A Critical Review of the Advances and Current Status of the Application of Adsorption in the Remediation of Micropollutants and Dyes Through the Use of Emerging Bio-Based Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polysaccharides
2.1.1. Agarose
2.1.2. Alginate
2.1.3. Cellulose
2.1.4. Chitosan
2.1.5. Pectin
2.2. Microbial and Plant Sources
2.2.1. Lignin
2.2.2. Polyhydroxyalkanoates
2.2.3. Polylactic Acid
2.2.4. Starch
2.3. Animal-Derived Biopolymers
Gelatin
3. Synthesis Strategies to Manufacture Bio-Based Materials
3.1. Molecular Imprinting
3.2. Phase Inversion
3.3. Electrospinning
3.4. Chemical Modification
4. Green Synthesis and Its Benefits Compared to Chemical Synthesis
5. Advantages of Remediation via Materials of Biological Origin
6. Bio-Based Materials: Functionalization Methods
7. Use of Bio-Based Materials as Adsorbents
7.1. Use of Bio-Based Materials in Dye Adsorption
7.2. Removal of Micropollutants
7.3. Contamination via Oil Spills
7.4. Membrane Filtration
7.5. Mechanisms Involved in the Remediation of Environmental Pollutants
8. Scalability Challenges
9. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Lin, J.; Dong, C.; Lin, C.; Duan, D.; Ma, P.; Zhao, Z.; Liu, B.; Zhang, X.; Huang, X. The Impact of Tectonic Inversion on Diagenesis and Reservoir Quality of the Oligocene Fluvial Sandstones: The Upper Huagang Formation, Xihu Depression, East China Sea Shelf Basin. Mar. Pet. Geol. 2024, 165, 106860. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, S.; Wang, X.; He, J.; Sun, B.; Jia, Y.; Luo, T.; Meng, F.; Jin, Z.; Lin, D.; et al. Wide PH Range for Fluoride Removal from Water by MHS-MgO/MgCO3 Adsorbent: Kinetic, Thermodynamic and Mechanism Studies. J. Colloid Interface Sci. 2015, 446, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tang, H.; Zhou, B.; Wen, T.; Zhang, S. A New Early Warning Criterion for Landslides Movement Assessment: Deformation Standardized Anomaly Index. Bull. Eng. Geol. Environ. 2024, 83, 205. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, C.; Tang, H.; Wen, T.; Tannant, D.D. Input-Parameter Optimization Using a SVR Based Ensemble Model to Predict Landslide Displacements in a Reservoir Area—A Comparative Study. Appl. Soft Comput. 2024, 150, 111107. [Google Scholar] [CrossRef]
- Zhang, M.; Li, D.; Liu, J.; Zhang, D.; Zhang, Y.; Cui, K. Mechanics of Materials The Modification of Mohr-Coulomb Criteria Based on Shape Function and Determination Method of Undetermined Parameters. Mech. Mater. 2023, 185, 104772. [Google Scholar] [CrossRef]
- Franco, D.S.P.; Georgin, J.; Piccilli, D.G.; Meili, L.; Silanpää, M.; Kon Kova, T.; Alharbi, O.M.L.; Imanova, G.; Al-Humaidi, J.Y.; Ali, I. Diuron Removal from Water by Adsorption: Fundamentals, Mechanism, Desorption, and Future Perspectives. Sep. Purif. Rev. 2024, 1–17. [Google Scholar] [CrossRef]
- Georgin, J.; Franco, D.S.P.; Da Boit Martinello, K.; Lima, E.C.; Silva, L.F.O.; Dison, S.P.F.; Da Boit Martinello, K.; Lima, E.C.; Silva Oliveira, L.F.; Georgin, J.; et al. A Review of the Toxicology Presence and Removal of Ketoprofen through Adsorption Technology. J. Environ. Chem. Eng. 2022, 10, 107798. [Google Scholar] [CrossRef]
- Li, R.; Wu, Y.; Lou, X.; Li, H.; Cheng, J.; Shen, B.; Qin, L. Porous Biochar Materials for Sustainable Water Treatment: Synthesis, Modification, and Application. Water 2023, 15, 395. [Google Scholar] [CrossRef]
- Liu, Y.; Ke, Y.; Shang, Q.; Yang, X.; Wang, D.; Liao, G. Fabrication of Multifunctional Biomass-Based Aerogel with 3D Hierarchical Porous Structure from Waste Reed for the Synergetic Adsorption of Dyes and Heavy Metal Ions. Chem. Eng. J. 2023, 451, 138934. [Google Scholar] [CrossRef]
- Haripriyan, U.; Gopinath, K.P.; Arun, J. Chitosan Based Nano Adsorbents and Its Types for Heavy Metal Removal: A Mini Review. Mater. Lett. 2022, 312, 131670. [Google Scholar] [CrossRef]
- Georgin, J.; Franco, D.S.P.; Ramos, C.G.; Piccilli, D.G.A.; Lima, E.C.; Sher, F. A Review of the Antibiotic Ofloxacin: Current Status of Ecotoxicology and Scientific Advances in Its Removal from Aqueous Systems by Adsorption Technology. Chem. Eng. Res. Des. 2023, 193, 99–120. [Google Scholar] [CrossRef]
- Yin, R.; Blatchley, E.R.; Shang, C. UV Photolysis of Mono- And Dichloramine Using UV-LEDs as Radiation Sources: Photodecay Rates and Radical Concentrations. Environ. Sci. Technol. 2020, 54, 8420–8429. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhu, X.; Satpathy, A.; Li, W.; Fortner, J.D.; Giammar, D.E. Cr(VI) Adsorption on Engineered Iron Oxide Nanoparticles: Exploring Complexation Processes and Water Chemistry. Environ. Sci. Technol. 2019, 53, 11913–11921. [Google Scholar] [CrossRef]
- Mohammadi, R.; Tang, W.; Sillanpää, M. A Systematic Review and Statistical Analysis of Nutrient Recovery from Municipal Wastewater by Electrodialysis. Desalination 2021, 498, 114626. [Google Scholar] [CrossRef]
- Hu, L.; Yu, J.; Luo, H.; Wang, H.; Xu, P.; Zhang, Y. Simultaneous Recovery of Ammonium, Potassium and Magnesium from Produced Water by Struvite Precipitation. Chem. Eng. J. 2020, 382, 123001. [Google Scholar] [CrossRef]
- Franco, D.S.P.; Georgin, J.; Allasia, D.; Meili, L.; López-Maldonado, E.A.; Khan, A.H.; Hasan, M.A.; Husain, A. Investigation of Propranolol Hydrochloride Adsorption onto Pyrolyzed Residues from Bactris Guineensis through Physics Statistics Modeling. Sci. Rep. 2024, 14, 18101. [Google Scholar] [CrossRef]
- Franco, D.S.P.; Georgin, J.; Ramos, C.G.; Netto, M.S.; Ojeda, N.J.; Vega, N.A.; Meili, L.; Lima, E.C.; Naushad, M. The Production of Activated Biochar Using Calophyllum Inophyllum Waste Biomass and Use as an Adsorbent for Removal of Diuron from the Water in Batch and Fixed Bed Column. Environ. Sci. Pollut. Res. 2023, 30, 52498–52513. [Google Scholar] [CrossRef]
- Korak, J.A.; Mungan, A.L.; Watts, L.T. Critical Review of Waste Brine Management Strategies for Drinking Water Treatment Using Strong Base Ion Exchange. J. Hazard. Mater. 2023, 441, 129473. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y. Reverse Osmosis Concentrate: An Essential Link for Closing Loop of Municipal Wastewater Reclamation towards Urban Sustainability. Chem. Eng. J. 2021, 421, 127773. [Google Scholar] [CrossRef]
- Zhang, S.; Hedtke, T.; Zhu, Q.; Sun, M.; Weon, S.; Zhao, Y.; Stavitski, E.; Elimelech, M.; Kim, J.H. Membrane-Confined Iron Oxychloride Nanocatalysts for Highly Efficient Heterogeneous Fenton Water Treatment. Environ. Sci. Technol. 2021, 55, 9266–9275. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Toxicity Changes of Wastewater during Various Advanced Oxidation Processes Treatment: An Overview. J. Clean. Prod. 2021, 315, 128202. [Google Scholar] [CrossRef]
- Hand, S.; Cusick, R.D. Electrochemical Disinfection in Water and Wastewater Treatment: Identifying Impacts of Water Quality and Operating Conditions on Performance. Environ. Sci. Technol. 2021, 55, 3470–3482. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Joshi, H.; Chowdhury, R.; Najem, J.S.; Shen, Y.; Lang, C.; Henderson, C.B.; Tu, Y.M.; Farell, M.; Pitz, M.E.; et al. Artificial Water Channels Enable Fast and Selective Water Permeation through Water-Wire Networks. Nat. Nanotechnol. 2020, 15, 73–79. [Google Scholar] [CrossRef]
- Peydayesh, M.; Mezzenga, R. Protein Nanofibrils for next Generation Sustainable Water Purification. Nat. Commun. 2021, 12, 3248. [Google Scholar] [CrossRef]
- Wang, Q.; Duan, Y.J.; Wang, S.P.; Wang, L.T.; Hou, Z.L.; Cui, Y.X.; Hou, J.; Das, R.; Mao, D.Q.; Luo, Y. Occurrence and Distribution of Clinical and Veterinary Antibiotics in the Faeces of a Chinese Population. J. Hazard. Mater. 2020, 383, 121129. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Han, G.; Bai, Y.; Ge, Q.; Ma, J.; Lau, C.H.; Shao, L. Molecularly Soldered Covalent Organic Frameworks for Ultrafast Precision Sieving. Sci. Adv. 2021, 7, eabe8706. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Shi, Q.; Zhang, S.; Gao, J.; Cheng, D.C.; Yi, M.; Song, R.; Wang, L.; Jiang, J.; Karnik, R.; et al. Highly Porous Nanofiber-Supported Monolayer Graphene Membranes for Ultrafast Organic Solvent Nanofiltration. Sci. Adv. 2021, 7, eabg6263. [Google Scholar] [CrossRef]
- Ji, Y.; Gu, B.; Xie, S.; Yin, M.; Qian, W.; Zhao, Q.; Hung, W.; Lee, K.; Zhou, Y.; An, Q.; et al. Superfast Water Transport Zwitterionic Polymeric Nanofluidic Membrane Reinforced by Metal–Organic Frameworks. Adv. Mater. 2021, 33, 2102292. [Google Scholar] [CrossRef]
