Worldwide Overview and Country Differences in Metaverse Research: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Tools
2.1. Data Collection
2.2. Methodology Tool
3. Results
3.1. General Publication Output and Growth Trend
3.2. Keyword Analysis
3.3. Performance Analysis by Country and Region
3.3.1. Contributions by Country and Region
3.3.2. Analysis of International Collaboration
3.4. National Differences: Comparison of the United States, China and Germany
3.4.1. Comparison of Institutional Contributions
3.4.2. Comparison of Keyword Co-Occurrence
3.4.3. Comparison of Keyword Citation Bursts
4. Conclusions
4.1. Conclusions and Limitations
4.2. Future Research Avenues
- Economic systems have played pivotal roles in the Metaverse for various sectors, including Bitcoin, DeFi, cryptocurrencies, NFT, etc. [84]. Among them, NFT has the characteristics of particularity, uniqueness, pair-to-pair non-interchangeability, exclusivity, indivisibility and free tradability. By minting digital products into NFT, all stakeholders can control the ownership of digital products and share the economic value of the Metaverse. However, as a democratization content creation and commercialization tool, the NFTs give scammers and malicious content creators the opportunity to exploit the system by selling copies or low-quality NFTs [85]. With exaggerated price fluctuations, NFT also has great regulatory risks and is easy to be instigated by capital to seek profits in it, and new forms of monopoly may follow. At present, the economic ecology of the Metaverse is not mature and there are a lot of unsolved loopholes. Future research should focus on the risk of capital manipulation and industrial monopoly, and be aware of unreasonable industrial wind direction. The economic risks of the Metaverse world may be transferred from the virtual world to the real world, so it is more necessary to study how to build a safe and free Metaverse world in the future.
- With the continuous development of the Metaverse industry and the scope of its application, several platforms have entered the market. Not only has it offered platforms for advertising and selling digital twins of real products, but it has also given large companies opportunity in the areas of recruiting and onboarding, such as Microsoft and its VR platform AltspaceVR [86]. Metaverse platforms are becoming popular in collaboration within virtual worlds, such as VoRtex designed for supporting collaborative learning activities [87], Nvidia’s Omniverse Audio2Face2 and Meta’s Oculus Lipsync3 for creating more realistic avatars [88]. In the gaming area, ZEPETO and Roblox are recognized as two of the most representative platforms of Metaverse, with future research needed to observe and interview platform users directly [89]. Future research is needed to answer the following questions: Of all these platforms, which is more likely to become the most publicly accepted platform in the Metaverse? How do we establish standards for the development and supervision of Metaverse platforms? How do we strengthen the link between the platforms and the overall coordination to achieve wider and more convenient connectivity of the virtual world?
- Future Metaverse research should promote the ethical thinking of technology and the reform of social governance. In terms of practices and institutions of urban society, there is a lack of a theoretical basis and empirical evidence which is required to holistically assess the potential risks and hidden pitfalls of the transformative processes of smart urbanism [25]. It also opens security challenges in the massive virtual world where privacy attacks occur, such as eavesdropping by other platform users [85]. Moreover, ethical and moral issues such as integrity issues, publishing and disseminating false information, the problem of an unfavorable atmosphere and the infringement of intellectual property rights are urged to be solved [19]. The Metaverse demonstrates having a positive impact on social good, especially in terms of accessibility, diversity, equality, and humanity [3]. As part of scientific and technological development, it was expected that investments in the Metaverse should be justified by societal and ethical concerns more rather than global competitiveness and technological advancement. In future research, a mix of technical solutions and policies complying with the law need to be deployed, and different research objects need to be further related to provide a reference and basis for the development of the field of the Metaverse. A more holistic approach should be adopted to meet the future demands of Metaverse research in order to support the accelerated integration of related technologies and the further improvement of human production and living standards.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tlili, A.; Huang, R.; Shehata, B.; Liu, D.; Zhao, J.; Metwally, A.H.S.; Wang, H.; Denden, M.; Bozkurt, A.; Lee, L.H.; et al. Is Metaverse in education a blessing or a curse: A combined content and bibliometric analysis. Smart Learn. Environ. 2022, 9, 24. [Google Scholar] [CrossRef]
