The Impact of Industry 4.0 Technologies on Key Performance Indicators for a Resilient Supply Chain 4.0
Abstract
:1. Introduction
2. Research Methodology
Study | Research Objectives |
---|---|
Ansari and Kohl, 2022 [146] | Propose an approach based on AI for the analysis of KPIs for SCRes and manufacturing resilience |
Dev et al., 2021 [92] | Evaluate KPIs for SCRes in a smart factory framework consisting of Industry 4.0 technologies. KPIs related with AM technology are identified |
Dumitrascu et al., 2020 [150] | Utilize AI techniques to predict which KPI should be linked to an identified problem within the organization. Monitoring KPIs, the potential risks can be eliminated, increasing the SCRes |
Catellani and Bottani, 2022 [149] | Identify and evaluate KPIs for Lean, Agile, Resilient, Green SC. The role of Industry 4.0 in SC performance is not connected with each of the KPIs |
Patidar et al., 2022 [117] | Identify KPIs for SCRes and evaluate KPIs under Industry 4.0 and sustainability perspectives |
Our study | Investigate the impact of discrete Industry 4.0 technologies on the KPIs for SCRes |
3. Supply Chain Resilience
3.1. Definitions of Supply Chain Resilience
3.2. Capabilities and Elements of Supply Chain Resilience
4. Resilient Supply Chain 4.0
4.1. Internet of Things (IoT)
4.2. Cyber-Physical Systems (CPSs)
4.3. Augmented Reality (AR)
4.4. Cloud Computing (CC)
4.5. Internet of Services (IoS)
4.6. Big Bata Analytics (BDA)
4.7. Artificial Intelligence (AI)
4.8. Digital Twins (DT)
4.9. Blockchain (BC)
4.10. Industrial Robotics (IR)
4.11. Additive Manufacturing (AM)
SC Configuration | Redundancy | Flexibility | Visibility | Collaboration | Agility | Situation Awareness | Information Sharing | SCRM Culture | Security | Robustness | Risk Management | Knowledge Management | Velocity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IoT | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
CPS | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
AR | √ | √ | √ | √ | ||||||||||
CC | √ | √ | √ | √ | √ | √ | √ | |||||||
IoS | √ | √ | √ | √ | ||||||||||
BDA | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
AI | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
DT | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
BC | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||
IR | √ | √ | √ | √ | √ | |||||||||
AM | √ | √ | √ | √ | √ | √ |
4.12. Industry 5.0 Technologies
5. Key Performance Indicators for a Resilient Supply Chain 4.0
5.1. Determining KPIs for SCRes
5.2. Determining the Impact of Industry 4.0 Technologies on KPIs for a Resilient Supply Chain 4.0
- (a)
- the Industry 4.0 technologies that have a direct impact on the KPI, and/or
- (b)
- the Industry 4.0 technologies that have an indirect impact on the KPI through the improvement of the SCRes elements which are related with the KPI.
5.2.1. Internet of Things (IoT)
5.2.2. Cyber-Physical Systems (CPSs)
5.2.3. Augmented Reality (AR)
5.2.4. Cloud Computing (CC)
5.2.5. Internet of Services (IoS)
5.2.6. Big Bata Analytics (BDA)
5.2.7. Artificial Intelligence (AI)
5.2.8. Digital Twins (DT)
5.2.9. Blockchain (BC)
5.2.10. Industrial Robotics (IR)
5.2.11. Additive Manufacturing (AM)
KPIs | Industry 4.0 Technologies |
---|---|
Lead time | (IoT, AI, AM) [47], AR [64], BDA [106], DT [108], BC [117,119], AM [91,116] |
| |
Time to recovery | IoT [119], BDA [84,106,119], AI [119], BC [110,117,119], AM [92] |
Order cycle time | (IoT, CPS) [47], BC [117], IR [168], AM [116] |
Capacity utilization | (IoT, CC, BDA, AI, AM) [47] |
Risk assessment frequency |
|
Supplier delivery efficiency | BDA [106], BC [85] |
Supplier rejection rate |
|
SC cycle time | (IoT, CPS, CC, IoS, BDA, DT, IR, AM) [47], BC [117], IR [36,47] |
Demand and supply variations | BC (by reducing lost demand) [85] |
| |
No of nodes in SC | BDA [106] |
Proximity to suppliers and customers | AI [117,154] |
Service rate | (IoT, AR, CC, BDA, AI, DT) [47], DT [147], AM [92] |
| |
On-time delivery | |
Equipment effectiveness | (IoT, CPS, CC, IoS, BDA, AI, DT, IR, AM) (by reducing downtime) [47], AR [64], AI [146] |
Inventory velocity | (IoT, AR, CC, BDA, AI, DT, AM, IR) (by improving inventory picking process) [47], AR [64] |
Stock level | (IoT, AR, CC, BDA, AI, DT, IR, AM) [47], BC [85], AM [91,116,151] |
Forecasting accuracy | (IoT, CC, IoS, BDA, AI, DT) [47], BC [85], DT [108], AI [117] |
Lead Time | Time to Recovery | Order Cycle Time | Capacity Utilization | Risk Assessment Frequency | Supplier Delivery Efficiency | Supplier Rejection Rate | SC Cycle Time | Demand and Supply Variations | No. of Nodes in SC | Proximity to Suppliers & Customers | Service Rate | On-Time Delivery | Equipment Effectiveness | Inventory Velocity | Stock Level | Forecasting Accuracy | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IoT | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
CPS | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
AR | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
CC | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||
IoS | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
BDA | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
AI | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
DT | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
BC | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
IR | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
AM | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
6. Conclusions
7. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, C.-H.; Chang, A.-Y.; Zhang, T.-Y.; Lin, W.-D.; Liu, W.-L. Deploying Resilience Enablers to Mitigate Risks in Sustainable Fashion Supply Chains. Sustainability 2021, 13, 2943. [Google Scholar] [CrossRef]
- Tukamuhabwa, B.R.; Stevenson, M.; Busby, J.; Zorzini, M. Supply chain resilience: Definition, review and theoretical foundations for further study. Int. J. Prod. Res. 2015, 53, 5592–5623. [Google Scholar] [CrossRef]
- Rice, B.J.; Caniato, F. Building a Secure and Resilient Supply Network. Supply Chain Manag. Rev. 2003, 7, 22–30. [Google Scholar]
- MacCarthy, B.L.; Blome, C.; Olhager, J.; Srai, J.S.; Zhao, X. Supply chain evolution—Theory, concepts and science. Int. J. Oper. Prod. Manag. 2016, 36, 1696–1718. [Google Scholar] [CrossRef]
- Almada-Lobo, F. The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). J. Innov. Manag. 2016, 3, 16–21. [Google Scholar] [CrossRef]
- Demir, S.; Paksoy, T.; Koçhan, Ç. Logistics 4.0: SCM in Industry 4.0 Era. In Logistics 4.0. Digital Transformation of Supply Chain Management, 1st ed.; Paksoy, T., Koçhan, Ç., Ali, S.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; Chapter 2; pp. 15–26. [Google Scholar] [CrossRef]
- Bienhaus, F.; Haddud, A. Procurement 4.0: Factors influencing the digitisation of procurement and supply chains. Bus. Process Manag. J. 2018, 24, 965–984. [Google Scholar] [CrossRef]