- Shamim Sheikh, M.; Mahmudur Rahman, M.; Safiur Rahman, M.; Yildirim, K.; Maniruzzaman, M. Fabrication of Nano Composite Membrane Filter from Graphene Oxide(GO) and Banana Rachis Cellulose Nano Crystal(CNC) for Industrial Effluent Treatment. J. Ind. Eng. Chem. 2023, 128, 196–208. [Google Scholar] [CrossRef]
- Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S.K. Role of Nanomaterials as Adsorbents in Heavy Metal Ion Removal from Waste Water: A Review. J. Water Process Eng. 2020, 33, 101038. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, G.; Dong, M.; Nie, J.; Ma, G. Multifunctional Bacterial Cellulose/Covalent Organic Framework Composite Membranes with Antifouling and Antibacterial Properties for Dye Separation. ACS Appl. Mater. Interfaces 2023, 15, 32903–32915. [Google Scholar] [CrossRef]
- Cywar, R.M.; Rorrer, N.A.; Hoyt, C.B.; Beckham, G.T.; Chen, E.Y.-X. Bio-Based Polymers with Performance-Advantaged Properties. Nat. Rev. Mater. 2022, 7, 83–103. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, X.; Jiang, Y.; Ji, Y.; Fang, X.; Zhang, Y. Synthesis of Eco-Friendly Lignin-Betaine and Its Application for Dye Wastewater Treatment. Ind. Crops Prod. 2023, 192, 116014. [Google Scholar] [CrossRef]
- Mansoori, S.; Davarnejad, R.; Matsuura, T.; Ismail, A.F. Membranes Based on Non-Synthetic (Natural) Polymers for Wastewater Treatment. Polym. Test. 2020, 84, 106381. [Google Scholar] [CrossRef]
- Cambié, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noël, T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chem. Rev. 2016, 116, 10276–10341. [Google Scholar] [CrossRef]
- Wang, B.; Cao, X.F.; Yu, S.X.; Sun, Z.H.; Shen, X.J.; Wen, J.L.; Yuan, T.Q. New Sustainable Mannich-Functionalized Lignin Flocculants for Ultra-Efficiently Tailoring Wastewater Purification. J. Clean. Prod. 2023, 387, 135801. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Li, J.J.; Wang, T.T.; Wu, Y.Y.; Luo, Z.H. Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the Progress from Polymer Chemistry and Reaction Engineering. Prog. Polym. Sci. 2022, 130, 101555. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, Y.; Qu, C.; Xu, X. Modification of Polyacrylonitrile-Based Activated Carbon Fibers and Their p-Nitrophenol Adsorption and Degradation Properties. J. Environ. Chem. Eng. 2021, 9, 105390. [Google Scholar] [CrossRef]
- Machado, G.; Santos, F.; Lourega, R.; Mattia, J.; Faria, D.; Eichler, P.; Auler, A. Biopolymers from Lignocellulosic Biomass. In Lignocellulosic Biorefining Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 125–158. ISBN 9781119568858. [Google Scholar]
- Vinod, A.; Sanjay, M.R.; Suchart, S.; Jyotishkumar, P. Renewable and Sustainable Biobased Materials: An Assessment on Biofibers, Biofilms, Biopolymers and Biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Shahini, M.H.; Ramezanzadeh, B.; Mohammadloo, H.E. Recent Advances in Biopolymers/Carbohydrate Polymers as Effective Corrosion Inhibitive Macro-Molecules: A Review Study from Experimental and Theoretical Views. J. Mol. Liq. 2021, 325, 115110. [Google Scholar] [CrossRef]
- Wu, S.; Li, K.; Dai, X.; Zhang, Z.; Ding, F.; Li, S. An Ultrasensitive Electrochemical Platform Based on Imprinted Chitosan/Gold Nanoparticles/Graphene Nanocomposite for Sensing Cadmium (II) Ions. Microchem. J. 2020, 155, 104710. [Google Scholar] [CrossRef]
- Graham, S.; Marina, P.F.; Blencowe, A. Thermoresponsive Polysaccharides and Their Thermoreversible Physical Hydrogel Networks. Carbohydr. Polym. 2019, 207, 143–159. [Google Scholar] [CrossRef]
- Guo, H.; Qin, Q.; Chang, J.S.; Lee, D.J. Modified Alginate Materials for Wastewater Treatment: Application Prospects. Bioresour. Technol. 2023, 387, 129639. [Google Scholar] [CrossRef]
- Azzam, F.; Galliot, M.; Putaux, J.L.; Heux, L.; Jean, B. Surface Peeling of Cellulose Nanocrystals Resulting from Periodate Oxidation and Reductive Amination with Water-Soluble Polymers. Cellulose 2015, 22, 3701–3714. [Google Scholar] [CrossRef]
- Abbasi, N.; Khan, S.A.; Khan, T.A. Statistically Optimised Sequestration of Mefenamic Acid from Polluted Water by Acacia Gum Phthalate/Pectin Hydrogel: A Novel Multifunctional Adsorbent Material Synthesised via Microwave-Assisted Process. Chem. Eng. J. 2023, 466, 143296. [Google Scholar] [CrossRef]
- Kaur, J.; Sengupta, P.; Mukhopadhyay, S. Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Ind. Eng. Chem. Res. 2022, 61, 1921–1954. [Google Scholar] [CrossRef]
- Abd El-Ghany, N.A.; Elella, M.H.A.; Abdallah, H.M.; Mostafa, M.S.; Samy, M. Recent Advances in Various Starch Formulation for Wastewater Purification via Adsorption Technique: A Review. J. Polym. Environ. 2023, 31, 2792–2825. [Google Scholar] [CrossRef]
- Lahaye, M. Developments on Gelling Algal Galactans, Their Structure and Physico-Chemistry. J. Appl. Phycol. 2001, 13, 173–184. [Google Scholar] [CrossRef]
- Jiang, F.; Xu, X.-W.; Chen, F.-Q.; Weng, H.-F.; Chen, J.; Ru, Y.; Xiao, Q.; Xiao, A.-F. Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review. Mar. Drugs 2023, 21, 299. [Google Scholar] [CrossRef]
- Melo, J.M.; Lütke, S.F.; Igansi, A.V.; Franco, D.S.P.; Vicenti, J.R.M.; Dotto, G.L.; Pinto, L.A.A.; Cadaval, T.R.S.; Felipe, C.A.S. Mass Transfer and Equilibrium Modelings of Phenol Adsorption on Activated Carbon from Olive Stone. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 680, 132628. [Google Scholar] [CrossRef]
- Bezerra de Araujo, C.M.; Wernke, G.; Ghislandi, M.G.; Diório, A.; Vieira, M.F.; Bergamasco, R.; Alves da Motta Sobrinho, M.; Rodrigues, A.E. Continuous Removal of Pharmaceutical Drug Chloroquine and Safranin-O Dye from Water Using Agar-Graphene Oxide Hydrogel: Selective Adsorption in Batch and Fixed-Bed Experiments. Environ. Res. 2023, 216, 114425. [Google Scholar] [CrossRef]
- de Araujo, C.M.B.; Ghislandi, M.G.; Rios, A.G.; da Costa, G.R.B.; do Nascimento, B.F.; Ferreira, A.F.P.; da Motta Sobrinho, M.A.; Rodrigues, A.E. Wastewater Treatment Using Recyclable Agar-Graphene Oxide Biocomposite Hydrogel in Batch and Fixed-Bed Adsorption Column: Bench Experiments and Modeling for the Selective Removal of Organics. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 639, 128357. [Google Scholar] [CrossRef]
- Phan, D.N.; Khan, M.Q.; Nguyen, N.T.; Phan, T.T.; Ullah, A.; Khatri, M.; Kien, N.N.; Kim, I.S. A Review on the Fabrication of Several Carbohydrate Polymers into Nanofibrous Structures Using Electrospinning for Removal of Metal Ions and Dyes. Carbohydr. Polym. 2021, 252, 117175. [Google Scholar] [CrossRef] [PubMed]
- Sutirman, Z.A.; Sanagi, M.M.; Wan Aini, W.I. Alginate-Based Adsorbents for Removal of Metal Ions and Radionuclides from Aqueous Solutions: A Review. Int. J. Biol. Macromol. 2021, 174, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Khajavi, P.; Keshtkar, A.R.; Moosavian, M.A. The Optimization of U(VI) Removal by a Novel Amidoximated Modified Calcium Alginate Gel Bead with Entrapped Functionalized SiO2 Nanoparticles. Prog. Nucl. Energy 2021, 140, 103887. [Google Scholar] [CrossRef]
- Orachorn, N.; Klongklaew, P.; Bunkoed, O. A Composite of Magnetic GOx@MOF Incorporated in Alginate Hydrogel Fiber Adsorbent for the Extraction of Phthalate Esters. Microchem. J. 2021, 171, 106827. [Google Scholar] [CrossRef]
- Marrakchi, F.; Fazeli Zafar, F.; Wei, M.; Wang, S. Cross-Linked FeCl3-Activated Seaweed Carbon/MCM-41/Alginate Hydrogel Composite for Effective Biosorption of Bisphenol A Plasticizer and Basic Dye from Aqueous Solution. Bioresour. Technol. 2021, 331, 125046. [Google Scholar] [CrossRef]
- Wang, G.; Lu, T.; Zhang, X.; Feng, M.; Wang, C.; Yao, W.; Zhou, S.; Zhu, Z.; Ding, W.; He, M. International Journal of Biological Macromolecules Structure and Properties of Cellulose / HAP Nanocomposite Hydrogels. Int. J. Biol. Macromol. 2021, 186, 377–384. [Google Scholar] [CrossRef]
- Jyoti, D.; Sinha, R.; Faggio, C. Advances in Biological Moval Efficiency Can Be Calculated by Using Tethods for the Sequestration of Heavy Metals from Water Bodies: A Review. Environ. Toxicol. Pharmacol. 2022, 94, 103927. [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, L. Surface Modification of Cellulose Microsphere with Imidazolium-Based Ionic Liquid as Adsorbent: Effect of Anion Variation on Adsorption Ability towards Au(III). Cellulose 2018, 25, 2205–2216. [Google Scholar] [CrossRef]
- Yao, T.; Song, J.; Gan, Y.; Qiao, L.; Du, K. Preparation of Cellulose-Based Chromatographic Medium for Biological Separation: A Review. J. Chromatogr. A 2022, 1677, 463297. [Google Scholar] [CrossRef]