- Park, S.; Kim, S. Identifying World Types to Deliver Gameful Experiences for Sustainable Learning in the Metaverse. Sustainability 2022, 14, 1361. [Google Scholar] [CrossRef]
- Duan, H.; Li, J.; Fan, S.; Lin, Z.; Wu, X.; Cai, W. Metaverse for Social Good: A University Campus Prototype. presented at the MM 2021. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, China, 20–24 October 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 153–161. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, R. Exploring Research Trends of Emerging Technologies in Health Metaverse: A Bibliometric Analysis; SSRN: Rochester, NY, USA, 2022. [Google Scholar] [CrossRef]
- Papagiannidis, S.; Bourlakis, M.; Li, F. Making real money in virtual worlds: MMORPGs and emerging business opportunities, challenges and ethical implications in metaverses. Technol. Forecast. Soc. Chang. 2008, 75, 610–622. [Google Scholar] [CrossRef]
- Zyda, M. Let’s Rename Everything ‘the Metaverse!’. Computer 2022, 55, 124–129. [Google Scholar] [CrossRef]
- Park, S.-M.; Kim, Y.-G. A Metaverse: Taxonomy, Components, Applications, and Open Challenges. IEEE Access 2022, 10, 4209–4251. [Google Scholar] [CrossRef]
- Kamran, M.; Khan, H.U.; Nisar, W.; Farooq, M.; Rehman, S.U. Blockchain and Internet of Things: A bibliometric study. Comput. Electr. Eng. 2020, 81, 106525. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-Fungible Token (NFT): Overview, Evaluation, Opportunities and Challenges. arXiv 2021, arXiv:2105.07447. [Google Scholar] [CrossRef]
- Dowling, M. Is non-fungible token pricing driven by cryptocurrencies? Financ. Res. Lett. 2022, 44, 102097. [Google Scholar] [CrossRef]
- Dowling, M. Fertile LAND: Pricing non-fungible tokens. Financ. Res. Lett. 2022, 44, 102096. [Google Scholar] [CrossRef]
- Vidal-Tomás, D. The new crypto niche: NFTs, play-to-earn, and metaverse tokens. Financ. Res. Lett. 2022, 47, 102742. [Google Scholar] [CrossRef]
- Nadini, M.; Alessandretti, L.; Di Giacinto, F.; Martino, M.; Aiello, L.M.; Baronchelli, A. Mapping the NFT revolution: Market trends, trade networks, and visual features. Sci. Rep. 2021, 11, 20902. [Google Scholar] [CrossRef] [PubMed]
- Bibri, S.E.; Allam, Z. The Metaverse as a Virtual Form of Data-Driven Smart Urbanism: On Post-Pandemic Governance through the Prism of the Logic of Surveillance Capitalism. Smart Cities 2022, 5, 715–727. [Google Scholar] [CrossRef]
- Periyasami, S.; Periyasamy, A.P. Metaverse as Future Promising Platform Business Model: Case Study on Fashion Value Chain. Businesses 2022, 2, 527–545. [Google Scholar] [CrossRef]
- Damar, M. What the Literature on Medicine, Nursing, Public Health, Midwifery, and Dentistry Reveals: An Overview of the Rapidly Approaching Metaverse. J. Metaverse 2022, 2, 62–70. [Google Scholar] [CrossRef]
- Chapman, J.R.; Wang, J.C.; Wiechert, K. Into the Spine Metaverse: Reflections on a future Metaspine (Uni-)verse. Glob. Spine J. 2022, 12, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Musumeci, G. The Metaverse: A New Challenge for the Healthcare System: A Scoping Review. J. Funct. Morphol. Kinesiol. 2022, 7, 63. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, L.; Xiao, C.; Zhang, K.; Demian, P. Virtual Reality Aided Therapy towards Health 4.0: A Two-Decade Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 1525. [Google Scholar] [CrossRef]
- George Reyes, C.E. Perception of high school students about using Metaverse in augmented reality learning experiences in mathematics. Pixel-Bit Rev. Medios Y Educ. 2020, 58, 143–159. [Google Scholar] [CrossRef]
- Bibri, S.E.; Allam, Z. The Metaverse as a virtual form of data-driven smart cities: The ethics of the hyper-connectivity, datafication, algorithmization, and platformization of urban society. Comput. Urban Sci. 2022, 2, 22. [Google Scholar] [CrossRef]
- Smart, J.M.; Cascio, J.; Paffendorf, J. Metaverse Roadmap Overview. 2007. Available online: https://www.metaverseroadmap.org/overview/ (accessed on 11 December 2022).