- Tutam, M. Warehousing 4.0 in Logistics 4.0. In Logistics 4.0 and Future of Supply Chains, 1st ed.; Iyigün, I., Görçün, Ö.F., Eds.; Springer: Singapore, 2022; Chapter 7; pp. 95–118. [Google Scholar] [CrossRef]
- Geest, M.; Tekinerdogan, B.; Catal, C. Smart Warehouses: Rationale, Challenges and Solution Directions. Appl. Sci. 2021, 12, 219. [Google Scholar] [CrossRef]
- Douaioui, K.; Fri, M.; Mabrouki, C.; Semma, E. The interaction between industry 4.0 and smart logistics: Concepts and perspectives. In Proceedings of the 2018 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), Tangier, Morocco, 26–27 April 2018; pp. 128–132. [Google Scholar] [CrossRef]
- Wu, L.; Yue, X.; Jin, A.; Yen, D.C. Smart supply chain management: A review and implications for future research. Int. J. Logist. Manag. 2016, 27, 395–417. [Google Scholar] [CrossRef]
- Maslarić, M.; Nikolicic, S.; Mirčetić, D. Logistics Response to the Industry 4.0: The Physical Internet. Open Eng. 2016, 6, 511–517. [Google Scholar] [CrossRef]
- Kosacka-Olejnik, M.; Pitakaso, R. Industry 4.0: State of the art and research implications. Logforum 2019, 15, 475–485. [Google Scholar] [CrossRef]
- Rajput, S.; Singh, S.P. Industry 4.0—Challenges to implement circular economy. Benchmarking Int. J. 2021, 28, 1717–1739. [Google Scholar] [CrossRef]
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Oztemel, E.; Gursev, S. Literature review of industry 4.0 and related technologies. J. Intell. Manuf. 2018, 31, 127–182. [Google Scholar] [CrossRef]
- Frank, A.; Dalenogare, L.; Néstor, A. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Mittal, S.; Khan, M.A.; Romero, D.; Wuest, T. Smart Manufacturing: Characteristics, Technologies and Enabling Factors. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1342–1361. [Google Scholar] [CrossRef]
- Vogel-Heuser, B.; Hess, D. Guest editorial: Industry 4.0—Prerequisites and visions. IEEE Trans. Autom. Sci. Eng. 2016, 13, 411–413. [Google Scholar] [CrossRef]
- Sony, M.; Naik, S. Key ingredients for evaluating Industry 4.0 readiness for organizations: A literature review. Benchmarking Int. J. 2020, 27, 2213–2232. [Google Scholar] [CrossRef]
- Legner, C.; Eymann, T.; Hess, T.; Matt, C.; Böhmann, T.; Drews, P.; Mädche, A.; Urbach, N.; Ahlemann, F. Digitalization: Opportunity and challenge for the business and information systems engineering community. Bus. Inf. Syst. Eng. 2017, 59, 301–308. [Google Scholar] [CrossRef]
- Ashton, K. That ‘Internet of Things’ Thing. RFID J. 2009, 22, 97–114. Available online: http://www.rfidjournal.com/article/view/4986 (accessed on 28 September 2022).
- Santoro, G.; Vrontis, D.; Thrassou, A.; Dezi, L. The Internet of Things: Building a knowledge management system for open innovation and knowledge management capacity. Technol. Forecast. Soc. Chang. 2018, 136, 347–354. [Google Scholar] [CrossRef]
- Kyoung-Dae, K.; Kumar, P.R. Cyber–Physical Systems: A Perspective at the Centennial. Proc. IEEE 100 Spec. Centen. Issue 2012, 100, 1287–1308. [Google Scholar] [CrossRef]
- Tran, N.-H.; Park, H.-S.; Nguyen, Q.-V.; Hoang, T.-D. Development of a Smart Cyber-Physical Manufacturing System in the Industry 4.0 Context. Appl. Sci. 2019, 9, 3325. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, A.; Krishna, M.K.; Rinawa, M.L.; Soni, M.; Ramkumar, G.; Jaiswal, S. Inclusion of IoT, ML, and Blockchain Technologies in Next Generation Industry 4.0 Environment. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Fraga-Lamas, P.; Fernandez-Carames, T.M.; Blanco-Novoa, O.; Vilar-Montesinos, M.A. A Review on Industrial Augmented Reality Systems for the Industry 4.0 Shipyard. IEEE Access 2018, 6, 13358–13375. [Google Scholar] [CrossRef]
- Lavingia, K.; Tanwar, S. Augmented Reality and Industry 4.0. In A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development; Nayyar, A., Kumar, A., Eds.; Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2020; pp. 143–155. [Google Scholar] [CrossRef]
- Del Amo, I.F.; Erkoyuncu, J.A.; Roy, R.; Palmarini, R.; Onoufriou, D. A systematic review of Augmented Reality content-related techniques for knowledge transfer in maintenance applications. Comput. Ind. 2018, 103, 47–71. [Google Scholar] [CrossRef]
- Reis, J.Z.; Gonçalves, R.F. The Role of Internet of Services (IoS) on Industry 4.0 through the Service Oriented Architecture (SOA). In Advances in Production Management Systems. Smart Manufacturing for Industry 4.0. IFIP Advances in Information and Communication Technology; Moon, I., Lee, G., Park, J., Kiritsis, D., von Cieminski, G., Eds.; Springer: Cham, Switzerland, 2018; Volume 536, pp. 20–26. [Google Scholar] [CrossRef]
- Lee, J.; Lapira, Ε.; Bagheri, Β.; Kao, H. Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 2013, 1, 38–41. [Google Scholar] [CrossRef]
- Demigha, S. The impact of Big Data on AI. In Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 16–18 December 2020; pp. 1395–1400. [Google Scholar] [CrossRef]
- Jarrahi, M.H.; Askay, D.; Eshraghi, A.; Smith, P. Artificial intelligence and knowledge management: A partnership between human and AI. Bus. Horiz. 2022, in press. [Google Scholar] [CrossRef]
- Uhlemann, T.H.-J.; Lehmann, C.; Steinhilper, R. The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0. Procedia CIRP 2017, 61, 335–340. [Google Scholar] [CrossRef]
- Butt, J. A Strategic Roadmap for the Manufacturing Industry to Implement Industry 4.0. Designs 2020, 4, 11. [Google Scholar] [CrossRef]
- Azadeh, K.; De Koster, R.; Roy, D. Robotized and Automated Warehouse Systems: Review and Recent Developments. Transp. Sci. 2019, 53, 917–945. [Google Scholar] [CrossRef]
- Goel, R.; Gupta, P. Robotics and industry 4.0. In A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development; Nayyar, A., Kumar, A., Eds.; Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2020; pp. 157–169. [Google Scholar] [CrossRef]
- Savolainen, J.; Collan, M. How Additive Manufacturing Technology Changes Business Models?—Review of Literature. Addit. Manuf. 2020, 32, 101070. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Göçer, F. Digital Supply Chain: Literature review and a proposed framework for future research. Comput. Ind. 2018, 97, 157–177. [Google Scholar] [CrossRef]
- Chauhan, C.; Singh, A. A review of Industry 4.0 in supply chain management studies. J. Manuf. Technol. Manag. 2020, 31, 863–886. [Google Scholar] [CrossRef]
- Cisneros-Cabrera, S.; Pishchulov, G.; Sampaio, P.; Mehandjiev, N.; Liu, Z.; Kununka, S. An approach and decision support tool for forming Industry 4.0 supply chain collaborations. Comput. Ind. 2021, 125, 103391. [Google Scholar] [CrossRef]
- Efthymiou, O.K.; Ponis, S.T. Industry 4.0 Technologies and Their Impact in Contemporary Logistics: A Systematic Literature Review. Sustainability 2021, 13, 11643. [Google Scholar] [CrossRef]