- Rizkyana, A.D.; Ho, T.C.; Roy, V.C.; Park, J.-S.; Kiddane, A.T.; Kim, G.-D.; Chun, B.-S. Sulfation and Characterization of Polysaccharides from Oyster Mushroom (Pleurotus Ostreatus) Extracted Using Subcritical Water. J. Supercrit. Fluids 2022, 179, 105412. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging Contaminants: A One Health Perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Shafique, B.; Aadil, R.M.; Manzoor, M.F.; Cheng, J.H. Modification in Cellulose Films through Ascent Cold Plasma Treatment and Polymerization for Food Products Packaging. Trends Food Sci. Technol. 2023, 134, 162–176. [Google Scholar] [CrossRef]
- Gupta, A.; Ladino, C.R.; Mekonnen, T.H. Cationic Modification of Cellulose as a Sustainable and Recyclable Adsorbent for Anionic Dyes. Int. J. Biol. Macromol. 2023, 234, 123523. [Google Scholar] [CrossRef]
- Barthel, S.; Heinze, T. Acylation and Carbanilation of Cellulose in Ionic Liquids. Green Chem. 2006, 8, 301–306. [Google Scholar] [CrossRef]
- Dalei, G.; Das, S.; Pradhan, M. Dialdehyde Cellulose as a Niche Material for Versatile Applications: An Overview. Cellulose 2022, 29, 5429–5461. [Google Scholar] [CrossRef]
- Sari, N.H.; Suteja; Rangappa, S.M.; Siengchin, S. A Review on Cellulose Fibers from Eichornia Crassipes: Synthesis, Modification, Properties and Their Composites. J. Nat. Fibers 2023, 20, 2162179. [Google Scholar] [CrossRef]
- Huang, S.; Wu, M.B.; Zhu, C.Y.; Ma, M.Q.; Yang, J.; Wu, J.; Xu, Z.K. Polyamide Nanofiltration Membranes Incorporated with Cellulose Nanocrystals for Enhanced Water Flux and Chlorine Resistance. ACS Sustain. Chem. Eng. 2019, 7, 12315–12322. [Google Scholar] [CrossRef]
- Bai, L.; Liu, Y.; Bossa, N.; Ding, A.; Ren, N.; Li, G.; Liang, H.; Wiesner, M.R. Incorporation of Cellulose Nanocrystals (CNCs) into the Polyamide Layer of Thin-Film Composite (TFC) Nanofiltration Membranes for Enhanced Separation Performance and Antifouling Properties. Environ. Sci. Technol. 2018, 52, 11178–11187. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Karthick Rajan, D.; Rajarajeswaran, J.; Divya, D.; Ramu Ganesan, A. Recent Trends on Chitosan Based Hybrid Materials for Wastewater Treatment: A Review. Curr. Opin. Environ. Sci. Health 2023, 33, 100473. [Google Scholar] [CrossRef]
- Refaat Alawady, A.; Ali Alshahrani, A.; Ali Aouak, T.; Mohamed Alandis, N. Polysulfone Membranes with CNTs/Chitosan Biopolymer Nanocomposite as Selective Layer for Remarkable Heavy Metal Ions Rejection Capacity. Chem. Eng. J. 2020, 388, 124267. [Google Scholar] [CrossRef]
- Yu, C.; Han, X. Adsorbent Material Used In Water Treatment-A Review. In Proceedings of the 2015 2nd International Workshop on Materials Engineering and Computer Sciences; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 290–293. [Google Scholar]
- Balakrishnan, A.; Appunni, S.; Chinthala, M.; Jacob, M.M.; Vo, D.-V.N.; Reddy, S.S.; Kunnel, E.S. Chitosan-Based Beads as Sustainable Adsorbents for Wastewater Remediation: A Review. Environ. Chem. Lett. 2023, 21, 1881–1905. [Google Scholar] [CrossRef]
- Rakhshaee, R.; Panahandeh, M. Stabilization of a Magnetic Nano-Adsorbent by Extracted Pectin to Remove Methylene Blue from Aqueous Solution: A Comparative Studying between Two Kinds of Cross-Likened Pectin. J. Hazard. Mater. 2011, 189, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Bok-Badura, J.; Jakóbik-Kolon, A.; Karoń, K.; Mitko, K. Sorption Studies of Heavy Metal Ions on Pectin-Nano-Titanium Dioxide Composite Adsorbent. Sep. Sci. Technol. 2018, 53, 1034–1044. [Google Scholar] [CrossRef]
- Mtibe, A.; Motloung, M.P.; Bandyopadhyay, J.; Ray, S.S. Synthetic Biopolymers and Their Composites: Advantages and Limitations—An Overview. Macromol. Rapid Commun. 2021, 42, 2100130. [Google Scholar] [CrossRef]
- Mannina, G.; Presti, D.; Montiel-Jarillo, G.; Suárez-Ojeda, M.E. Bioplastic Recovery from Wastewater: A New Protocol for Polyhydroxyalkanoates (PHA) Extraction from Mixed Microbial Cultures. Bioresour. Technol. 2019, 282, 361–369. [Google Scholar] [CrossRef]
- Gore, P.M.; Sarkar, S.S.; Naebe, M.; Wang, X.; Kandasubramanian, B. Surface Functionalized Waste-Silk Fabric Engineered with Polylactic Acid & Activated Charcoal for Oil/Solvent Recovery from Oily Wastewater. J. Indian Chem. Soc. 2023, 100, 101022. [Google Scholar] [CrossRef]
- Mohammad, N.; Atassi, Y. Adsorption of Methylene Blue onto Electrospun Nanofibrous Membranes of Polylactic Acid and Polyacrylonitrile Coated with Chloride Doped Polyaniline. Sci. Rep. 2020, 10, 13412. [Google Scholar] [CrossRef]
- Song, C.; Gao, C.; Fatehi, P.; Wang, S.; Jiang, C.; Kong, F. Influence of Structure and Functional Group of Modified Kraft Lignin on Adsorption Behavior of Dye. Int. J. Biol. Macromol. 2023, 240, 124368. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Chang, Q.; Yang, H. Selective Adsorption of Ofloxacin and Ciprofloxacin from a Binary System Using Lignin-Based Adsorbents: Quantitative Analysis, Adsorption Mechanisms, and Structure-Activity Relationship. Sci. Total Environ. 2021, 765, 144427. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Li, Z. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustain. Chem. Eng. 2018, 6, 7181–7192. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, C.; Liu, G.; Wu, G.; Huo, S.; Kong, Z. Functionalized Lignin-Based Magnetic Adsorbents with Tunable Structure for the Efficient and Selective Removal of Pb(II) from Aqueous Solution. Chem. Eng. J. 2021, 420, 130409. [Google Scholar] [CrossRef]
- Jin, C.; Liu, Y.; Fan, J.; Liu, T.; Liu, G.; Chu, F.; Kong, Z. Lignin-Inspired Porous Polymer Networks as High-Performance Adsorbents for the Efficient Removal of Malachite Green Dye. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 643, 128760. [Google Scholar] [CrossRef]
- Gracia, J.; Montenegro, C.; Moreno, N.; Cabeza, I. Production of Polyhydroxyalkanoates Using Volatile Fatty Acids from Municipal Wastewater Treatment Plant Sludge. Chem. Eng. Trans. 2023, 100, 559–564. [Google Scholar] [CrossRef]
- Valentino, F.; Moretto, G.; Lorini, L.; Bolzonella, D.; Pavan, P.; Majone, M. Pilot-Scale Polyhydroxyalkanoate Production from Combined Treatment of Organic Fraction of Municipal Solid Waste and Sewage Sludge. Ind. Eng. Chem. Res. 2019, 58, 12149–12158. [Google Scholar] [CrossRef]
- Samorì, C.; Kiwan, A.; Torri, C.; Conti, R.; Galletti, P.; Tagliavini, E. Polyhydroxyalkanoates and Crotonic Acid from Anaerobically Digested Sewage Sludge. ACS Sustain. Chem. Eng. 2019, 7, 10266–10273. [Google Scholar] [CrossRef]
- Krasian, T.; Punyodom, W.; Worajittiphon, P. A Hybrid of 2D Materials (MoS2 and WS2) as an Effective Performance Enhancer for Poly(Lactic Acid) Fibrous Mats in Oil Adsorption and Oil/Water Separation. Chem. Eng. J. 2019, 369, 563–575. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Fuenmayor, C.A.; Otoni, C.G. Nanoemulsions: Synthesis, Characterization, and Application in Bio-Based Active Food Packaging. Compr. Rev. Food Sci. Food Saf. 2019, 18, 264–285. [Google Scholar] [CrossRef]
- Rani, S.; Sabharwal, H.; Kumar, P.; Chauhan, A.K.; Khoo, K.S.; Kataria, N. Comparative Behavior of Carbon-Based Materials for the Removal of Emerging Bisphenol A from Water: Adsorption Modelling and Mechanism. Groundw. Sustain. Dev. 2024, 25, 101121. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Y.; Wang, H.; Chang, N. Preparation of Starch-Based Adsorbing-Flocculating Bifunctional Material St-A/F and Its Removal of Active, Direct and Disperse Dyes from Textile Printing and Dyeing Wastewater. Polym. Bull. 2024, 81, 2777–2800. [Google Scholar] [CrossRef]
- Wang, X.; Huang, L.; Zhang, C.; Deng, Y.; Xie, P.; Liu, L.; Cheng, J. Research Advances in Chemical Modifications of Starch for Hydrophobicity and Its Applications: A Review. Carbohydr. Polym. 2020, 240, 116292. [Google Scholar] [CrossRef]
- Sarmah, D.; Karak, N. Double Network Hydrophobic Starch Based Amphoteric Hydrogel as an Effective Adsorbent for Both Cationic and Anionic Dyes. Carbohydr. Polym. 2020, 242, 116320. [Google Scholar] [CrossRef]
- Luo, Y.; Lin, J.; Wang, X.; Yeerken, A.; Ma, H. Study on Flocculation Performance of New Cationic Starch-Based Sludge Wastewater Flocculant. Starch Stärke 2023, 75, 2200226. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, J.; Zu, G.; Huang, J. Transparent, Flexible, and Multifunctional Starch-Based Double-Network Hydrogels as High-Performance Wearable Electronics. Carbohydr. Polym. 2021, 267, 118198. [Google Scholar] [CrossRef]