- Davis, A.; Murphy, J.; Owens, D.; Khazanchi, D.; Zigurs, I. Avatars, people, and virtual worlds: Foundations for research in metaverses. J. Assoc. Inf. Syst. 2009, 10, 90–117. [Google Scholar] [CrossRef]
- Owens, D.; Mitchell, A.; Khazanchi, D.; Zigurs, I. An Empirical Investigation of Virtual World Projects and Metaverse Technology Capabilities. Data Base Adv. Inf. Syst. 2011, 42, 74–101. [Google Scholar] [CrossRef]
- Bibri, S.E. The Social Shaping of the Metaverse as an Alternative to the Imaginaries of Data-Driven Smart Cities: A Study in Science, Technology, and Society. Smart Cities 2022, 5, 832–874. [Google Scholar] [CrossRef]
- Thomason, J. Metaverse, token economies, and non-communicable diseases. Glob. Health J. 2022, 6, 164–167. [Google Scholar] [CrossRef]
- Mozumder, M.A.I.; Sheeraz, M.M.; Athar, A.; Aich, S.; Kim, H.C. Overview: Technology Roadmap of the Future Trend of Metaverse based on IoT, Blockchain, AI Technique, and Medical Domain Metaverse Activity. In Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), Pyeong Chang, Kwangwoon do, Republic of Korea, 13–16 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 256–261. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Jaya-Montalvo, M.; Gurumendi-Noriega, M. Worldwide Research on Geoparks through Bibliometric Analysis. Sustainability 2021, 13, 1175. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Huang, Q.; Ali, S.; Zhai, X.; Bi, X.; Liu, R. Rehabilitation using virtual reality technology: A bibliometric analysis, 1996–2015. Scientometrics 2016, 109, 1547–1559. [Google Scholar] [CrossRef]
- Agbo, F.J.; Sanusi, I.T.; Oyelere, S.S.; Suhonen, J. Application of Virtual Reality in Computer Science Education: A Systemic Review Based on Bibliometric and Content Analysis Methods. Educ. Sci. 2021, 11, 142. [Google Scholar] [CrossRef]
- Firdaus, A.; Razak, M.F.A.; Feizollah, A.; Hashem, I.A.T.; Hazim, M.; Anuar, N.B. The rise of ‘blockchain’: Bibliometric analysis of blockchain study. Scientometrics 2019, 120, 1289–1331. [Google Scholar] [CrossRef]
- Cai, Y.; Lu, W.; Wang, L.; Xing, W. Cloud Computing Research Analysis Using Bibliometric Method. Int. J. Soft. Eng. Knowl. Eng. 2015, 25, 551–571. [Google Scholar] [CrossRef]
- Yu, J.; Yang, Z.; Zhu, S.; Xu, B.; Li, S.; Zhang, M. A Bibliometric Analysis of Cloud Computing Technology Research. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018; pp. 2353–2358. [Google Scholar] [CrossRef]
- Lee, L.H.; Braud, T.; Zhou, P.; Wang, L.; Xu, D.; Lin, Z.; Kumar, A.; Bermejo, C.; Hui, P. All One Needs to Know about Metaverse: A Complete Survey on Technological Singularity, Virtual Ecosystem, and Research Agenda. arXiv 2021, arXiv:2110.05352. [Google Scholar] [CrossRef]
- Dionisio, J.D.N.; William, G.B., III; Gilbert, R. 3D Virtual worlds and the metaverse: Current status and future possibilities. ACM Comput. Surv. 2013, 45, 1–38. [Google Scholar] [CrossRef]
- Nevelsteen, K.J.L. Virtual world, defined from a technological perspective and applied to video games, mixed reality, and the Metaverse. Comput. Animat. Virtual Worlds 2018, 29, e1752. [Google Scholar] [CrossRef] [Green Version]
- Sparkes, M. What is a metaverse. New Sci. 2021, 251, 18. [Google Scholar] [CrossRef]
- Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, Y.; Huang, H.; Xiong, Z.; Kang, J.; Zheng, Z. Fusing Blockchain and AI with Metaverse: A Survey. arXiv 2022, arXiv:2201.03201. [Google Scholar] [CrossRef]
- López-Illescas, C.; de Moya Anegón, F.; Moed, H.F. Comparing bibliometric country-by-country rankings derived from the Web of Science and Scopus: The effect of poorly cited journals in oncology. J. Inf. Sci. 2009, 35, 244–256. [Google Scholar] [CrossRef]
- Archambault, É.; Campbell, D.; Gingras, Y.; Larivière, V. Comparing bibliometric statistics obtained from the Web of Science and Scopus. J. Am. Soc. Inf. Sci. 2009, 60, 1320–1326. [Google Scholar] [CrossRef] [Green Version]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Vardhan Singh Rawat, H.; Bisht, D.; Kumar, S.; Dangi, S. Rise of Blockchain-Based Non-fungible Tokens (NFTs): Overview, Trends, and Future Prospects. In Machine Intelligence and Data Science Applications. Lecture Notes on Data Engineering and Communications Technologies; Skala, V., Singh, T.P., Choudhury, T., Tomar, R., Abul Bashar, M., Eds.; Springer: Singapore, 2022; Volume 132. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Lu, C. Visualization analysis of big data research based on Citespace. Soft Comput. 2020, 24, 8173–8186. [Google Scholar] [CrossRef]