- Frazzon, E.M.; Freitag, M.; Ivanov, D. Intelligent methods and systems for decision making support: Toward digital supply chain twins. Int. J. Inf. Manag. 2021, 57, 102281. [Google Scholar] [CrossRef]
- Frederico, G.F.; Garza-Reyes, J.A.; Anosike, A.; Kumar, V. Supply Chain 4.0: Concepts, maturity and research agenda. Supply Chain Manag. 2020, 25, 262–282. [Google Scholar] [CrossRef]
- Garay-Rondero, C.L.; Martinez-Flores, J.L.; Smith, N.R.; Morales, S.O.C.; Aldrette-Malacara, A. Digital supply chain model in industry 4.0. J. Manuf. Technol. Manag. 2019, 31, 887–933. [Google Scholar] [CrossRef]
- Govindan, K.; Kannan, D.; Jørgensen, T.B.; Nielsen, T.S. Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence. Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102725. [Google Scholar] [CrossRef]
- Hofmann, E.; Rüsch, M. Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 2017, 89, 23–34. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, R.K. Application of Industry 4.0 technologies for effective coordination in humanitarian supply chains: A strategic approach. Ann. Oper. Res. 2021, 319, 379–411. [Google Scholar] [CrossRef]
- Marinagi, C.; Belsis, P.; Skourlas, C. New directions for pervasive computing in logistics. Procedia Soc. Behav. Sci. 2013, 73, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Marinagi, C.; Skourlas, C.; Galiotou, E. Advanced Information Technology Solutions for Implementing Information Sharing across Supply Chains. In Proceedings of the 22th Panhellenic Conference on Informatics with International Participation (PCI 18), Athens, Greece, 29 November–1 December 2018; ACM International Proceeding Series. pp. 99–102. [Google Scholar] [CrossRef]
- Núñez-Merino, M.; Maqueira-Marín, J.M.; Moyano-Fuentes, J.; Martínez-Jurado, P.J. Information and digital technologies of Industry 4.0 and Lean supply chain management: A systematic literature review. Int. J. Prod. Res. 2020, 58, 5034–5061. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Pereira, S.C.F.; Telles, R.; Machado, M.C. Industry 4.0 and digital supply chain capabilities. Benchmarking Int. J. 2019, 28, 1761–1782. [Google Scholar] [CrossRef]
- Raut, R.D.; Gotmare, A.; Narkhede, B.E.; Govindarajan, U.H.; Bokade, S.U. Enabling Technologies for Industry 4.0 Manufacturing and Supply Chain: Concepts, Current Status, and Adoption Challenges. IEEE Eng. Manag. Rev. 2020, 48, 83–102. [Google Scholar] [CrossRef]
- Reyes, J.; Mula, J.; Díaz-Madroñero, M. Development of a conceptual model for lean supply chain planning in industry 4.0: Multidimensional analysis for operations management. Prod. Plan. Control 2021. [Google Scholar] [CrossRef]
- Sharma, M.; Kamble, S.; Mani, V.; Sehrawat, R.; Belhadi, A.; Sharma, V. Industry 4.0 adoption for sustainability in multi-tier manufacturing supply chain in emerging economies. J. Clean. Prod. 2021, 281, 125013. [Google Scholar] [CrossRef]
- Soosay, C.; Kannusamy, R. Scope for Industry 4.0 in Agri-food Supply Chain. In The Road to a Digitalized Supply Chain Management. Smart and Digital Solutions for Supply Chain Management, Proceedings of the Hamburg International Conference of Logistics (HICL); Kersten, W., Blecker, T., Ringle, C., Eds.; Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management: Hamburg, Germany, 2018; Volume 25, pp. 37–56. Available online: https://ideas.repec.org/h/zbw/hiclch/209342.html (accessed on 30 September 2022).
- Sun, X.; Yu, H.; Solvang, W.D.; Wang, Y.; Wang, K. The application of Industry 4.0 technologies in sustainable logistics: A systematic literature review (2012–2020) to explore future research opportunities. Environ. Sci. Pollut. Res. 2022, 29, 9560–9591. [Google Scholar] [CrossRef]
- Tjahjono, B.; Esplugues, C.; Ares, E.; Pelaez, G. What does Industry 4.0 mean to Supply Chain? Procedia Manuf. 2017, 13, 1175–1182. [Google Scholar] [CrossRef]
- Valilai, O.F.; Sodachi, M. Inspiration of Industry 4.0 to Enable a Proactive Sustainability Assessment Model through the Supply Chain. Procedia Manuf. 2020, 52, 356–362. [Google Scholar] [CrossRef]
- Ben-Daya, M.; Hassini, E.; Bahroun, Z. Internet of things and supply chain management: A literature review. Int. J. Prod. Res. 2019, 57, 4719–4742. [Google Scholar] [CrossRef] [Green Version]
- Gnimpieba, Z.D.R.; Nait-Sidi-Moh, A.; Durand, D.; Fortin, J. Using Internet of Things technologies for a collaborative supply chain: Application to tracking of pallets and containers. Procedia Comput. Sci. 2015, 56, 550–557. [Google Scholar] [CrossRef]
- Zhang, N. Smart logistics path for cyber-physical systems with internet of things. IEEE Access 2018, 6, 70808–70819. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Wamba, S.F.; Treiblmaier, H. The potentials of augmented reality in supply chain management: A state-of-the-art review. Manag. Rev. Q. 2021, 71, 819–856. [Google Scholar] [CrossRef]
- Addo-Tenkorang, R.; Helo, P.T. Big data applications in operations/supply-chain management: A literature review. Comput. Ind. Eng. 2016, 101, 528–543. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Tiwari, M.K.; Dubey, R.; Wamba, S.F. Big data and predictive analytics applications in supply chain management. Comput. Ind. Eng. 2016, 101, 525–527. [Google Scholar] [CrossRef]
- Richey, R.G.; Morgan, T.R.; Lindsey-Hall, K.; Adams, F.G. A global exploration of big data in the supply chain. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 710–739. [Google Scholar] [CrossRef]
- Wang, G.; Gunasekaran, A.; Ngai, E.W.T.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016, 176, 98–110. [Google Scholar] [CrossRef]
- Nguyen, T.; Zhou, L.; Spiegler, V.; Ieromonachou, P.; Lin, Y. Big data analytics in supply chain management: A state-of-the-art literature review. Comput. Oper. Res. 2018, 98, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply chain risk management and artificial intelligence: State of the art and future research directions. Int. J. Prod. Res. 2019, 57, 2179–2202. [Google Scholar] [CrossRef]
- Pan, Y.; Tang, Z. Intelligent Agent Technology in Supply Chains. In Encyclopedia of Business Analytics and Optimization; IGI Global: Hershey, PA, USA, 2014; pp. 1262–1274. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Deng, T.; Shen, Z.M.; Hu, H.; Qi, Y. Digital twin-driven smart supply chain. Front. Eng. Manag. 2022, 9, 56–70. [Google Scholar] [CrossRef]
- Perboli, G.; Musso, S.; Rosano, M. Blockchain in Logistics and Supply Chain: A Lean Approach for Designing Real-World Use Cases. IEEE Access 2018, 6, 62018–62028. [Google Scholar] [CrossRef]
- Kshetri, N. 1 Blockchain’s roles in meeting key supply chain management objectives. Int. J. Inf. Manag. 2018, 39, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Mendling, J.; Weber, I.; Van Der Aalst, W.; Brocke, J.V.; Cabanillas, C.; Daniel, F.; Debois, S.; Di Ciccio, C.; Dumas, M.; Dustdar, S.; et al. Blockchains for business process management challenges and opportunities. ACM Trans. Manag. Inf. Syst. 2018, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.; Xu, X.; Riveret, R.; Governatori, G.; Ponomarev, A.; Mendling, J. Untrusted business process monitoring and execution using blockchain. In Proceedings of the 14th International Conference on Business Process Manage, Rio de Janeiro, Brazil, 18–22 September 2016; Lecture Notes in Computer Science Book Series; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9850, pp. 329–347. [Google Scholar] [CrossRef]