- Tohamy, H.A.S.; Taha, G.; Sultan, M. Dialdehyde Cellulose/Gelatin Hydrogel as a Packaging Material for Manganese Oxides Adsorbents for Wastewater Remediation: Characterization and Performance Evaluation. Int. J. Biol. Macromol. 2023, 248, 125931. [Google Scholar] [CrossRef]
- Saber-Samandari, S.; Saber-Samandari, S.; Joneidi-Yekta, H.; Mohseni, M. Adsorption of Anionic and Cationic Dyes from Aqueous Solution Using Gelatin-Based Magnetic Nanocomposite Beads Comprising Carboxylic Acid Functionalized Carbon Nanotube. Chem. Eng. J. 2017, 308, 1133–1144. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Ray, S.S. Recent Advances in Carbon Nanomaterial-Based Adsorbents for Water Purification. Coord. Chem. Rev. 2020, 405, 213111. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Q.; Zhan, X.; Chen, F. A Multifunctional Gelatin-Based Aerogel with Superior Pollutants Adsorption, Oil/Water Separation and Photocatalytic Properties. Chem. Eng. J. 2019, 358, 1539–1551. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Y.; Ma, W.; Yan, L.; Li, K.; Lin, S. Surface Molecular Imprinting on Carbon Microspheres for Fast and Selective Adsorption of Perfluorooctane Sulfonate. J. Hazard. Mater. 2018, 348, 29–38. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Zhang, W.L.; Liang, Y.N. Adsorption of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) from Aqueous Solution—A Review. Sci. Total Environ. 2019, 694, 133606. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Qiu, Y.; Fan, J.; Wang, M.; Ye, L.; Liu, Y.; Ye, X.; Huang, X.; Lv, Y.; Liu, M. Fabrication of Photo-Responsive Cellulose Based Intelligent Imprinted Material and Selective Adsorption on Typical Pesticide Residue. Chem. Eng. J. 2020, 394, 124841. [Google Scholar] [CrossRef]
- Rahangdale, D.; Kumar, A. Chitosan as a Substrate for Simultaneous Surface Imprinting of Salicylic Acid and Cadmium. Carbohydr. Polym. 2018, 202, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.V.; Dinu, I.A.; Lazar, M.M.; Dragan, E.S. Chitosan-Based Ion-Imprinted Cryo-Composites with Excellent Selectivity for Copper Ions. Carbohydr. Polym. 2018, 186, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y.; Luo, Z.Y.; Yin, M.J.; Wang, N.; Qin, Z.; Lee, K.R.; An, Q.F. A Comprehensive Study on Phase Inversion Behavior of a Novel Polysulfate Membrane for High-Performance Ultrafiltration Applications. J. Memb. Sci. 2020, 610, 118404. [Google Scholar] [CrossRef]
- Battirola, L.C.; Andrade, P.F.; Marson, G.V.; Hubinger, M.D.; Gonçalves, M.d.C. Cellulose Acetate/Cellulose Nanofiber Membranes for Whey and Fruit Juice Microfiltration. Cellulose 2017, 24, 5593–5604. [Google Scholar] [CrossRef]
- Yang, X.; Ma, J.; Ling, J.; Li, N.; Wang, D.; Yue, F.; Xu, S. Cellulose Acetate-Based SiO2/TiO2 Hybrid Microsphere Composite Aerogel Films for Water-in-Oil Emulsion Separation. Appl. Surf. Sci. 2018, 435, 609–616. [Google Scholar] [CrossRef]
- Yan, X.; Anguille, S.; Bendahan, M.; Moulin, P. Ionic Liquids Combined with Membrane Separation Processes: A Review. Sep. Purif. Technol. 2019, 222, 230–253. [Google Scholar] [CrossRef]
- Clarizia, L.; Russo, D.; Di Somma, I.; Marotta, R.; Andreozzi, R. Homogeneous Photo-Fenton Processes at near Neutral PH: A Review. Appl. Catal. B Environ. 2017, 209, 358–371. [Google Scholar] [CrossRef]
- Chang, J.; Zuo, J.; Zhang, L.; O’Brien, G.S.; Chung, T.S. Using Green Solvent, Triethyl Phosphate (TEP), to Fabricate Highly Porous PVDF Hollow Fiber Membranes for Membrane Distillation. J. Memb. Sci. 2017, 539, 295–304. [Google Scholar] [CrossRef]
- Xie, W.; Li, T.; Chen, C.; Wu, H.; Liang, S.; Chang, H.; Liu, B.; Drioli, E.; Wang, Q.; Crittenden, J.C. Using the Green Solvent Dimethyl Sulfoxide to Replace Traditional Solvents Partly and Fabricating PVC/PVC-g-PEGMA Blended Ultrafiltration Membranes with High Permeability and Rejection. Ind. Eng. Chem. Res. 2019, 58, 6413–6423. [Google Scholar] [CrossRef]
- Garralaga, M.P.; Lomba, L.; Leal-Duaso, A.; Gracia-Barberán, S.; Pires, E.; Giner, B. Ecotoxicological Study of Bio-Based Deep Eutectic Solvents Formed by Glycerol Derivatives in Two Aquatic Biomodels. Green Chem. 2022, 24, 5228–5241. [Google Scholar] [CrossRef]
- Techie-Menson, R.; Rono, C.K.; Etale, A.; Mehlana, G.; Darkwa, J.; Makhubela, B.C.E. New Bio-Based Sustainable Polymers and Polymer Composites Based on Methacrylate Derivatives of Furfural, Solketal and Lactic Acid. Mater. Today Commun. 2021, 28, 102721. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.K. A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Rezaei, M.; Warsinger, D.M.; Lienhard, V.J.H.; Duke, M.C.; Matsuura, T.; Samhaber, W.M. Wetting Phenomena in Membrane Distillation: Mechanisms, Reversal, and Prevention. Water Res. 2018, 139, 329–352. [Google Scholar] [CrossRef]
- Wu, S.; Li, K.; Shi, W.; Cai, J. Preparation and Performance Evaluation of Chitosan/Polyvinylpyrrolidone/Polyvinyl Alcohol Electrospun Nanofiber Membrane for Heavy Metal Ions and Organic Pollutants Removal. Int. J. Biol. Macromol. 2022, 210, 76–84. [Google Scholar] [CrossRef]
- Goetz, L.A.; Naseri, N.; Nair, S.S.; Karim, Z.; Mathew, A.P. All Cellulose Electrospun Water Purification Membranes Nanotextured Using Cellulose Nanocrystals. Cellulose 2018, 25, 3011–3023. [Google Scholar] [CrossRef]
- Guo, W.; Guo, R.; Pei, H.; Wang, B.; Liu, N.; Mo, Z. Electrospinning PAN/PEI/MWCNT-COOH Nanocomposite Fiber Membrane with Excellent Oil-in-Water Separation and Heavy Metal Ion Adsorption Capacity. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 641, 128557. [Google Scholar] [CrossRef]
- Neibolts, N.; Platnieks, O.; Gaidukovs, S.; Barkane, A.; Thakur, V.K.; Filipova, I.; Mihai, G.; Zelca, Z.; Yamaguchi, K.; Enachescu, M. Needle-Free Electrospinning of Nanofibrillated Cellulose and Graphene Nanoplatelets Based Sustainable Poly (Butylene Succinate) Nanofibers. Mater. Today Chem. 2020, 17, 100301. [Google Scholar] [CrossRef]
- Ahn, E.; Kim, T.; Jeon, Y.; Kim, B.S. A4 Paper Chemistry: Synthesis of a Versatile and Chemically Modifiable Cellulose Membrane. ACS Nano 2020, 14, 6173–6180. [Google Scholar] [CrossRef]
- Luo, X.; Liu, C.; Yuan, J.; Zhu, X.; Liu, S. Interfacial Solid-Phase Chemical Modification with Mannich Reaction and Fe(III) Chelation for Designing Lignin-Based Spherical Nanoparticle Adsorbents for Highly Efficient Removal of Low Concentration Phosphate from Water. ACS Sustain. Chem. Eng. 2017, 5, 6539–6547. [Google Scholar] [CrossRef]
- Chaudhary, J.P.; Vadodariya, N.; Nataraj, S.K.; Meena, R. Chitosan-Based Aerogel Membrane for Robust Oil-in-Water Emulsion Separation. ACS Appl. Mater. Interfaces 2015, 7, 24957–24962. [Google Scholar] [CrossRef] [PubMed]
- Chau, T.P.; Veeraragavan, G.R.; Narayanan, M.; Chinnathambi, A.; Alharbi, S.A.; Subramani, B.; Brindhadevi, K.; Pimpimon, T.; Pikulkaew, S. Green Synthesis of Zirconium Nanoparticles Using Punica Granatum (Pomegranate) Peel Extract and Their Antimicrobial and Antioxidant Potency. Environ. Res. 2022, 209, 112771. [Google Scholar] [CrossRef]
- Duan, Y.; Tarafdar, A.; Kumar, V.; Ganeshan, P.; Rajendran, K.; Shekhar Giri, B.; Gómez-García, R.; Li, H.; Zhang, Z.; Sindhu, R.; et al. Sustainable Biorefinery Approaches towards Circular Economy for Conversion of Biowaste to Value Added Materials and Future Perspectives. Fuel 2022, 325, 124846. [Google Scholar] [CrossRef]
- Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2021, 19, 355–374. [Google Scholar] [CrossRef]
- Nasaruddin, R.R.; Chen, T.; Yao, Q.; Zang, S.; Xie, J. Toward Greener Synthesis of Gold Nanomaterials: From Biological to Biomimetic Synthesis. Coord. Chem. Rev. 2021, 426, 213540. [Google Scholar] [CrossRef]
- Bolade, O.P.; Williams, A.B.; Benson, N.U. Environmental Nanotechnology, Monitoring & Management Green Synthesis of Iron-Based Nanomaterials for Environmental Remediation: A Review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100279. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, Z.-S.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011, 2011, 270974. [Google Scholar] [CrossRef]
- Subramaniyam, V.; Subashchandrabose, S.R.; Thavamani, P.; Megharaj, M.; Chen, Z.; Naidu, R. Chlorococcum Sp. MM11—A Novel Phyco-Nanofactory for the Synthesis of Iron Nanoparticles. J. Appl. Phycol. 2015, 27, 1861–1869. [Google Scholar] [CrossRef]