- Synnestvedt, M.B.; Chen, C.; Holmes, J.H. CiteSpace II: Visualization and knowledge discovery in bibliographic databases. AMIA Annu Symp Proc. 2005, 2005, 724–728. [Google Scholar] [PubMed]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Piumsomboon, T.; Lee, G.A.; Hart, J.D.; Ens, B.; Lindeman, R.W.; Thomas, B.H.; Billinghurst, M. Mini-me: An adaptive avatar for Mixed Reality remote collaboration. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018. [Google Scholar] [CrossRef]
- Piumsomboon, T.; Clark, A.; Billinghurst, M.; Cockburn, A. User-defined gestures for augmented reality. In Proceedings of the CHI ’13: CHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013; Volume 8118, p. 299. [Google Scholar] [CrossRef] [Green Version]
- Kytö, M.; Ens, B.; Piumsomboon, T.; Lee, G.A.; Billinghurst, M. Pinpointing: Precise head- and eye-based target selection for augmented reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018. [Google Scholar] [CrossRef]
- Kellner, F.; Bolte, B.; Bruder, G.; Rautenberg, U.; Steinicke, F.; Lappe, M.; Koch, R. Geometric calibration of head-mounted displays and its effects on distance estimation. IEEE Trans. Vis. Comput. Graph. 2012, 18, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Lubos, P.; Bruder, G.; Steinicke, F. Analysis of direct selection in head-mounted display environments. In Proceedings of the IEEE Symposium on 3D User Interfaces 2014, 3DUI 2014-Proceedings, Minneapolis, MN, USA,, 29–30 March 2014; pp. 11–18. [Google Scholar] [CrossRef]
- Nilsson, N.C.; Peck, T.; Bruder, G.; Hodgson, E.; Serafin, S.; Whitton, M.; Steinicke, F.; Rosenberg, E.S. 15 Years of Research on Redirected Walking in Immersive Virtual Environments. IEEE Comput. Graph. Appl. 2018, 38, 44–56. [Google Scholar] [CrossRef]
- Latoschik, M.E.; Roth, D.; Gall, D.; Achenbach, J.; Waltemate, T.; Botsch, M. The effect of avatar realism in immersive social virtual realities. In Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, Gothenburg, Sweden, 8–10 November 2017; Volume F131944. [Google Scholar] [CrossRef] [Green Version]
- Waltemate, T.; Gall, D.; Roth, D.; Botsch, M.; Latoschik, M.E. The impact of avatar personalization and immersion on virtual body ownership, presence, and emotional response. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L. Time series classification using multi-channels deep convolutional neural networks. In Proceedings of the 2014 International Conference on Web-Age Information Management, Macau, China, 16–18 June 2014; Volume 8485, p. 310. [Google Scholar] [CrossRef]
- Tu, Y.; Xu, J.; Shen, H.-W. KeywordMap: Attention-based Visual Exploration for Keyword Analysis. In Proceedings of the 2021 IEEE 14th Pacific Visualization Symposium (PacificVis), Tianjin, China, 19–21 April 2021; pp. 206–215. [Google Scholar] [CrossRef]
- Guo, Y.M.; Huang, Z.L.; Guo, J.; Li, H.; Guo, X.R.; Nkeli, M.J. Bibliometric Analysis on Smart Cities Research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef]
- Artstein, R.; Traum, D.; Boberg, J.; Gainer, A.; Gratch, J.; Johnson, E.; Leuski, A.; Nakano, M. Niki and Julie: A robot and virtual human for studying multimodal social interaction. In Proceedings of the ICMI 2016-Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016; pp. 402–403. [Google Scholar] [CrossRef]
- Artstein, R.; Boberg, J.; Gainer, A.; Gratch, J.; Johnson, E.; Leuski, A.; Lucas, G.; Traum, D. The Niki and Julie corpus: Collaborative multimodal dialogues between humans, robots, and virtual agents. In Proceedings of the LREC 2018-11th International Conference on Language Resources and Evaluation, Miyazaki, Japan, 7–12 May 2018; pp. 2928–2932. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059910694&partnerID=40&md5=670795d624b8075b862e0f97ed63d72f (accessed on 7 December 2022).
- Mell, J.; Gratch, J. Toward social-emotional virtual humans (doctoral consortium). In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, Istanbul, Turkey, 4–8 May 2015; Volume 3, pp. 2015–2016. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944685186&partnerID=40&md5=c2ddd088ac0202bd33e12110de0c8228 (accessed on 7 December 2022).
- Gratch, J.; DeVault, D.; Lucas, G.M.; Marsella, S. Negotiation as a challenge problem for virtual humans. In Proceedings of the Intelligent Virtual Agents: 15th International Conference, IVA 2015, Delft, The Netherlands, 26–28 August 2015; Volume 9238, p. 215. [Google Scholar] [CrossRef]
- Gratch, J.; Devault, D.; Lucas, G. The benefits of virtual humans for teaching negotiation. In Proceedings of the Intelligent Virtual Agents: 16th International Conference, IVA 2016, Los Angeles, CA, USA, 20–23 September 2016; Volume 10011, p. 294. [Google Scholar] [CrossRef]
- Mell, J.; Gratch, J. Grumpy & pinocchio: Answering human-Agent negotia tion questions through realistic agent design. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, Sao Paulo, Brazil, 8–12 May 2017; Volume 1, pp. 401–409. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031922823&partnerID=40&md5=38336f066b980f187174e718233c9597 (accessed on 7 December 2022).
- Nasihati Gilani, S.; Traum, D.; Merla, A.; Hee, E.; Walker, Z.; Manini, B.; Gallagher, G.; Petitto, L.A. Multimodal dialogue management for multiparty interaction with infants. In Proceedings of the 2018 International Conference on Multimodal Interaction ICMI 2018, Boulder CO, USA, 16–20 October 2018; pp. 5–13. [Google Scholar] [CrossRef] [Green Version]
- Pincus, E.; Lei, S.; Lucas, G.; Johnson, E.; Tsang, M.; Gratch, J.; Traum, D. The importance of regulatory fit & early success in a human-machine game. In Proceedings of the Technology, Mind, and Society, Washington, DC, USA, 5–7 April 2018. [Google Scholar] [CrossRef]
- Suma, E.A.; Krum, D.M.; Lange, B.; Koenig, S.; Rizzo, A.; Bolas, M. Adapting user interfaces for gestural interaction with the flexible action and articulated skeleton toolkit. Comput. Graph. 2013, 37, 193–201. [Google Scholar] [CrossRef]
- Krum, D.M.; Phan, T.; Dukes, L.C.; Wang, P.; Bolas, M. A demonstration of tablet-based interaction panels for immersive environments. In Proceedings of the 2014 IEEE Virtual Reality (VR), Minneapolis, MN, USA, 29 March–2 April 2014; pp. 175–176. [Google Scholar] [CrossRef]
- Lv, Z.; Halawani, A.; Feng, S.; Ur Réhman, S.; Li, H. Touch-less interactive augmented reality game on vision-based wearable device. Pers. Ubiquitous Comput. 2015, 19, 551–567. [Google Scholar] [CrossRef]
- Lu, Z.; Lal Khan, M.S.; Ur Réhman, S. Hand and foot gesture interaction for handheld devices. In Proceedings of the MM 2013-Proceedings of the 2013 ACM Multimedia Conference, Barcelona, Spain, 21–25 October 2013; pp. 621–624. [Google Scholar] [CrossRef]
- Lv, Z.; Halawani, A.; Feng, S.; Li, H.; Réhman, S.U. Multimodal hand and foot gesture interaction for handheld devices. ACM Trans. Multimed. Computing. Commun. Appl. 2014, 11, 1–19. [Google Scholar] [CrossRef]
- Zhang, F.; Li, P.; Hou, Z.G.; Lu, Z.; Chen, Y.; Li, Q.; Tan, M. SEMG-based continuous estimation of joint angles of human legs by using BP neural network. Neurocomputing 2012, 78, 139–148. [Google Scholar] [CrossRef]
- Wang, C.; Peng, L.; Hou, Z.G.; Luo, L.; Chen, S.; Wang, W. SEMG-Based Torque Estimation Using Time-Delay ANN for Control of an Upper-Limb Rehabilitation Robot. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems, CBS 2018, Shenzhen, China, 25–27 October 2018; pp. 585–591. [Google Scholar] [CrossRef]
- Peng, L.; Hou, Z.G.; Kasabov, N.; Peng, L.; Hu, J.; Wang, W. Implementation of active training for an upper-limb rehabilitation robot based on impedance control. In Proceedings of the 2015 27th Chinese Control and Decision Conference, CCDC 2015, Qingdao, China, 23–25 May 2015; pp. 5453–5458. [Google Scholar] [CrossRef]
- Mi, S.H.; Hou, Z.G.; Yang, F.; Xie, X.L.; Bian, G.B. A 3D virtual reality simulator for training of minimally invasive surgery. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, 26–30 August 2014; pp. 349–352. [Google Scholar] [CrossRef]
- Wang, F.Y.; Zhang, M.; MENG, X.; Wang, R.; Wang, X.; Zhang, Z.; Chen, L.; Jun, J.; Yang, T. Parallel Surgery: An ACP-Based Approach for Intelligent Operations. Moshi Shibie Yu Rengong Zhineng/Pattern Recognit. Artif. Intell. 2017, 30, 961–970. [Google Scholar] [CrossRef]
- Qian, L.; Wu, J.Y.; DiMaio, S.P.; Navab, N.; Kazanzides, P. A Review of Augmented Reality in Robotic-Assisted Surgery. IEEE Trans. Med. Robot. Bionics 2020, 2, 1–16. [Google Scholar] [CrossRef]
- Rieke, N.; Tan, D.J.; di San Filippo, C.A.; Tombari, F.; Alsheakhali, M.; Belagiannis, V.; Eslami, A.; Navab, N. Real-time localization of articulated surgical instruments in retinal microsurgery. Med. Image Anal. 2016, 34, 82–100. [Google Scholar] [CrossRef]
- Andress, S.; Johnson, A.; Unberath, M.; Winkler, A.F.; Yu, K.; Fotouhi, J.; Weidert, S.; Osgood, G.; Navab, N. On-the-fly augmented reality for orthopedic surgery using a multimodal fiducial. J. Med. Imaging 2018, 5, 021209. [Google Scholar] [CrossRef] [PubMed]
- Fotouhi, J.; Song, T.; Mehrfard, A.; Taylor, G.; Wang, Q.; Xian, F.; Martin-Gomez, A.; Fuerst, B.; Armand, M.; Unberath, M.; et al. Reflective-AR Display: An Interaction Methodology for Virtual-to-Real Alignment in Medical Robotics. IEEE Robot. Autom. Lett. 2020, 5, 2722–2729. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Q.; Li, T.; Yang, Q.; Yin, Z.; Wu, J.; Xiong, Z.; Zhu, J.; Wu, J.; Zheng, Z. Economic Systems in Metaverse: Basics, State of the Art, and Challenges. arXiv 2022, arXiv:2212.05803. [Google Scholar] [CrossRef]
- Fernandez, C.B.; Hui, P. Life, the Metaverse and Everything: An Overview of Privacy, Ethics, and Governance in Metaverse. arXiv 2022, arXiv:2204.01480. [Google Scholar] [CrossRef]
- Buchholz, F.; Oppermann, L.; Prinz, W. There’s more than one metaverse. i-com 2022, 21, 313–324. [Google Scholar] [CrossRef]
- Jovanović, A.; Milosavljević, A. VoRtex Metaverse Platform for Gamified Collaborative Learning. Electronics 2022, 11, 317. [Google Scholar] [CrossRef]
- Han, Q.; Zhao, J.; Lam, K.-Y. Facial Landmark Predictions with Applications to Metaverse. arXiv 2022, arXiv:2209.14698. [Google Scholar] [CrossRef]
- Han, J.; Heo, J.; You, E. Analysis of Metaverse Platform as a New Play Culture: Focusing on Roblox and ZEPETO. In Proceedings of the 2nd International Conference on Human-Centered Artificial Intelligence (Computing4Human 2021), Danang, Vietnam, 28–29 October 2021. [Google Scholar]
Category | Keywords |
---|---|
Metaverse itself | metaverse, meta universe, metauniverse, meta-cosmic, metacosmum |
Metaverse perspectives | extended reality, virtual reality, augmented reality, mixed reality, reality virtuality, virtual-real fusion, virtual world, immersive internet, virtual space, virtual environment, virtual service provider, immersive experience, immersive feeling, immersive environment, virtual environment |
Physical space technology | cyber world, physical world, 5G mobile, 5G technology, 5G network, 6G technology, 6G network, network awareness, perception network, user centric network, user centric networks, human centric network, human centric networks, software defined network, software defined networking, software defined networks, self-organizing network, cloud computing, edge computing, edge intelligence, internet of things, robots, collaborative robot, human–robot collaboration, autonomous driving, autonomous cars, autonomous vehicles, connected vehicles, mobile broadband, enhanced mobile broadband, semantic communication network, semantic communication, intelligent network, brain-inspired intelligent, brain-inspired intelligence, computing power network, graphics processing unit, sensor network, cyber physical system, data storage, data sharing, data interoperability, edge cloud collaboration, cloud edge cooperation, hybrid edge cloud, integrated sensing communication |
Virtual space technology | digital twin, avatar, digital human, virtual human, virtual character, virtual agent, 3D modeling, three-dimension modeling, virtual simulation, image segmentation, image restoration, image enhancement, image inpainting, image generation, real-time rendering, 3D rendering, computer animation, digital economy, digital finance, virtual economy, Non-Fungible Token, decentralized finance, cryptocurrency, digital currency, ethereum, smart contract, distributed ledger, virtual property, virtual asset, digital transaction, digital identity, digital asset, digital right, game engine, user generated content |
Virtual–real interaction technology | head mounted display, hand-based input device, non-hand-based input device, helmet mounted display, motion input device, mobile headset, ARheadset, VR headset, google glass, Microsoft hololens, wearable device, user interface, graphical user interface, brain computer interface, mid-air pointing, floating icon, floating menu, freehand interaction, interaction paradigm, human computer interaction, electroencephalography, electromyography, IMU-driven user interaction, on-body user interaction, haptic feedback, object weighting, virtual spring, simulated haptic cues, just noticeable difference, tactile internet, telepresence, holographic display, holograph, 3D aerial hologram, glasses-free 3D, autostereoscopy, human pose tracking, eye tracking, scene understanding, semantic segmentation, object detection, stereo depth estimation, action recognition, gesture recognition, palmprint recognition, environmental perception, human–IoT interaction, virtual landscape, oculus quest, motion capture, brain machine interface, natural language processing, computer vision, simultaneous localisation mapping, voice input/output |
Virtual–real generic technology | privacy social acceptability, blockchain, distributed system, decentralized autonomous organization, distributed database, decentralized identifier, verifiable credential, finite state machine, reinforcement learning, machine learning, artificial intelligence, deep learning, resource management, resource allocation, big data, perception, security, trust, authentication, coordination |
Ranking | Authors | Source Title | Institution |
---|---|---|---|
1 | Billinghurst, M. (107) | Lecture Notes In Computer Science Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics (3060) | Chinese Academy of Sciences (460) |
2 | Steinicke, F. (93) | ACM International Conference Proceeding Series (1270) | Centre National de la Recherche Scientifique (446) |
3 | Latoschik, M.E. (78) | Advances In Intelligent Systems And Computing (796) | Beihang University (330) |
4 | Bruder, G. (77) | Conference On Human Factors In Computing Systems Proceedings (649) | Technical University of Munich (330) |
5 | Narumi, T. (70) | Communications In Computer And Information Science (601) | The University of Tokyo (324) |
6 | Slater, M. (69) | IEEE Access (457) | University of Southern California (295) |
7 | Hirose, M. (65) | Proceedings Of SPIE The International Society For Optical Engineering (392) | Beijing University of Posts and Telecommunications (278) |
8 | Navab, N. (59) | Journal Of Physics Conference Series (318) | Shanghai Jiao Tong University (275) |
9 | Woo, W. (53) | Proceedings Of The ACM Symposium On Virtual Reality Software And Technology VRST (317) | University of Central Florida (273) |
10 | Kiyokawa, K. (51) | 26th IEEE Conference On Virtual Reality And 3D User Interfaces VR 2019 Proceedings (300) | Tsinghua University (265) |
Keyword | Cluster | Links | Total Link Strength | Occurrences |
---|---|---|---|---|
virtual reality | 1 | 400 | 164,198 | 30,794 |
augmented reality | 1 | 399 | 48,526 | 9829 |
human–computer interaction | 1 | 396 | 33,758 | 6534 |
human | 3 | 384 | 51,476 | 4652 |
article | 3 | 380 | 41,050 | 3532 |
virtualization | 2 | 282 | 19,322 | 3482 |
user interfaces | 1 | 387 | 16,430 | 3133 |
artificial intelligence | 1 | 400 | 15,200 | 3054 |
male | 3 | 336 | 34,703 | 2643 |
female | 3 | 337 | 33,534 | 2551 |
Ranking | United States | China | Germany |
---|---|---|---|
1 | University of Southern California (288) | Chinese Academy of Sciences (458) | Technical University of Munich (327) |
2 | University of Central Florida (270) | Beihang University (327) | Rheinisch-Westfälische Technische Hochschule Aachen (191) |
3 | Stanford University (215) | Beijing University of Posts and Telecommunications (275) | Julius-Maximilians-Universität Würzburg (185) |
4 | Georgia Institute of Technology (184) | Shanghai Jiao Tong University (273) | German Research Center for Artificial Intelligence DFKI (166) |
5 | Carnegie Mellon University (181) | Tsinghua University (262) | Ludwig-Maximilians-Universität München (145) |
6 | Virginia Polytechnic Institute and State University (171) | Ministry of Education China (260) | Technische Universität Berlin (135) |
7 | University of Florida (165) | Beijing Institute of Technology (211) | Technische Universität Darmstadt (127) |
8 | Purdue University (157) | University of Chinese Academy of Sciences (198) | Universität Stuttgart (121) |
9 | Clemson University (149) | Zhejiang University (178) | Karlsruher Institut für Technologie (109) |
10 | University of Illinois Urbana-Champaign (125) | Huazhong University of Science and Technology (141) | Technische Universität Dresden (103) |
United States | China | Germany |
---|---|---|
virtual reality (6465) | virtual reality (5687) | virtual reality (2792) |
augmented reality (1898) | augmented reality (1071) | augmented reality (1048) |
human (1454) | human computer interaction (870) | human computer interaction (709) |
human computer interaction (1417) | virtualization (831) | human (545) |
article (1059) | virtual reality technology (636) | user interfaces (452) |
male (836) | artificial intelligence (569) | article (425) |
female (801) | three dimensional computer graphics (567) | male (340) |
user interfaces (765) | e-learning (536) | helmet mounted displays (336) |
adult (700) | cloud computing (516) | female (330) |
virtualization (635) | 3d modeling (453) | adult (313) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Zhou, X.; Wu, W.; Wang, L.; Chen, Z. Worldwide Overview and Country Differences in Metaverse Research: A Bibliometric Analysis. Sustainability 2023, 15, 3541. https://doi.org/10.3390/su15043541
Shen J, Zhou X, Wu W, Wang L, Chen Z. Worldwide Overview and Country Differences in Metaverse Research: A Bibliometric Analysis. Sustainability. 2023; 15(4):3541. https://doi.org/10.3390/su15043541
Chicago/Turabian StyleShen, Jinlu, Xiangyu Zhou, Wei Wu, Liang Wang, and Zhenying Chen. 2023. "Worldwide Overview and Country Differences in Metaverse Research: A Bibliometric Analysis" Sustainability 15, no. 4: 3541. https://doi.org/10.3390/su15043541
APA StyleShen, J., Zhou, X., Wu, W., Wang, L., & Chen, Z. (2023). Worldwide Overview and Country Differences in Metaverse Research: A Bibliometric Analysis. Sustainability, 15(4), 3541. https://doi.org/10.3390/su15043541