- Witkowski, K. Internet of Things, Big Data, Industry 4.0—Innovative Solutions in Logistics and Supply Chains. Procedia Eng. 2017, 182, 763–769. [Google Scholar] [CrossRef]
- Görçün, Ö.F. Autonomous Robots and Utilization in Logistics process. In Logistics 4.0 and Future of Supply Chains, 1st ed.; Iyigün, I., Görçün, Ö.F., Eds.; Springer: Singapore, 2022; Chapter 6; pp. 83–94. [Google Scholar] [CrossRef]
- Chiu, M.-C.; Lin, Y.-H. Simulation based method considering design for additive manufacturing and supply chain. An empirical study of lamp industry. Ind. Manag. Data Syst. 2016, 116, 322–348. [Google Scholar] [CrossRef]
- Tortorella, G.; Fogliatto, F.S.; Gao, S.; Chan, T.-K. Contributions of Industry 4.0 to supply chain resilience. Int. J. Logist. Manag. 2022, 33, 547–566. [Google Scholar] [CrossRef]
- Belhadi, A.; Kamble, S.; Jabbour, C.J.C.; Gunasekaran, A.; Ndubisi, N.O.; Venkatesh, M. Manufacturing and service supply chain resilience to the COVID-19 outbreak: Lessons learned from the automobile and airline industries. Technol. Forecast. Soc. Chang. 2021, 163, 120447. [Google Scholar] [CrossRef]
- Dilyard, J.; Zhao, S.; Jacqueline, J.Y. Digital innovation and Industry 4.0 for global value chain resilience: Lessons learned and ways forward. Thunderbird Int. Bus. Rev. 2021, 63, 577–584. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, A.; Rana, S.R. Role of Industry 4.0 Practices in Supply Chain Resilience. ECS Trans. 2022, 107, 6607. [Google Scholar] [CrossRef]
- Zouari, D.; Ruel, S.; Viale, L. Does digitalising the supply chain contribute to its resilience? Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 149–180. [Google Scholar] [CrossRef]
- Taghizadeh, E.; Taghizadeh, E. The Impact of Digital Technology and Industry 4.0 on Enhancing Supply Chain Resilience. In Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management, Singapore, 9–11 March 2021; pp. 2021–2029. [Google Scholar]
- Wang, M.; Asian, S.; Wood, L.C.; Wang, B. Logistics innovation capability and its impacts on the supply chain risks in the Industry 4.0 era. Mod. Supply Chain. Res. Appl. 2020, 2, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Amann, P.; James, J.I. Designing robustness and resilience in digital investigation laboratories. Digit. Investig. 2015, 12, S111–S120. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Gottlieb, S.; Ivanov, D. Managing disruptions and the ripple effect in digital supply chains: Empirical case studies. In Handbook of the Ripple Effects in the Supply Chain; Ivanov, D., Dolgui, A., Sokolov, B., Eds.; International Series in Operations Research & Management Science; Springer: Cham, Switzerland, 2019; Volume 276, pp. 261–285. [Google Scholar] [CrossRef]
- Ivanov, D. New Drivers for Supply Chain Structural Dynamics and Resilience: Sustainability, Industry 4.0, Self-Adaptation. In Structural Dynamics and Resilience in Supply Chain Risk Management; Price, C.C., Ed.; Part of International Series in Operations Research & Management Science; Springer: Cham, Switzerland, 2018; Volume 265, pp. 293–313. [Google Scholar] [CrossRef]
- Ivanov, D.; Blackhurst, J.; Das, A. Supply chain resilience and its interplay with digital technologies: Making innovations work in emergency situations. Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 97–103. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Sokolov, B. The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. Int. J. Prod. Res. 2019, 57, 829–846. [Google Scholar] [CrossRef]
- Dev, N.K.; Shankar, R.; Zacharia, Z.G.; Swami, S. Supply chain resilience for managing the ripple effect in Industry 4.0 for green product diffusion. Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 897–930. [Google Scholar] [CrossRef]
- Ding, B. Pharma Industry 4.0: Literature review and research opportunities in sustainable pharmaceutical supply chains. Process Saf. Environ. Prot. 2018, 119, 115–130. [Google Scholar] [CrossRef]
- Mubarik, M.S.; Naghavi, N.; Mubarik, M.; Kusi-Sarpong, S.; Khan, S.A.; Zaman, S.I.; Kazmi, S.H.A. Resilience and cleaner production in industry 4.0: Role of supply chain mapping and visibility. J. Clean. Prod. 2021, 292, 126058. [Google Scholar] [CrossRef]
- Ralston, P.; Blackhurst, J. Industry 4.0 and resilience in the supply chain: A driver of capability enhancement or capability loss? Int. J. Prod. Res. 2020, 58, 5006–5019. [Google Scholar] [CrossRef]
- Spieske, A.; Birkel, H. Improving supply chain resilience through industry 4.0: A systematic literature review under the impressions of the COVID-19 pandemic. Comput. Ind. Eng. 2021, 158, 107452. [Google Scholar] [CrossRef] [PubMed]
- Fatorachian, H.; Kazemi, H. Impact of Industry 4.0 on supply chain performance. Prod. Plan. Control 2021, 32, 63–81. [Google Scholar] [CrossRef]
- Al-Talib, M.; Melhem, W.Y.; Anosike, A.I.; Reyes, J.A.G.; Nadeem, S.P.; Kumar, A. Achieving resilience in the supply chain by applying IoT technology. Procedia CIRP 2020, 91, 752–757. [Google Scholar] [CrossRef]
- Nica, E. Cyber-Physical Production Networks and Advanced Digitalization in Industry 4.0 Manufacturing Systems: Sustainable Supply Chain Management, Organizational Resilience, and Data-driven Innovation. J. Self Gov. Manag. Econ. 2019, 7, 27–33. [Google Scholar] [CrossRef]
- Brintrup, A.; Pak, J.; Ratiney, D.; Pearce, T.; Wichmann, P.; Woodall, P.; McFarlane, D. Supply chain data analytics for predicting supplier disruptions: A case study in complex asset manufacturing. Int. J. Prod. Res. 2020, 58, 3330–3341. [Google Scholar] [CrossRef]
- Choi, T.-M.; Lambert, J.H. Advances in risk analysis with big data. Risk Anal. 2017, 37, 1435–1442. [Google Scholar] [CrossRef]
- Papadopoulos, T.; Gunasekaran, A.; Dubey, R.; Altay, N.; Childe, S.J.; Wamba, S.F. The role of Big Data in explaining disaster resilience in supply chains for sustainability. J. Clean. Prod. 2017, 142, 1108–1118. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Wamba, S.F.; Roubaud, D.; Foropon, C. Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. Int. J. Prod. Res. 2021, 59, 110–128. [Google Scholar] [CrossRef]
- Ferraris, A.; Mazzoleni, A.; Devalle, A.; Couturier, J. Big data analytics capabilities and knowledge management: Impact on firm performance. Manag. Decis. 2019, 57, 1923–1936. [Google Scholar] [CrossRef]
- Shamout, M.D. Supply Chain Data Analytics and Supply Chain Agility: A Fuzzy Sets (fsQCA) Approach. Int. J. Organ. Anal. 2020, 28, 1055–1067. [Google Scholar] [CrossRef]
- Iftikhar, A.; Purvis, L.; Giannoccaro, I.; Wang, Y. The impact of supply chain complexities on supply chain resilience: The mediating effect of big data analytics. Prod. Plan. Control 2022. [Google Scholar] [CrossRef]
- Belhadi, A.; Mani, V.; Kamble, S.S.; Khan, S.A.R.; Verma, S. Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: An empirical investigation. Ann. Oper. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kalaboukas, K.; Rožanec, J.; Košmerlj, A.; Kiritsis, D.; Arampatzis, G. Implementation of Cognitive Digital Twins in Connected and Agile Supply Networks—An Operational Model. Appl. Sci. 2021, 11, 4103. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A. A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Prod. Plan. Control 2020, 32, 775–788. [Google Scholar] [CrossRef]
- Lohmer, J.; Bugert, N.; Lasch, R. Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study. Int. J. Prod. Econ. 2020, 228, 107882. [Google Scholar] [CrossRef] [PubMed]
- Min, H. Blockchain technology for enhancing supply chain resilience. Bus. Horiz. 2019, 62, 35–45. [Google Scholar] [CrossRef]
- Nguyen, S.; Chen, P.S.-L.; Du, Y. Risk identification and modeling for blockchain-enabled container shipping. Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 126–148. [Google Scholar] [CrossRef]
- Yoon, J.; Talluri, S.; Yildiz, H.; Sheu, C. The value of Blockchain technology implementation in international trades under demand volatility risk. Int. J. Prod. Res. 2019, 58, 2163–2183. [Google Scholar] [CrossRef]
- Bayramova, A.; Edwards, D.; Roberts, C. The Role of Blockchain Technology in Augmenting Supply Chain Resilience to Cybercrime. Buildings 2021, 11, 283. [Google Scholar] [CrossRef]
- Sreenu, M.; Gupta, N.; Jatoth, C.; Saad, A.; Alharbi, A.; Nkenyereye, L. Blockchain based secure and reliable Cyber Physical ecosystem for vaccine supply chain. Comput. Commun. 2022, 191, 173–183. [Google Scholar] [CrossRef]
- Ghadge, A.; Karantoni, G.; Chaudhuri, A.; Srinivasan, A. Impact of additive manufacturing on aircraft supply chain performance: A system dynamics approach. J. Manuf. Technol. Manag. 2018, 29, 846–865. [Google Scholar] [CrossRef] [Green Version]
- Patidar, A.; Sharma, M.; Agrawal, R.; Sangwan, K.S. Supply chain resilience and its key performance indicators: An evaluation under Industry 4.0 and sustainability perspective. Manag. Environ. Qual. 2022. [Google Scholar] [CrossRef]
- Karl, A.; Micheluzzi, J.; Leite, L.R.; Pereira, C.R. Supply chain resilience and key performance indicators: A systematic literature review. Production 2018, 28, e20180020. [Google Scholar] [CrossRef] [Green Version]
- Qader, G.; Junaid, M.; Abbas, Q.; Mubarik, M.S. Industry 4.0 enables supply chain resilience and supply chain performance. Technol. Forecast. Soc. Chang. 2022, 185, 122026. [Google Scholar] [CrossRef]
- Ali, A.; Mahfouz, A.; Arisha, A. Analysing supply chain resilience: Integrating the constructs in a concept mapping framework via a systematic literature review. Int. J. Supply Chain Manag. 2017, 22, 16–39. [Google Scholar] [CrossRef] [Green Version]
- Arsovski, S.; Arsovski, Z.; Stefanović, M.; Tadić, D.; Aleksić, A. Organizational resilience in a cloud-based enterprise in a SC: A challenge for innovative SMEs. Int. J. Comput. Integr. Manuf. 2017, 30, 409–419. [Google Scholar] [CrossRef]
- Bakshi, N.; Kleindorfer, P. Co-opetition and investment for supply-chain resilience. Prod. Oper. Manag. 2009, 18, 583–603. [Google Scholar] [CrossRef]
- Behzadi, G.; O’Sullivan, M.J.; Olsen, T.L.; Zhang, A. Agribusiness SC risk management: A review of quantitative decision models. Omega 2017, 79, 21–42. [Google Scholar] [CrossRef]
- Brusset, X.; Teller, C. SC capabilities, risks, and resilience. Int. J. Prod. Econ. 2017, 184, 59–68. [Google Scholar] [CrossRef]
- Christopher, M.; Peck, H. Building the Resilient Supply Chain. Int. J. Logist. Manag. 2004, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Datta, P. Supply network resilience: A systematic literature review and future research. Int. J. Logist. Manag. 2017, 28, 1387–1424. [Google Scholar] [CrossRef]
- Hohenstein, N.-O.; Feisel, E.; Hartmann, E. Research on the phenomenon of supply chain resilience: A systematic review and paths for further investigation. Int. J. Phys. Distrib. Logist. Manag. 2015, 45, 90–117. [Google Scholar] [CrossRef]
- Ivanov, D. Supply Chain Resilience: Modeling, Management, and Control. In Structural Dynamics and Resilience in Supply Chain Risk Management; Price, C.C., Ed.; Part of International Series in Operations Research & Management Science; Springer: Cham, Switzerland, 2018; Volume 265, pp. 45–89. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Sokolov, B.; Ivanova, M. Literature review on disruption recovery in the supply chain. Int. J. Prod. Res. 2017, 55, 6158–6174. [Google Scholar] [CrossRef]
- Kochan, C.G.; Nowicki, D.R. Supply chain resilience: A systematic literature review and typological framework. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 842–865. [Google Scholar] [CrossRef]
- Madani, F.; Parast, M.M. An integrated approach to organizational resilience: A quality perspective. Int. J. Qual. Reliab. Manag. 2021, 40, 192–225. [Google Scholar] [CrossRef]
- Mallak, L. Putting Organisational Resilience to Work. Ind. Manag. 1998, 40, 8–13. [Google Scholar]
- Pereira, R.C.; Christopher, M.; Silva, A.L. Achieving supply chain resilience: The role of procurement. Int. J. Supply Chain Manag. 2014, 19, 626–642. [Google Scholar] [CrossRef]
- Ponomarov, S.Y.; Holcomb, M.C. Understanding the concept of supply chain resilience. Int. J. Logist. Manag. 2009, 20, 124–143. [Google Scholar] [CrossRef]
- Sheffi, Y.; Rice, B.J. A Supply Chain View of the Resilient Enterprise. MIT Sloan Manag. Rev. 2005, 47, 41–48. [Google Scholar]
- Soni, U.; Jain, V.; Kumar, S. Measuring supply chain resilience using a deterministic modeling approach. Comput. Ind. Eng. 2014, 74, 11–25. [Google Scholar] [CrossRef]
- Blackhurst, J.; Dunn, K.S.; Craighead, C.W. An Empirically Derived Framework of Global Supply Resiliency. J. Bus. Logist. 2011, 32, 374–391. [Google Scholar] [CrossRef]
- Pettit, T.J.; Croxton, K.L.; Fiksel, J. Ensuring Supply Chain Resilience: Development and Implementation of an Assessment Tool. J. Bus. Logist. 2013, 34, 46–76. [Google Scholar] [CrossRef]
- Pettit, T.J.; Croxton, K.L.; Fiksel, J. The evolution of resilience in supply chain management: A retrospective on ensuring supply chain resilience. J. Bus. Logist. 2019, 40, 56–65. [Google Scholar] [CrossRef]
- Wieland, A.; Wallenburg, M.C. Dealing with supply chain risks: Linking risk management practices and strategies to performance. Int. J. Phys. Distrib. Logist. Manag. 2012, 42, 887–905. [Google Scholar] [CrossRef] [Green Version]
- Wieland, A.; Wallenburg, M.C. The influence of relational competencies on supply chain resilience: A relational view. Int. J. Phys. Distrib. Logist. Manag. 2013, 43, 300–320. [Google Scholar] [CrossRef] [Green Version]
- Ponis, S.T.; Koronis, E. Supply Chain Resilience: Definition of Concept and its Formative Elements. J. Appl. Bus. Res. 2012, 28, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Scholten, K.; Schilder, S. The role of collaboration in supply chain resilience. Supply Chain. Manag. 2015, 20, 471–484. [Google Scholar] [CrossRef]
- Scholten, K.; Scott, P.S.; Fynes, B. Mitigation processes-antecedents for building supply chain resilience. Supply Chain Manag. 2014, 19, 211–228. [Google Scholar] [CrossRef]
- Akhavan, P.; Philsoophian, M. Improving of Supply Chain Collaboration and Performance by Using Block Chain Technology as a Mediating Role and Resilience as a Moderating Variable. J. Knowl. Econ. 2022. [Google Scholar] [CrossRef]
- Ansari, F.; Kohl, L. AI-Enhanced Maintenance for Building Resilience and Viability in Supply Chains. In Supply Network Dynamics and Control; Dolgui, A., Ivanov, D., Sokolov, B., Eds.; Springer Series in Supply Chain Management; Springer: Cham, Switzerland, 2022; Volume 20, pp. 163–185. [Google Scholar] [CrossRef]
- Barykin, S.Y.; Bochkarev, A.A.; Kalinina, O.V.; Yadykin, V.K. Concept for a Supply Chain Digital Twin. Int. J. Math. Eng. Manag. Sci. 2020, 5, 1498–1515. [Google Scholar] [CrossRef]
- Burgos, D.; Ivanov, D. Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions. Transp. Res. Part E Logist. Transp. Rev. 2021, 152, 102412. [Google Scholar] [CrossRef] [PubMed]
- Catellani, L.; Bottani, E. Supply Chain Performance Metrics in the Lean, Agile, Resilient, Green Perspectives: A survey and model. In Proceedings of the 24th International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation (HMS), Rome, Italy, 19–21 September 2022. [Google Scholar] [CrossRef]
- Dumitrașcu, O.; Dumitrașcu, M.; Dobrotă, D. Performance Evaluation for a Sustainable Supply Chain Management System in the Automotive Industry Using Artificial Intelligence. Processes 2020, 8, 1384. [Google Scholar] [CrossRef]
- Ekren, B.Y.; Stylos, N.; Zwiegelaar, J.; Turhanlar, E.E.; Kumar, V. Additive manufacturing integration in E-commerce supply chain network to improve resilience and competitiveness. Simul. Model. Pract. Theory 2023, 122, 102676. [Google Scholar] [CrossRef]
- Essakly, A.; Wichmann, M.; Spengler, T. A reference framework for the holistic evaluation of Industry 4.0 solutions for small-and medium-sized enterprises. IFAC PapersOnLine 2019, 52, 427–432. [Google Scholar] [CrossRef]
- Sesana, M.; Tavola, G. Resilient Manufacturing Systems enabled by AI support to AR equipped operator. In Proceedings of the 2021 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Cardiff, UK, 21–23 June 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, C.; Liang, X. An Agent-Based Simulation for Coupling Carbon Trading Behaviors with Distributed Logistics System. In Advances in Intelligent Systems and Interactive Applications, IISA 2019; Xhafa, F., Patnaik, S., Tavana, M., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; Volume 1084, pp. 222–229. [Google Scholar] [CrossRef]
- Yamin, M.A. Investigating the Drivers of Supply Chain Resilience in the Wake of the COVID-19 Pandemic: Empirical Evidence from an Emerging Economy. Sustainability 2021, 13, 11939. [Google Scholar] [CrossRef]
- Aityassine, F.; Soumadi, M.; Aldiabat, B.; Al-Shorman, H.; Akour, I.; Alshurideh, M.; Al-Hawary, S. The effect of supply chain resilience on supply chain performance of chemical industrial companies. Uncertain Supply Chain. Manag. 2022, 10, 1271–1278. [Google Scholar] [CrossRef]
- Mahdiraji, H.A.; Yaftiyan, F.; Abbasi-Kamardi, A.; Garza-Reyes, J.A. Investigating potential interventions on disruptive impacts of Industry 4.0 technologies in circular supply chains: Evidence from SMEs of an emerging economy. Comput. Ind. Eng. 2022, 174, 108753. [Google Scholar] [CrossRef]
- Manupati, V.K.; Schoenherr, T.; Ramkumar, M.; Panigrahi, S.; Sharma, Y.; Mishra, P. Recovery strategies for a disrupted supply chain network: Leveraging blockchain technology in pre- and post-disruption scenarios. Int. J. Prod. Econ. 2022, 245, 108389. [Google Scholar] [CrossRef]
- Hervani, A.A.; Nandi, S.; Helms, M.M.; Sarkis, J. A performance measurement framework for socially sustainable and resilient supply chains using environmental goods valuation methods. Sustain. Prod. Consum. 2022, 30, 31–52. [Google Scholar] [CrossRef]
- Rajesh, R. Forecasting supply chain resilience performance using grey prediction. Electron. Commer. Res. Appl. 2016, 20, 42–58. [Google Scholar] [CrossRef]
- Singh, C.S.; Soni, G.; Badhotiya, G.K. Performance indicators for supply chain resilience: Review and conceptual framework. J. Ind. Eng. Int. 2019, 15 (Suppl. 1), 105–117. [Google Scholar] [CrossRef] [Green Version]
- European Commission; Directorate-General for Research and Innovation; Breque, M.; De Nul, L.; Petridis, A. Industry 5.0: Towards a Sustainable, Human-Centric and Resilient European Industry; Publications Office: Luxembourg, 2021; Available online: https://data.europa.eu/doi/10.2777/308407 (accessed on 7 February 2023).
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. Energies 2022, 15, 6276. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Johnson, A.R.; Johnson, M.E.; Nagarur, N. Supply chain design under disruptions considering risk mitigation strategies for robustness and resiliency. Int. J. Logist. Syst. Manag. 2021, 38, 1–29. [Google Scholar] [CrossRef]
- Rahman, T.; Moktadir, M.A.; Paul, S.K. Key performance indicators for a sustainable recovery strategy in healthcare supply chains: COVID-19 pandemic perspective. J. Asia Bus. Stud. 2022, 16, 472–494. [Google Scholar] [CrossRef]
- Carvalho, H.; Naghshineh, B.; Govindan, K.; Cruz-Machado, V. The resilience of on-time delivery to capacity and material shortages: An empirical investigation in the automotive supply chain. Comput. Ind. Eng. 2022, 171, 108375. [Google Scholar] [CrossRef]
- Lamballais, T.; Roy, D.; De Koster, R. Estimating Performance in a Robotic Mobile Fulfillment System. Eur. J. Oper. Res. 2016, 256, 976–990. [Google Scholar] [CrossRef] [Green Version]
- Kinra, A.; Ivanov, D.; Das, A.; Dolgui, A. Ripple effect quantification by supplier risk exposure assessment. Int. J. Prod. Res. 2020, 58, 5559–5578. [Google Scholar] [CrossRef]
- Li, Y.; Zobel, C.W. Exploring supply chain network resilience in the presence of the ripple effect. Int. J. Prod. Econ. 2020, 228, 107693. [Google Scholar] [CrossRef]
- Stevenson, M.; Spring, M. Flexibility from a supply chain perspective: Definition and review. Int. J. Oper. Prod. Manag. 2007, 27, 685–713. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Manual for VOSviewer Version 1.6.15; Universiteit Leinden: Leiden, The Netherlands, 2020; Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.15.pdf (accessed on 7 February 2023).
- Amaral, A.; Jorge, D.; Peças, P. Small Medium Enterprises and Industry 4.0: Current Models’ Ineptitude and the Proposal of a Methodology to Successfully Implement Industry 4.0 in Small Medium Enterprises. Procedia Manuf. 2019, 41, 1103–1110. [Google Scholar] [CrossRef]
- Amaral, A.; Peças, P.A. Framework for Assessing Manufacturing SMEs Industry 4.0. Maturity. Appl. Sci. 2021, 11, 6127. [Google Scholar] [CrossRef]
- Mittala, S.; Khana, M.A.; Romerob, D.; Wuest, T. A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs). J. Manuf. Syst. 2018, 49, 194–214. [Google Scholar] [CrossRef]
- Santos, R.C.; Martinho, J.L. An Industry 4.0 maturity model proposal. J. Manuf. Technol. Manag. 2019, 31, 1023–1043. [Google Scholar] [CrossRef]
Author(s) | Definition of Supply Chain Resilience |
---|---|
Rice and Caniato, 2003 [3] | “A supply network is resilient when it can respond to unexpected disruptions and restore normal supply network operations”. |
Christopher and Peck, 2004 [125] | “The ability of a system to return to its original state or move to a new, more desirable state after being disturbed”. |
Ponomarov and Holocomb, 2009 [134] | “The adaptive capability of the supply chain to prepare for unexpected events, respond to disruptions, and recover from them by maintaining continuity of operations at the desired level of connectedness and control over structure and function”. |
Ponis and Koronis, 2012 [142] | “The ability to proactively plan and design the Supply Chain network for anticipating unexpected disruptive (negative) events, respond adaptively to disruptions while maintaining control over structure and function and transcending to a post-event robust state of operations, if possible, more favorable than the one prior to the event, thus gaining competitive advantage”. |
Hohenstein et al., 2015 [127] | “Supply chain’s ability to be prepared for unexpected risk events, responding and recovering quickly to potential disruptions to return to its original situation or grow by moving to a new, more desirable state in order to increase customer service, market share and financial performance”. |
Datta, 2017 [126] | “Supply chain resilience is a dynamic process of steering the actions so that the organisation always stays out of danger zone, and if the disruptive/uncertain event occurs, resilience implies initiating a very rapid and efficient response to minimise the consequences and maintaining or regaining a dynamically stable state, which allows it to adapt operations to the requirements of the changed environment before the competitors and succeed in the long run”. |
Element | Description | Sample References |
---|---|---|
SC configuration/SC network design | The ability to quickly redesign the supply chain | Christopher and Peck, 2004 [125]; Blackhurst et al., 2005 [137]; Pereira et al., 2014 [133]; Scholten et al., 2014 [144]; Soni et al., 2014 [136]; Tukamuhabwa et al., 2015 [2]; Ali et al., 2017 [120]; Singh et al., 2019 [161]; Spieske and Birkel, 2021 [96] |
Redundancy | The maintenance of extra capacity in case of supply deficiencies | Christopher and Peck, 2004 [125]; Ponis and Koronis, 2012 [142]; Pettit et al., 2013 [138]; Pereira et al., 2014 [133]; Tukamuhabwa et al., 2015 [2]; Ali et al., 2017 [120]; Kochan and Nowicki, 2018 [130]; Singh et al., 2019 [161]; Hsu et al., 2021 [1] |
Flexibility | The capacity of the supply chain to adjust to changes occurring at resource and shop floor level, at plant level, at firm level, and at network level | Christopher and Peck, 2004 [125]; Rice and Caniato, 2003 [3]; Blackhurst et al., 2005 [137]; Sheffi and Rice, 2005 [135]; Ponomarov and Holcomb, 2009 [134]; Ponis and Koronis, 2012 [142]; Pettit et al., 2013 [138]; Pereira et al., 2014 [133]; Soni et al., 2014 [136]; Scholten & Schilder, 2015 [143]; Tukamuhabwa et al., 2015 [2]; Ali et al., 2017 [120]; Kochan and Nowicki, 2018 [130]; Hsu et al., 2021 [1] |
Visibility | The ability to see the supply chain from one end to another and find the place of a disruptive event | Christopher and Peck, 2004 [125]; Ponis and Koronis, 2012 [142]; Pettit et al., 2013 [138]; Pereira et al., 2014 [133]; Soni et al., 2014 [136]; Scholten & Schilder, 2015 [143]; Tukamuhabwa et al., 2015 [2]; Ali et al., 2017 [120]; Kochan and Nowicki, 2018 [130]; Singh et al., 2019 [161]; Spieske and Birkel, 2021 [96]; Hsu et al., 2021 [1] |
Collaboration | The ability to plan and execute supply chain operations jointly with other firms. Mutual trust and willingness to share information are needed | Ponis and Koronis, 2012 [142]; Pettit et al., 2013 [138]; Pereira et al., 2014 [133]; Scholten et al., 2014 [144]; Soni et al., 2014 [136]; Scholten & Schilder, 2015 [143]; Tukamuhabwa et al., 2015 [2]; Kochan and Nowicki, 2018 [130]; Ali et al., 2017 [120]; Datta, 2019 [126]; Spieske and Birkel, 2021 [96]; Hsu et al., 2021 [1] |
Agility | The ability to react rapidly to an unpredictable change in supply and/or demand. Responsiveness | Christopher and Peck, 2004 [125]; Ponis and Koronis, 2012 [142]; Wieland and Wallenburg, 2012 [140]; Pereira et al., 2014 [133]; Scholten et al., 2014 [144]; Soni et al., 2014 [136]; Scholten & Schilder, 2015 [143]; Tukamuhabwa et al., 2015 [2]; Ali et al., 2017 [120]; Kochan and Nowicki, 2018 [130]; Singh et al., 2019 [161]; Datta, 2019 [126]; Spieske and Birkel, 2021 [96]; Hsu et al., 2021 [1] |
Situation Awareness | The ability to understand SC vulnerabilities and plan for disruption events | Ali et al., 2017 [120]; Singh et al., 2019 [161]; Datta, 2019 [126]; Spieske and Birkel, 2021 [96]; Hsu et al., 2021 [1] |
Information Sharing | The ability to share information of organization assets or events pre/during/post-disruption | Pereira et al., 2014 [133]; Soni et al., 2014 [136]; Ali et al., 2017 [120]; Singh et al., 2019 [161]; Hsu et al., 2021 [1] |
SC Risk Management (SCRM) Culture | Risk understanding, supply chain structure understanding, SCRM learning | Christopher and Peck, 2004 [125]; Pereira et al., 2014 [133]; Tukamuhabwa et al., 2015 [2]; Ali et al., 2017 [120]; Singh et al., 2019 [161]; Spieske and Birkel, 2021 [96] |
Security | Essential part of SCRes. Can be physical security, information security or freight security | Christopher and Peck, 2004 [125]; Rice and Caniato, 2003 [3]; Pettit et al., 2013 [138]; Scholten et al., 2014 [144]; Tukamuhabwa et al., 2015 [2]; Ali et al., 2017 [120]; Kochan and Nowicki, 2018 [130]; Singh et al., 2019 [161]; Hsu et al., 2021 [1] |
Robustness | The ability of the supply chain to resist change and anticipate change proactively | Christopher and Peck, 2004 [125]; Sheffi and Rice, 2005 [135]; Wieland and Wallenburg, 2012 [140] and 2013 [141]; Soni et al., 2014 [136]; Scholten & Schilder, 2015 [143]; Ali et al., 2017 [120]; Singh et al., 2019 [161] |
Risk Management | A set of actions that increase the ability to anticipate risk, respond, and/or recover from the impacts of disruption | Scholten et al., 2014 [144]; Soni et al., 2014 [136]; Scholten and Schilder, 2015 [143]; Ali et al., 2017 [120]; Singh et al., 2019 [161]; Datta, 2019 [126] |
Knowledge Management | Pre-disruption: The ability to acquire knowledge from past experiences to be prepared for a future disruption Post-disruption: The ability to learn how to develop better solutions after a disruption occurs | Christopher and Peck, 2004 [125]; Rice and Caniato, 2003 [3]; Ponomarov and Holcomb, 2009 [134]; Ponis and Koronis, 2012 [142]; Pettit et al., 2013 [138]; Pereira et al., 2014 [133]; Scholten et al., 2014 [144]; Soni et al., 2014 [136]; Tukamuhabwa et al., 2015 [2]; Ali et al., 2017 [120] |
Velocity | The speed of performing flexible adaptations and recover from a disruption | Ponis and Koronis, 2012 [142]; Tukamuhabwa et al., 2015 [2]; Ali et al., 2017 [120]; Kochan and Nowicki, 2018 [130]; Singh et al., 2019 [161]; Spieske and Birkel, 2021 [96]; Hsu et al., 2021 [1] |
Industry 4.0 Technology | Sample References |
---|---|
IoT | Ashton, 2009 [23]; Gnimpieba et al., 2015 [62]; Maslarić et al., 2016 [12]; Witkowski, 2017 [77]; Douaioui et al., 2018 [10]; Zhang, 2018 [63]; Al-Talib et al., 2020 [98]; Dev et al., 2021 [92]; Zouari et al., 2021 [84]; Fatorachian and Kazemi, 2021 [97]; Spieske and Birkel, 2021 [96]; Shrivastava et al., 2021 [27]; Hofmann and Rüsch, 2017 [48]; Govindan et al., 2022 [47]; Tortorella et al., 2022 [80] |
CPS | Kyoung-Dae et al., 2012 [25]; Vogel-Heuser et al., 2016 [20]; Almada-Lobo, 2016 [5]; Douaioui et al., 2018 [10]; Zhang, 2018 [63]; Nica, 2019 [99]; Tran et al., 2019 [26]; Dev et al., 2021 [92]; Spieske and Birkel, 2021 [96]; Fatorachian and Kazemi, 2021 [97]; Hofmann and Rüsch, 2017 [48]; Govindan et al., 2022 [47]; Tortorella et al., 2022 [80] |
AR | Fraga-Lamas et al., 2017 [28]; del Amo et al., 2018 [30]; Butt, 2020 [36]; Lavingia and Tanwar, 2020 [29]; Rejeb et al., 2021 [64]; Zouari et al., 2021 [84]; Govindan et al., 2022 [47]; Tortorella et al., 2022 [80] |
CC | Arsovski et al., 2017 [121]; Ding, 2018 [93]; Spieske and Birkel, 2021 [96]; Fatorachian and Kazemi, 2021 [97]; Zouari et al., 2021 [84]; Hofmann and Rüsch, 2017 [48]; Govindan et al., 2022 [47]; Tortorella et al., 2022 [80] |
IoS | Maslarić et al., 2016 [12]; Douaioui et al., 2018 [10]; Reis and Gonçalves, 2018 [31]; Dev et al., 2021 [92]; Hofmann and Rüsch, 2017 [48]; Govindan et al., 2022 [47] |
BDA | Lee et al., 2013 [32]; Addo-Tenkorang and Helo 2016 [65]; Richey et al., 2016 [67]; Wang et al., 2016 [68]; Gunasekaran et al., 2016 [66]; Witkowski, 2017 [77]; Papadopoulos et al., 2017 [102]; Choi and Lambert, 2018 [101]; Nguyen et al., 2018 [69]; Ding, 2018 [93]; Brintrup et al., 2020 [100]; Ferraris et al., 2019 [104]; Zouari et al., 2021 [84]; Dubey et al., 2021 [103]; Spieske and Birkel, 2021 [96]; Fatorachian and Kazemi, 2021 [97]; Govindan et al., 2022 [47]; Tortorella et al., 2022 [80] |
AI | Singh et al., 2022 [83]; Baryannis et al., 2018 [70]; Pan & Tang 2014 [71]; Ding, 2018 [93]; Belhadi et al., 2021 [107]; Spieske and Birkel, 2021 [96]; Govindan et al., 2022 [47]; Ansari and Kohl, 2022 [146] |
DT | Uhlemann et al., 2017 [35]; Kalaboukas et al., 2021 [108]; Ivanov and Dolgui, 2020 [109]; Frazzon et al., 2021 [44]; Wang et al., 2022 [72]; Govindan et al., 2022 [47]; Tortorella et al., 2022 [80] |
BC | Weber et al., 2016 [76]; Kshetri, 2018 [74]; Mendling et al., 2018 [75]; Perboli et al., 2018 [73]; Min, 2019 [111]; Yoon et al., 2019 [113]; Lohmer et al., 2020 [110]; Bayramova et al., 2021 [114]; Spieske and Birkel, 2021 [96]; Zouari et al., 2021 [84]; Shrivastava et al., 2021 [27]; Taghizadeh and Taghizadeh, 2021 [85]; Govindan et al., 2022 [47]; Tortorella et al., 2022 [80]; Sreenu et al., 2022 [1]; Akhavan and Philsoophian, 2022 [145]; Manupati et al., 2022 [158] |
IR | Ghadge et al., 2018 [116]; Azadeh et al., 2019 [37]; Goel and Gupta, 2020 [38]; Dev et al., 2021 [92]; Zouari et al., 2021 [84]; Görçün, 2022 [78]; Govindan et al., 2022 [47] |
AM | Fraga-Lamas, 2018 [28]; Ding, 2018 [93]; Savolainen, 2020 [39]; Dev et al., 2021 [92]; Spieske and Birkel, 2021 [96]; Zouari et al., 2021 [84]; Dev et al., 2021 [92]; Govindan et al., 2022 [47]; Tortorella et al., 2022 [80]; Ghadge et al., 2018 [116]; Ekren et al., 2023 [151] |
KPIs | Descriptions and References |
---|---|
Lead time | The time elapsed in between the placement of an order from a customer until the delivery to the customer [47,117,161] (Production lead time [150], Order lead time [118], Delivery lead time [92,118]) |
Time to recovery | The time needed for a facility to regain its usual level of functionality after a disruption [81,117,149,167,169,170] (Speed of recovery [92,120,161]) |
Order cycle time | The time between two placed orders [117,168] |
Capacity utilization | The ratio of the actual output to the maximum output [117,118] |
Risk assessment frequency | Indicates how frequently risks are being identified [117] |
Supplier delivery efficiency | Indicates how efficiently a supplier delivers the supplies [117,118] (Supplier reliability: The ratio of the quantity received over the quantity ordered [169]) |
Supplier rejection rate | The quantity of supplies rejected by the suppliers over the total quantity received [117,118] |
SC cycle time | The sum of the longest lead time for each stage Indicates the efficiency of the supply chain [117,150] |
Demand and supply variations | The variability between demand and supply [117,171] |
No of nodes in SC | Number of product stops during the production process [117,165,170] |
Proximity to suppliers and customers | The proximity between company and suppliers and the proximity between company and customers [117] |
Service rate | The level of service to the customers [47,117,118,149,160,165] (Order fill rate: The ratio of the quantity shipped to the customer over the total quantity ordered [160,165]) (Customer satisfaction [47,118]) |
On-time delivery | The ratio of the number of orders delivered on date over the total number of orders delivered [118,148,149,160,167,169] |
Equipment effectiveness /efficiency | The effectiveness/efficiency of the equipment in a manufacturing plant [117] (The ratio of fully productive time to planned production time [146]) |
Inventory velocity | The time interval between supplying raw materials and selling finished products [117] |
Stock level | The optimum stock level [47,92,117,118,149,150] |
Forecasting accuracy | The deviation of the actual demand from the forecasting demand [47,117,161,166] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinagi, C.; Reklitis, P.; Trivellas, P.; Sakas, D. The Impact of Industry 4.0 Technologies on Key Performance Indicators for a Resilient Supply Chain 4.0. Sustainability 2023, 15, 5185. https://doi.org/10.3390/su15065185
Marinagi C, Reklitis P, Trivellas P, Sakas D. The Impact of Industry 4.0 Technologies on Key Performance Indicators for a Resilient Supply Chain 4.0. Sustainability. 2023; 15(6):5185. https://doi.org/10.3390/su15065185
Chicago/Turabian StyleMarinagi, Catherine, Panagiotis Reklitis, Panagiotis Trivellas, and Damianos Sakas. 2023. "The Impact of Industry 4.0 Technologies on Key Performance Indicators for a Resilient Supply Chain 4.0" Sustainability 15, no. 6: 5185. https://doi.org/10.3390/su15065185