- Ashrafi, G.; Nasrollahzadeh, M.; Jaleh, B.; Sajjadi, M. Biowaste- and Nature-Derived (Nano) Materials: Biosynthesis, Stability and Environmental Applications. Adv. Colloid Interface Sci. 2022, 301, 102599. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Sehaqui, H.; Tingaut, P.; Wichser, A.; Oksman, K.; Mathew, A.P. Cellulose and Chitin Nanomaterials for Capturing Silver Ions (Ag+) from Water via Surface Adsorption. Cellulose 2014, 21, 449–461. [Google Scholar] [CrossRef]
- Chaudhry, N.; Dwivedi, S.; Chaudhry, V.; Singh, A.; Saquib, Q.; Azam, A.; Musarrat, J. Bio-Inspired Nanomaterials in Agriculture and Food: Current Status, Foreseen Applications and Challenges. Microb. Pathog. 2018, 123, 196–200. [Google Scholar] [CrossRef]
- Bagal-kestwal, D.R.; Kestwal, R.M.; Chiang, B.H. Bio-Based Nanomaterials and Their Bionanocomposites. In Nanomaterials and Nanocomposites: Zero- to Three-Dimensional Materials and Their Composites; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Li, H.; Yoshida, S.; Mitani, N.; Egusa, M.; Takagi, M. Disease Resistance and Growth Promotion Activities of Chitin / Cellulose Nanofiber from Spent Mushroom Substrate to Plant Spent Mushroom Substrate Removal of Fat Removal of Lignin Removal of Hemicellulose Chitin / Cellulose Complex Grinder Treatment Chiti. Carbohydr. Polym. 2022, 284, 119233. [Google Scholar] [CrossRef]
- Guimarães, B.M.R.; Scatolino, M.V.; Martins, M.A.; Ferreira, S.R.; Mendes, L.M.; Lima, J.T.; Junior, M.G.; Tonoli, G.H.D. Bio-Based Films/Nanopapers from Lignocellulosic Wastes for Production of Added-Value Micro-/Nanomaterials. Environ. Sci. Pollut. Res. 2022, 29, 8665–8683. [Google Scholar] [CrossRef] [PubMed]
- Schwirn, K.; Tietjen, L.; Beer, I. Why Are Nanomaterials Different and How Can They Be Appropriately Regulated under REACH? Environ. Sci. Eur. 2014, 26, 4. [Google Scholar] [CrossRef]
- Zhai, T.; Zheng, Q.; Cai, Z.; Xia, H.; Gong, S. Synthesis of Polyvinyl Alcohol/Cellulose Nanofibril Hybrid Aerogel Microspheres and Their Use as Oil/Solvent Superabsorbents. Carbohydr. Polym. 2016, 148, 300–308. [Google Scholar] [CrossRef]
- Nath, D.C.; Patowari, B. Estimation and Comparison of Immunization Coverage under Different Sampling Methods for Health Surveys. Int. J. Popul. Res. 2014, 2014, 850479. [Google Scholar] [CrossRef]
- Catal, J.; Norppa, H. Safety Aspects of Bio-Based Nanomaterials. Bioengineering 2017, 4, 94. [Google Scholar] [CrossRef]
- Putro, J.N.; Santoso, S.P.; Ismadji, S.; Ju, Y.-H. Investigation of Heavy Metal Adsorption in Binary System by Nanocrystalline Cellulose—Bentonite Nanocomposite: Improvement on Extended Langmuir Isotherm Model. Microporous Mesoporous Mater. 2017, 246, 166–177. [Google Scholar] [CrossRef]
- Tailor, G.; Yadav, B.L.; Chaudhary, J.; Joshi, M.; Suvalka, C. Green Synthesis of Silver Nanoparticles Using Ocimum Canum and Their Anti-Bacterial Activity. Biochem. Biophys. Rep. 2020, 24, 100848. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Chen, L.; Wang, R.; Zhu, J. Green and Low-Cost Production of Thermally Stable and Carboxylated Cellulose Nanocrystals and Nanofibrils Using Highly Recyclable Dicarboxylic Acids. Vis. Exp 2017, 119, 55079. [Google Scholar] [CrossRef]
- Jozala, A.F.; Lencastre-novaes, L.C.D.; Lopes, A.M.; Santos-ebinuma, V.D.C.; Mazzola, P.G.; Pessoa, A., Jr.; Grotto, D.; Gerenutti, M. Bacterial Nanocellulose Production and Application: A 10-Year Overview. Appl. Microbiol. Biotechnol. 2016, 100, 2063–2072. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N. (Nil); Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on Pollution and Health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- Ciğeroğlu, Z.; El Messaoudi, N.; Şenol, Z.M.; Başkan, G.; Georgin, J.; Gubernat, S. Clay-Based Nanomaterials and Their Adsorptive Removal Efficiency for Dyes and Antibiotics: A Review. Mater. Today Sustain. 2024, 26, 100735. [Google Scholar] [CrossRef]
- Franco, D.S.P.; Georgin, J.; Lima, E.C.; Silva, L.F.O. Journal of Water Process Engineering Advances Made in Removing Paraquat Herbicide by Adsorption Technology: A Review. J. Water Process Eng. 2022, 49, 102988. [Google Scholar] [CrossRef]
- El Messaoudi, N.; Miyah, Y.; Şenol, Z.M.; Ciğeroğlu, Z.; Kazan-Kaya, E.S.; Gubernat, S.; Georgin, J.; Franco, D.S.P. Comprehensive Analytical Review of Heavy Metal Removal Efficiency Using Agricultural Solid Waste-Based Bionanocomposites. Nano-Struct. Nano-Objects 2024, 38, 101220. [Google Scholar] [CrossRef]
- Georgin, J.; Meili, L.; Franco, D. A Review of the Application of Low-Cost Adsorbents as an Alternative Method for Biosorption of Contaminants Present in Water. Lat. Am. Dev. Energy. Eng. 2023, 4, 1–20. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Teng, W.; Wu, Z.; Feng, D.; Fan, J.; Wang, J.; Wei, H.; Song, M.; Zhao, D. Rapid and Efficient Removal of Microcystins by Ordered Mesoporous Silica. Environ. Sci. Technol. 2013, 47, 8633–8641. [Google Scholar] [CrossRef]
- Wen, Y.; Rentería-Gómez, Á.; Day, G.S.; Smith, M.F.; Yan, T.-H.; Ozdemir, R.O.K.; Gutierrez, O.; Sharma, V.K.; Ma, X.; Zhou, H.-C. Integrated Photocatalytic Reduction and Oxidation of Perfluorooctanoic Acid by Metal–Organic Frameworks: Key Insights into the Degradation Mechanisms. J. Am. Chem. Soc. 2022, 144, 11840–11850. [Google Scholar] [CrossRef]
- James, A.M.; Harding, S.; Robshaw, T.; Bramall, N.; Ogden, M.D.; Dawson, R. Selective Environmental Remediation of Strontium and Cesium Using Sulfonated Hyper-Cross-Linked Polymers (SHCPs). ACS Appl. Mater. Interfaces 2019, 11, 22464–22473. [Google Scholar] [CrossRef] [PubMed]
- Biswas, B.; Labille, J.; Prelot, B. Clays and Modified Clays in Remediating Environmental Pollutants. Environ. Sci. Pollut. Res. 2020, 27, 38381–38383. [Google Scholar] [CrossRef] [PubMed]
- Kochanek, J.; Soo, R.M.; Martinez, C.; Dakuidreketi, A.; Mudge, A.M. Biochar for Intensification of Plant-Related Industries to Meet Productivity, Sustainability and Economic Goals: A Review. Resour. Conserv. Recycl. 2022, 179, 106109. [Google Scholar] [CrossRef]
- Rudi, N.N.; Muhamad, M.S.; Te Chuan, L.; Alipal, J.; Omar, S.; Hamidon, N.; Abdul Hamid, N.H.; Mohamed Sunar, N.; Ali, R.; Harun, H. Evolution of Adsorption Process for Manganese Removal in Water via Agricultural Waste Adsorbents. Heliyon 2020, 6, e05049. [Google Scholar] [CrossRef]
- Georgin, J.; Franco, D.S.P.; Meili, L.; Bonilla-Petriciolet, A.; Kurniawan, T.A.; Imanova, G.; Demir, E.; Ali, I. Environmental Remediation of the Norfloxacin in Water by Adsorption: Advances, Current Status and Prospects. Adv. Colloid Interface Sci. 2024, 324, 103906. [Google Scholar] [CrossRef]
- Dehmani, Y.; Arif, S.; Franco, D.S.P.; Georgin, J.; Lamhasni, T.; Hajjaj, H.; Dehbi, A.; Abouarnadasse, S.; Gallard, H.; Lima, E.C. Copper and Nickel Composite Carbon Catalysts Prepared from Olive Husks on the Adsorption Process of Phenol and P-Nitrophenol: Comparative Theoretical Study via an Analytical Model. J. Mol. Liq. 2024, 409, 125346. [Google Scholar] [CrossRef]
- Georgin, J.; Franco, D.S.P.; Dehmani, Y.; Nguyen-Tri, P.; El Messaoudi, N. Current Status of Advancement in Remediation Technologies for the Toxic Metal Mercury in the Environment: A Critical Review. Sci. Total Environ. 2024, 947, 174501. [Google Scholar] [CrossRef]
- Tamjidi, S.; Ameri, A. A Review of the Application of Sea Material Shells as Low Cost and Effective Bio-Adsorbent for Removal of Heavy Metals from Wastewater. Environ. Sci. Pollut. Res. 2020, 27, 31105–31119. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Da, Y.; Yu, J.; Long, B.; Zhang, P.; Bakker, C.; McCarl, B.A.; Yuan, J.S.; Dai, S.Y. Sustainable Environmental Remediation via Biomimetic Multifunctional Lignocellulosic Nano-Framework. Nat. Commun. 2022, 13, 4368. [Google Scholar] [CrossRef]
- Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A Review on Modification Methods to Cellulose-Based Adsorbents to Improve Adsorption Capacity. Water Res. 2016, 91, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Zong, E.; Huang, G.; Liu, X.; Lei, W.; Jiang, S.; Ma, Z.; Wang, J.; Song, P. A Lignin-Based Nano-Adsorbent for Superfast and Highly Selective Removal of Phosphate. J. Mater. Chem. A 2018, 6, 9971–9983. [Google Scholar] [CrossRef]
- Ogunsile, B.O.; Bamgboye, M.O. Journal of Environmental Chemical Engineering Biosorption of Lead ( II ) onto Soda Lignin Gels Extracted from Nypa Fruiticans. J. Environ. Chem. Eng. 2017, 5, 2708–2717. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, X.; Liu, W.; Yang, D. Applied Surface Science Facile Preparation of Well-Combined Lignin-Based Carbon/ZnO Hybrid Composite with Excellent Photocatalytic Activity. Appl. Surf. Sci. 2017, 426, 206–216. [Google Scholar] [CrossRef]
- Vadivel, D.; Branciforti, D.S.; Speltini, A.; Sturini, M.; Bellani, V.; Malaichamy, I.; Dondi, D. Pyrolytic formation of TiO2/carbon nanocomposite from kraft lignin: Characterization and photoactivities. Catalysts 2020, 10, 270. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sadat, N.; Bidgoli, S.; Issaabadi, Z.; Ghavamifar, Z.; Baran, T.; Luque, R. International Journal of Biological Macromolecules Hibiscus Rosasinensis L. Aqueous Extract-Assisted Valorization of Lignin: Preparation of Magnetically Reusable Pd NPs @ Fe3O4-Lignin for Cr (VI) Reduction and Suzuki-Miyaura Reaction in Eco-Friend. Int. J. Biol. Macromol. 2020, 148, 265–275. [Google Scholar] [CrossRef]
- Guo, K.; Gao, B.; Wang, W.; Yue, Q.; Xu, X. Chemosphere Evaluation of Molecular Weight, Chain Architectures and Charge Densities of Various Lignin-Based Fl Occulants for Dye Wastewater Treatment. Chemosphere 2019, 215, 214–226. [Google Scholar] [CrossRef]
- Qin, Y.; Yuan, M.; Hu, Y.; Lu, Y.; Lin, W.; Ma, Y.; Lin, X.; Wang, T. International Journal of Biological Macromolecules Preparation and Interaction Mechanism of Nano Disperse Dye Using Hydroxypropyl Sulfonated Lignin. Int. J. Biol. Macromol. 2020, 152, 280–287. [Google Scholar] [CrossRef]
- Huang, H.; Han, C.; Wang, G.; Feng, C. Electrochimica Acta Lignin Combined with Polypyrrole as a Renewable Cathode Material for H2O2 Generation and Its Application in the Electro-Fenton Process for Azo Dye Removal. Electrochim. Acta 2018, 259, 637–646. [Google Scholar] [CrossRef]
- Manzoor, K.; Ahmad, M.; Ahmad, S.; Ikram, S. Removal of Pb(Ii) and Cd(Ii) from Wastewater Using Arginine Cross-Linked Chitosan–Carboxymethyl Cellulose Beads as Green Adsorbent. RSC Adv. 2019, 9, 7890–7902. [Google Scholar] [CrossRef]
- Garba, Z.N.; Zhou, W.; Lawan, I.; Zhang, M. Enhanced Removal of Prometryn Using Copper Modified Microcrystalline Cellulose (Cu-MCC): Optimization, Isotherm, Kinetics and Regeneration Studies. Cellulose 2019, 26, 6241–6258. [Google Scholar] [CrossRef]
- Khatoon, H.; Rai, J.P.N. Augmentation of Atrazine Biodegradation by Two Bacilli Immobilized on α-Fe2O3 Magnetic Nanoparticles. Sci. Rep. 2018, 8, 17831. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, W.L.; He, H.; Yang, C.; Yu, J.; Wu, X.; Zeng, G.; Tarre, S.; Green, M. Chemosphere Preparation, Performances and Mechanisms of Magnetic Saccharomyces Cerevisiae Bionanocomposites for Atrazine Removal. Chemosphere 2018, 200, 380–387. [Google Scholar] [CrossRef]
- Chen, Z.; Pan, Y.; Cai, P. International Journal of Biological Macromolecules Sugarcane Cellulose-Based Composite Hydrogel Enhanced by g-C3N4 Nanosheet for Selective Removal of Organic Dyes from Water. Int. J. Biol. Macromol. 2022, 205, 37–48. [Google Scholar] [CrossRef]
- Saberi, A.; Alipour, E.; Sadeghi, M. Superabsorbent Magnetic Fe3O4-Based Starch-Poly (Acrylic Acid) Nanocomposite Hydrogel for Efficient Removal of Dyes and Heavy Metal Ions from Water. J. Polym. Res. 2019, 26, 271. [Google Scholar] [CrossRef]
- Liu, Y. International Journal of Biological Macromolecules Functional Cellulose Aerogel Nanocomposites with Enhanced Adsorption Capability and Excellent Photocatalytic Performance. Int. J. Biol. Macromol. 2023, 231, 123393. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, J.; Yu, W.; Kuang, Y.; Wang, B.; Ying, G.; Li, J.; Cheng, Z.; Li, J.; Chen, K. Industrial Crops & Products Simultaneous Production of Clean Water and Organic Dye from Dyeing Wastewater by Reusable Lignin-Derived Porous Carbon. Ind. Crop. Prod. 2022, 187, 115314. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, J.; Jai, A.T.; Sinha, M. Functionalization of Nanocrystalline Cellulose for Decontamination of Cr ( III ) and Cr (VI) from Aqueous System: Computational Modeling Approach. Clean Technol. Environ. Policy 2014, 16, 1179–1191. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, L.; Sadeghzadeh, S.M. Reduction of 4-nitrophenol and 2-nitroaniline using immobilized CoMn2O4 NPs on lignin supported on FPS. RSC Adv. 2020, 10, 19553–19561. [Google Scholar] [CrossRef]
- Abdolmaleki, S.; Amininasab, S.M.; Ghadermazi, M. Modification of Fe2O3-Contained Lignocellulose Nanocomposite with Silane Group to Remove Nitrate and Bacterial Contaminations from Wastewater. Iran. Polym. J. 2019, 28, 859–872. [Google Scholar] [CrossRef]
- Liu, P.; Oksman, K.; Mathew, A.P. Surface Adsorption and Self-Assembly of Cu(II) Ions on TEMPO-Oxidized Cellulose Nanofibers in Aqueous Media. J. Colloid Interface Sci. 2016, 464, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Komal; Gupta, K.; Nidhi; Kaushik, A.; Singhal, S. Amelioration of Adsorptive Efficacy by Synergistic Assemblage of Functionalized Graphene Oxide with Esterified Cellulose Nanofibers for Mitigation of Pharmaceutical Waste. J. Hazard. Mater. 2022, 424, 127541. [Google Scholar] [CrossRef] [PubMed]
- Dahlan, N.A.; Veeramachineni, A.K.; Langford, S.J.; Pushpamalar, J. Developing of a Magnetite Film of Carboxymethyl Cellulose Grafted Carboxymethyl Polyvinyl Alcohol (CMC-g-CMPVA) for Copper Removal. Carbohydr. Polym. 2017, 173, 619–630. [Google Scholar] [CrossRef]
- Sanchez, L.M.; Espinosa, E.; Mendoza Zélis, P.; Morcillo Martín, R.; de Haro Niza, J.; Rodríguez, A. Cellulose Nanofibers/PVA Blend Polymeric Beads Containing in-Situ Prepared Magnetic Nanorods as Dye Pollutants Adsorbents. Int. J. Biol. Macromol. 2022, 209, 1211–1221. [Google Scholar] [CrossRef]
- Zhong, Y.L.; Han, L.; Yin, X.; Li, H.; Fang, D.; Hong, G. Three Dimensional Functionalized Carbon/Tin(IV) Sulfide Biofoam for Photocatalytical Purification of Chromium(VI)-Containing Wastewater. ACS Sustain. Chem. Eng. 2018, 6, 10660–10667. [Google Scholar] [CrossRef]
- Tran, T.H.; Okabe, H.; Hidaka, Y.; Hara, K. Removal of Metal Ions from Aqueous Solutions Using Carboxymethyl Cellulose/Sodium Styrene Sulfonate Gels Prepared by Radiation Grafting. Carbohydr. Polym. 2017, 157, 335–343. [Google Scholar] [CrossRef]
- Ateia, M.; Attia, M.F.; Maroli, A.; Tharayil, N.; Alexis, F.; Whitehead, D.C.; Karanfil, T. Rapid Removal of Poly- and Perfluorinated Alkyl Substances by Poly(Ethylenimine)-Functionalized Cellulose Microcrystals at Environmentally Relevant Conditions. Environ. Sci. Technol. Lett. 2018, 5, 764–769. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, S.; Goenaga, G.A.; Meng, X.; Zawodzinski, T.A.; Ragauskas, A.J. Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye. Front. Chem. 2020, 8, 570. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.R.; Chattopadhyay, A.; Sharma, S.K.; Geng, L.; Amiralian, N.; Martin, D.; Hsiao, B.S. Nanocellulose from Spinifex as an Effective Adsorbent to Remove Cadmium(II) from Water. ACS Sustain. Chem. Eng. 2018, 6, 3279–3290. [Google Scholar] [CrossRef]
- Tijing, L.D.; Choi, J.; Lee, S.; Kim, S.; Kyong, H. Recent Progress of Membrane Distillation Using Electrospun Nano Fi Brous Membrane. J. Memb. Sci. 2014, 453, 435–462. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Li, B.; Hsiao, B.S.; Chu, B. Electrospun Nanofibrous Membranes for High Flux Microfiltration. J. Memb. Sci. 2012, 392–393, 167–174. [Google Scholar] [CrossRef]
- Sarioglu, O.F.; Yasa, O.; Celebioglu, A.; Uyar, T.; Tekinay, T. Efficient Ammonium Removal from Aquatic Environments by Acinetobacter Calcoaceticus STB1 Immobilized on an Electrospun Cellulose Acetate Nanofibrous Web. Green Chem. 2013, 15, 2566–2572. [Google Scholar] [CrossRef]
- Yang, D.; Li, L.; Chen, B.; Shi, S.; Nie, J.; Ma, G. Functionalized Chitosan Electrospun Nano Fi Ber Membranes for Heavy-Metal Removal. Polymer 2019, 163, 74–85. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, X.; Kou, Z.; Song, N.; Nie, G.; Wang, C.; Verpoort, F.; Mu, S. Rational Design of Electrospun Nanofiber-Typed Electrocatalysts for Water Splitting: A Review. Chem. Eng. J. 2022, 428, 131133. [Google Scholar] [CrossRef]
- Saleem, H.; Trabzon, L.; Kilic, A.; Javaid, S. Recent Advances in Nanofibrous Membranes: Production and Applications in Water Treatment and Desalination. Desalination 2020, 478, 114178. [Google Scholar] [CrossRef]
- Russo, F.; Galiano, F.; Pedace, F.; Aricò, F.; Figoli, A. Dimethyl Isosorbide As a Green Solvent for Sustainable Ultrafiltration and Microfiltration Membrane Preparation. ACS Sustain. Chem. Eng. 2020, 8, 659–668. [Google Scholar] [CrossRef]
- Widjojo, N.; Chung, T.; Weber, M.; Maletzko, C.; Warzelhan, V. The Role of Sulphonated Polymer and Macrovoid-Free Structure in the Support Layer for Thin-Film Composite ( TFC ) Forward Osmosis ( FO ) Membranes. J. Memb. Sci. 2011, 383, 214–223. [Google Scholar] [CrossRef]
- Chen, L.; Xu, S.; Li, J. Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted Applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef]
- Abu, N.; Sánchez-Martín, M.J.; Sebastián, R.M.; Valiente, M.; Samah, N.A.; Sánchez-Martín, M.J.; Sebastián, R.M.; Valiente, M.; López-Mesas, M. Molecularly Imprinted Polymer for the Removal of Diclofenac from Water: Synthesis and Characterization. Sci. Total Environ. 2018, 631–632, 1534–1543. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Niu, D.; Li, Y.; Shi, J. Highly Efficient and Selective Removal of Trace Lead from Aqueous Solutions by Hollow Mesoporous Silica Loaded with Molecularly Imprinted Polymers. J. Hazard. Mater. 2017, 328, 160–169. [Google Scholar] [CrossRef]
- Moussout, H.; Dehmani, Y.; Franco, D.S.P.P.; Georgin, J.; Daou, I.; Lamhasni, T.; Ilyas, C.; Ahlafi, H.; Taky, M.; Shaim, A.; et al. Towards an In-Depth Experimental and Theoretical Understanding of the Cadmium Uptake Mechanism on a Synthesized Chitin Biopolymer. J. Mol. Liq. 2023, 383, 122106. [Google Scholar] [CrossRef]
- Dehmani, Y.; Franco, D.S.P.; Georgin, J.; Lamhasni, T.; Brahmi, Y.; Oukhrib, R.; Mustapha, B.; Moussout, H.; Ouallal, H.; Sadik, A. Comparison of Phenol Adsorption Property and Mechanism onto Different Moroccan Clays. Water 2023, 15, 1881. [Google Scholar] [CrossRef]
- Narayanan, I.; Kumar, P.S.; Franco, D.S.P.; Georgin, J.; Meili, L. Insight into the Biosorptive Removal Mechanisms of Hexavalent Chromium Using the Red Macroalgae Gelidium sp. Biomass Convers. Biorefinery 2023, 14, 22939–22953. [Google Scholar] [CrossRef]
- Franco, D.S.P.; Georgin, J.; Ramos, C.G.; Netto, M.S.; Lobo, B.; Jimenez, G.; Lima, E.C.; Sher, F. Production of Adsorbent for Removal of Propranolol Hydrochloride: Use of Residues from Bactris Guineensis Fruit Palm with Economically Exploitable Potential from the Colombian Caribbean. J. Mol. Liq. 2023, 380, 121677. [Google Scholar] [CrossRef]
- Saleem, J.; Shahid, U.B.; Hijab, M.; Mackey, H.; McKay, G. Production and Applications of Activated Carbons as Adsorbents from Olive Stones. Biomass Convers. Biorefinery 2019, 9, 775–802. [Google Scholar] [CrossRef]
- Vieira, Y.; Schnorr, C.; Piazzi, A.C.; Netto, M.S.; Piccini, W.M.; Franco, D.S.P.; Mallmann, E.S.; Georgin, J.; Silva, L.F.O.; Dotto, G.L. An Advanced Combination of Density Functional Theory Simulations and Statistical Physics Modeling in the Unveiling and Prediction of Adsorption Mechanisms of 2,4-D Pesticide to Activated Carbon. J. Mol. Liq. 2022, 361, 119639. [Google Scholar] [CrossRef]
- Yanan, C.; Srour, Z.; Ali, J.; Guo, S.; Taamalli, S.; Fèvre-Nollet, V.; da Boit Martinello, K.; Georgin, J.; Franco, D.S.P.; Silva, L.F.O.; et al. Adsorption of Paracetamol and Ketoprofenon Activated Charcoal Prepared from the Residue of the Fruit of Butiacapitate: Experiments and Theoretical Interpretations. Chem. Eng. J. 2023, 454, 139943. [Google Scholar] [CrossRef]
- Orta, M.d.M.; Martín, J.; Santos, J.L.; Aparicio, I.; Medina-Carrasco, S.; Alonso, E. Biopolymer-Clay Nanocomposites as Novel and Ecofriendly Adsorbents for Environmental Remediation. Appl. Clay Sci. 2020, 198, 105838. [Google Scholar] [CrossRef]
- Biswas, S.; Fatema, J.; Debnath, T.; Rashid, T.U. Chitosan−Clay Composites for Wastewater Treatment: A State-of-the-Art Review. ACS ES T Water 2021, 1, 1055–1085. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Banerjee, B.; Ghorai, S.; Rana, D.; Roy, I.; Sarkar, G.; Saha, N.R.; De, S.; Ghosh, T.K.; Sadhukhan, S.; et al. Development of an Auto-Phase Separable and Reusable Graphene Oxide-Potato Starch Based Cross-Linked Bio-Composite Adsorbent for Removal of Methylene Blue Dye. Int. J. Biol. Macromol. 2018, 116, 1037–1048. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, M.; Xu, W.; He, S.; Men, Y. Natural Polysaccharides-Modified Graphene Oxide for Adsorption of Organic Dyes from Aqueous Solutions. J. Colloid Interface Sci. 2017, 486, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Politaeva, N.; Yakovlev, A.; Yakovleva, E.; Chelysheva, V.; Tarantseva, K.; Efremova, S.; Mukhametova, L.; Ilyashenko, S. Graphene Oxide-Chitosan Composites for Water Treatment from Copper Cations. Water 2022, 14, 1430. [Google Scholar] [CrossRef]
- Vo, T.S.; Vo, T.T.B.C. Organic Dye Removal and Recycling Performances of Graphene Oxide-Coated Biopolymer Sponge. Prog. Nat. Sci. Mater. Int. 2022, 32, 634–642. [Google Scholar] [CrossRef]
- Bernard, K.N.M.; Prakash, O.; Hippargi, G.; Sylvere, N.K.; Joseph, K.G.; Pal, S. Exploring the Applicability of a Geopolymer and a Biopolymer as an Environmentally Benign Treatment Option for Heavy Metals Contaminated Water. J. Taiwan Inst. Chem. Eng. 2022, 135, 104392. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Song, G.; Lou, T. Microwave Assisted Copolymerization of Sodium Alginate and Dimethyl Diallyl Ammonium Chloride as Flocculant for Dye Removal. Int. J. Biol. Macromol. 2020, 156, 585–590. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Vossoughi, M.; Mahmoodi, N.M.; Sadrzadeh, M. Efficient Dye Removal from Aqueous Solution by High-Performance Electrospun Nanofibrous Membranes through Incorporation of SiO2 Nanoparticles. J. Clean. Prod. 2018, 183, 1197–1206. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Mokhtari-Shourijeh, Z. Preparation of PVA-Chitosan Blend Nanofiber and Its Dye Removal Ability from Colored Wastewater. Fibers Polym. 2015, 16, 1861–1869. [Google Scholar] [CrossRef]
- Zhijiang, C.; Cong, Z.; Ping, X.; Jie, G.; Kongyin, Z. Calcium Alginate-Coated Electrospun Polyhydroxybutyrate/Carbon Nanotubes Composite Nanofibers as Nanofiltration Membrane for Dye Removal. J. Mater. Sci. 2018, 53, 14801–14820. [Google Scholar] [CrossRef]
- Shi, J.; Wu, T.; Teng, K.; Wang, W.; Shan, M.; Xu, Z.; Lv, H.; Deng, H. Simultaneous Electrospinning and Spraying toward Branch-like Nanofibrous Membranes Functionalised with Carboxylated MWCNTs for Dye Removal. Mater. Lett. 2016, 166, 26–29. [Google Scholar] [CrossRef]
- Xing, J.; Wang, X.; Xun, J.; Peng, J.; Xu, Q.; Zhang, W.; Lou, T. Preparation of Micro-Nanofibrous Chitosan Sponges with Ternary Solvents for Dye Adsorption. Carbohydr. Polym. 2018, 198, 69–75. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y. Lo Cellulose Nanofibril Aerogels: Synergistic Improvement of Hydrophobicity, Strength, and Thermal Stability via Cross-Linking with Diisocyanate. ACS Appl. Mater. Interfaces 2017, 9, 2825–2834. [Google Scholar] [CrossRef] [PubMed]
- Sajab, M.S.; Chia, C.H.; Chan, C.H.; Zakaria, S.; Kaco, H.; Chook, S.W.; Chin, S.X.; Noor, A.M. Bifunctional Graphene Oxide–Cellulose Nanofibril Aerogel Loaded with Fe(Iii) for the Removal of Cationic Dye via Simultaneous Adsorption and Fenton Oxidation. RSC Adv. 2016, 6, 19819–19825. [Google Scholar] [CrossRef]
- Aboamera, N.M.; Mohamed, A.; Salama, A.; Osman, T.A.; Khattab, A. An Effective Removal of Organic Dyes Using Surface Functionalized Cellulose Acetate/Graphene Oxide Composite Nanofibers. Cellulose 2018, 25, 4155–4166. [Google Scholar] [CrossRef]
- Guo, R.; Wang, R.; Yin, J.; Jiao, T.; Huang, H.; Zhao, X.; Zhang, L.; Li, Q.; Zhou, J.; Peng, Q. Fabrication and Highly Efficient Dye Removal Characterization of Beta-Cyclodextrin-Based Composite Polymer Fibers by Electrospinning. Nanomaterials 2019, 9, 127. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, G.; Gao, Q. Starch Nanoparticles-Graphene Aerogels with High Supercapacitor Performance and Efficient Adsorption. ACS Sustain. Chem. Eng. 2019, 7, 14064–14073. [Google Scholar] [CrossRef]
- Huang, P.; Xia, D.; Kazlauciunas, A.; Thornton, P.; Lin, L.; Menzel, R. Dye-Mediated Interactions in Chitosan-Based Polyelectrolyte/Organoclay Hybrids for Enhanced Adsorption of Industrial Dyes. ACS Appl. Mater. Interfaces 2019, 11, 11961–11969. [Google Scholar] [CrossRef]
- Nisticò, R.; Franzoso, F.; Cesano, F.; Scarano, D.; Magnacca, G.; Parolo, M.E.; Carlos, L. Chitosan-Derived Iron Oxide Systems for Magnetically Guided and Efficient Water Purification Processes from Polycyclic Aromatic Hydrocarbons. ACS Sustain. Chem. Eng. 2017, 5, 793–801. [Google Scholar] [CrossRef]
- Qian, D.; Bai, L.; Wang, Y.S.; Song, F.; Wang, X.L.; Wang, Y.Z. A Bifunctional Alginate-Based Composite Hydrogel with Synergistic Pollutant Adsorption and Photocatalytic Degradation Performance. Ind. Eng. Chem. Res. 2019, 58, 13133–13144. [Google Scholar] [CrossRef]
- Guo, J.; Wang, J.; Zheng, G.; Jiang, X. Optimization of the Removal of Reactive Golden Yellow SNE Dye by Cross-Linked Cationic Starch and Its Adsorption Properties. J. Eng. Fiber. Fabr. 2019, 14, 1558925019865260. [Google Scholar] [CrossRef]
- Bhangi, B.K.; Ray, S.K. Nano Silver Chloride and Alginate Incorporated Composite Copolymer Adsorbent for Adsorption of a Synthetic Dye from Water in a Fixed Bed Column and Its Photocatalytic Reduction. Int. J. Biol. Macromol. 2020, 144, 801–812. [Google Scholar] [CrossRef]
- Al-Gethami, W.; Qamar, M.A.; Shariq, M.; Alaghaz, A.N.M.A.; Farhan, A.; Areshi, A.A.; Alnasir, M.H. Emerging Environmentally Friendly Bio-Based Nanocomposites for the Efficient Removal of Dyes and Micropollutants from Wastewater by Adsorption: A Comprehensive Review. RSC Adv. 2024, 14, 2804–2834. [Google Scholar] [CrossRef] [PubMed]
- Dotto, G.L.; Santos, J.M.N.N.; Rodrigues, I.L.; Rosa, R.; Pavan, F.A.; Lima, E.C. Adsorption of Methylene Blue by Ultrasonic Surface Modified Chitin. J. Colloid Interface Sci. 2015, 446, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Wang, D.; Ma, X.; Fan, L.; Ding, T.; Ye, X.; Liu, D. Enhanced Adsorption of Congo Red Using Chitin Suspension after Sonoenzymolysis. Ultrason. Sonochem. 2021, 70, 105327. [Google Scholar] [CrossRef]
- Boumya, W.; Khnifira, M.; Machrouhi, A.; Abdennouri, M.; Sadiq, M.; Achak, M.; Serdaroğlu, G.; Kaya, S.; Şimşek, S.; Barka, N. Adsorption of Eriochrome Black T on the Chitin Surface: Experimental Study, DFT Calculations and Molecular Dynamics Simulation. J. Mol. Liq. 2021, 331, 115706. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, S.; Li, B. Fabrication of Chitin Microspheres and Their Multipurpose Application as Catalyst Support and Adsorbent. Carbohydr. Polym. 2015, 120, 53–59. [Google Scholar] [CrossRef]
- Putri, K.N.A.; Keereerak, A.; Chinpa, W.; Cestari, A.R.; Vieira, E.F.S.; dos Santos, A.G.P.; Mota, J.A.; de Almeida, V.P.; Fideles, R.A.; Ferreira, G.M.D.; et al. Adsorption of Toxic Crystal Violet Dye Using Coffee Husks: Equilibrium, Kinetics and Thermodynamics Study. Int. J. Biol. Macromol. 2018, 159, 422–432. [Google Scholar] [CrossRef]
- Brião, G.V.; Jahn, S.L.; Foletto, E.L.; Dotto, G.L. Highly Efficient and Reusable Mesoporous Zeolite Synthetized from a Biopolymer for Cationic Dyes Adsorption. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Bartczak, P.; Jesionowski, T. International Journal of Biological Macromolecules Enhanced Removal of Hazardous Dye Form Aqueous Solutions and Real Textile Wastewater Using Bifunctional Chitin / Lignin Biosorbent. Int. J. Biol. Macromol. 2017, 99, 754–764. [Google Scholar] [CrossRef]
- Druzian, S.P.; Zanatta, N.P.; Borchardt, R.K.; Côrtes, L.N.; Streit, A.F.M.; Severo, E.C.; Gonçalves, J.O.; Foletto, E.L.; Lima, E.C.; Dotto, G.L. Chitin-Psyllium Based Aerogel for the Efficient Removal of Crystal Violet from Aqueous Solutions. Int. J. Biol. Macromol. 2021, 179, 366–376. [Google Scholar] [CrossRef]
- Labidi, A.; Salaberria, A.M.; Fernandes, S.C.M.; Labidi, J. Functional Chitosan Derivative and Chitin as Decolorization Materials for Methylene Blue and Methyl Orange from Aqueous Solution. Materials 2019, 12, 361. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Mokhtari-Shourijeh, Z.; Abdi, J. Preparation of Mesoporous Polyvinyl Alcohol/Chitosan/Silica Composite Nanofiber and Dye Removal from Wastewater. Environ. Prog. Sustain. Energy 2019, 38, S100–S109. [Google Scholar] [CrossRef]
- Ikram, M.; Shahzadi, A.; Haider, A.; Imran, M.; Hayat, S.; Haider, J.; Ul-Hamid, A.; Rasool, F.; Nabgan, W.; Mustajab, M.; et al. Toward Efficient Bactericidal and Dye Degradation Performance of Strontium- and Starch-Doped Fe2O3 Nanostructures: In Silico Molecular Docking Studies. ACS Omega 2023, 8, 8066–8077. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, D.; Gupta, I.; Singh, S.; Nehra, S.; Kumar, R. Combustion Derived Single Phase Y4Al2O9:Tb3+ Nanophosphor: Crystal Chemistry and Optical Analysis for Solid State Lighting Applications. RSC Adv. 2023, 13, 7752–7765. [Google Scholar] [CrossRef]
- Hu, L.; Guang, C.; Liu, Y.; Su, Z.; Gong, S.; Yao, Y.; Wang, Y. Adsorption Behavior of Dyes from an Aqueous Solution onto Composite Magnetic Lignin Adsorbent. Chemosphere 2020, 246, 125757. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Medha; Thakur, S. Synthesis and Characterization of Nanocomposite Chitosan-Gelatin Hydrogel Loaded with ZnO and Its Application in Photocatalytic Dye Degradation. Mater. Today Proc. 2023, 78, 815–824. [Google Scholar] [CrossRef]
- Benhachem, F.Z.; Attar, T.; Bouabdallah, F. Kinetic Study of Adsorption Methylene Blue Dye from Aqueous Solutions Using Activated Carbon from Starch. Chem. Rev. Lett. 2019, 2, 33–39. [Google Scholar] [CrossRef]
- Junlapong, K.; Maijan, P.; Chaibundit, C.; Chantarak, S. Effective Adsorption of Methylene Blue by Biodegradable Superabsorbent Cassava Starch-Based Hydrogel. Int. J. Biol. Macromol. 2020, 158, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Habiba, U.; Lee, J.J.L.; Joo, T.C.; Ang, B.C.; Afifi, A.M. Degradation of Methyl Orange and Congo Red by Using Chitosan/Polyvinyl Alcohol/TiO2 Electrospun Nanofibrous Membrane. Int. J. Biol. Macromol. 2019, 131, 821–827. [Google Scholar] [CrossRef]
- Dotto, G.L.; Santos, J.M.N.; Tanabe, E.H.; Bertuol, D.A.; Foletto, E.L.; Lima, E.C.; Pavan, F.A. Chitosan/Polyamide Nanofibers Prepared by Forcespinning® Technology: A New Adsorbent to Remove Anionic Dyes from Aqueous Solutions. J. Clean. Prod. 2017, 144, 120–129. [Google Scholar] [CrossRef]
- Gautam, D.; Kumari, S.; Ram, B.; Chauhan, G.S.; Chauhan, K. A New Hemicellulose-Based Adsorbent for Malachite Green. J. Environ. Chem. Eng. 2018, 6, 3889–3897. [Google Scholar] [CrossRef]
- Jiang, X.; Lou, C.; Hua, F.; Deng, H.; Tian, X. Cellulose Nanocrystals-Based Flocculants for High-Speed and High-Efficiency Decolorization of Colored Effluents. J. Clean. Prod. 2020, 251, 119749. [Google Scholar] [CrossRef]
- Stan, M.; Lung, I.; Soran, M.L.; Opris, O.; Leostean, C.; Popa, A.; Copaciu, F.; Diana, M.; Kacso, I.; Silipas, T.D.; et al. Starch-Coated Green Synthesized Magnetite Nanoparticles for Removal of Textile Dye Optilan Blue from Aqueous Media. J. Taiwan Inst. Chem. Eng. 2019, 100, 65–73. [Google Scholar] [CrossRef]
- Li, P.; Gao, B.; Li, A.; Yang, H. Highly Selective Adsorption of Dyes and Arsenate from Their Aqueous Mixtures Using a Silica-Sand/Cationized-Starch Composite; Elsevier Inc.: Amsterdam, The Nederland, 2018; Volume 263, ISBN 8625896812. [Google Scholar]
- Wang, Y.; Zhao, L.; Peng, H.; Wu, J.; Liu, Z.; Guo, X. Removal of Anionic Dyes from Aqueous Solutions by Cellulose-Based Adsorbents: Equilibrium, Kinetics, and Thermodynamics. J. Chem. Eng. Data 2016, 61, 3266–3276. [Google Scholar] [CrossRef]
- Maatar, W.; Boufi, S. Microporous Cationic Nanofibrillar Cellulose Aerogel as Promising Adsorbent of Acid Dyes. Cellulose 2017, 24, 1001–1015. [Google Scholar] [CrossRef]
- Hayeeye, F.; Sattar, M.; Chinpa, W.; Sirichote, O. Kinetics and Thermodynamics of Rhodamine B Adsorption by Gelatin/Activated Carbon Composite Beads. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 513, 259–266. [Google Scholar] [CrossRef]
- Rakhshaee, R.; Giahi, M.; Pourahmad, A. Removal of Methyl Orange from Aqueous Solution by Azolla Filicoloides: Synthesis of Fe3O4 Nano-Particles and Its Surface Modification by the Extracted Pectin of Azolla. Chin. Chem. Lett. 2011, 22, 501–504. [Google Scholar] [CrossRef]
- Zhou, W.; He, J.; Cui, S.; Gao, W. Preparation of Electrospun Silk Fibroin/Cellulose Acetate Blend Nanofibers and Their Applications to Heavy Metal Ions Adsorption. Fibers Polym. 2011, 12, 431–437. [Google Scholar] [CrossRef]
- Abou-Zeid, R.E.; Dacrory, S.; Ali, K.A.; Kamel, S. Novel Method of Preparation of Tricarboxylic Cellulose Nanofiber for Efficient Removal of Heavy Metal Ions from Aqueous Solution. Int. J. Biol. Macromol. 2018, 119, 207–214. [Google Scholar] [CrossRef]
- Noè, C.; Zanon, M.; Arencibia, A.; López-Muñoz, M.J.; de Paz, N.F.; Calza, P.; Sangermano, M. UV-Cured Chitosan and Gelatin Hydrogels for the Removal of As(V) and Pb(II) from Water. Polymers 2022, 14, 1268. [Google Scholar] [CrossRef]
- Hung, C.-M.; Chen, C.-W.; