides, D.I.; Mantzavinos, D. Solar photocatalytic degradation of sulfamethoxazole over tungsten–Modified TiO2. Chem. Eng. J. 2017, 318, 143–152. [Google Scholar] [CrossRef]
- Outsiou, A.; Frontistis, Z.; Ribeiro, R.S.; Antonopoulou, M.; Konstantinou, I.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T.; Mantzavinos, D. Activation of sodium persulfate by magnetic carbon xerogels (CX/CoFe) for the oxidation of bisphenol A: Process variables effects, matrix effects and reaction pathways. Water Res. 2017, 124, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepper, I.; Gerba, C.; Gentry, T. Environmental Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780123946263. [Google Scholar]
- Zuo, X.; Hu, J.; Chen, M. The role and fate of inorganic nitrogen species during UVA/TiO2 disinfection. Water Res. 2015, 80, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Marugán, J.; Van Grieken, R.; Pablos, C. Kinetics and influence of water composition on photocatalytic disinfection and photocatalytic oxidation of pollutants. Environ. Technol. 2010, 31, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Zhang, X.; Zhang, W.; Zhang, S.; Su, H.; Tan, T. Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan–TiO2 organic–inorganic composites for water disinfection. Appl. Catal. B Environ. 2015, 170–171, 255–262. [Google Scholar] [CrossRef]
- Adefisoye, M.A.; Nwodo, U.U.; Green, E.; Okoh, A.I. Quantitative PCR Detection and Characterisation of Human Adenovirus, Rotavirus and Hepatitis A Virus in Discharged Effluents of Two Wastewater Treatment Facilities in the Eastern Cape, South Africa. Food Environ. Virol. 2016, 8, 262–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jebri, S.; Hmaied, F.; Jofre, J.; Yahya, M.; Mendez, J.; Barkallah, I.; Hamdi, M. Effect of gamma irradiation on bacteriophages used as viral indicators. Water Res. 2013, 47, 3673–3678. [Google Scholar] [CrossRef]
- Ditta, I.B.; Steele, A.; Liptrot, C.; Tobin, J.; Tyler, H.; Yates, H.M.; Sheel, D.W.; Foster, H.A. Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Appl. Microbiol. Biotechnol. 2008, 79, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Dalrymple, O.K.; Stefanakos, E.; Trotz, M.A.; Goswami, D.Y. A review of the mechanisms and modeling of photocatalytic disinfection. Appl. Catal. B Environ. 2010, 98, 27–38. [Google Scholar] [CrossRef]
- Süß, J.; Volz, S.; Obst, U.; Schwartz, T. Application of a molecular biology concept for the detection of DNA damage and repair during UV disinfection. Water Res. 2009, 43, 3705–3716. [Google Scholar] [CrossRef]
- Rochelle, P.A.; Upton, S.J.; Montelone, B.A.; Woods, K. The response of Cryptosporidium parvum to UV light. Trends Parasitol. 2005, 21, 81–87. [Google Scholar] [CrossRef]
- Manaia, C.M.; Macedo, G.; Fatta-Kassinos, D.; Nunes, O.C. Antibiotic resistance in urban aquatic environments: Can it be controlled? Appl. Microbiol. Biotechnol. 2016, 100, 1543–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, J.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Al-Jassim, N.; Ansari, M.I.; Harb, M.; Hong, P.-Y. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation? Water Res. 2015, 73, 277–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P.J. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015, 85, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Jahne, M.A.; Rogers, S.W.; Ramler, I.P.; Holder, E.; Hayes, G. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system. Environ. Monit. Assess. 2015, 187, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.-B.; Guo, M.-T.; Yang, J. Fate of Antibiotic Resistant Bacteria and Genes during Wastewater Chlorination: Implication for Antibiotic Resistance Control. PLoS ONE 2015, 10, e0119403. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Fiorentino, A.; Anselmo, A. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains. Chemosphere 2013, 92, 171–176. [Google Scholar] [CrossRef]
- Rizzo, L.V.; Sannino, D.; Vaiano, V.; Sacco, O.; Scarpa, A.; Pietrogiacomi, D. Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Appl. Catal. B Environ. 2014, 144, 369–378. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, Y.; Geng, J.; Ren, H.; Zhang, Y.; Ding, L.; Xu, K. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Sci. Total Environ. 2015, 512–513, 125–132. [Google Scholar] [CrossRef]
- Naquin, A.; Shrestha, A.; Sherpa, M.; Nathaniel, R.; Boopathy, R. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA. Bioresour. Technol. 2015, 188, 79–83. [Google Scholar] [CrossRef]
- Barwal, A.; Chaudhary, R. Feasibility study for the treatment of municipal wastewater by using a hybrid bio-solar process. J. Environ. Manag. 2016, 177, 271–277. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venieri, D.; Mantzavinos, D.; Binas, V. Solar Photocatalysis for Emerging Micro-Pollutants Abatement and Water Disinfection: A Mini-Review. Sustainability 2020, 12, 10047. https://doi.org/10.3390/su122310047
Venieri D, Mantzavinos D, Binas V. Solar Photocatalysis for Emerging Micro-Pollutants Abatement and Water Disinfection: A Mini-Review. Sustainability. 2020; 12(23):10047. https://doi.org/10.3390/su122310047
Chicago/Turabian StyleVenieri, Danae, Dionissios Mantzavinos, and Vassilios Binas. 2020. "Solar Photocatalysis for Emerging Micro-Pollutants Abatement and Water Disinfection: A Mini-Review" Sustainability 12, no. 23: 10047. https://doi.org/10.3390/su122310047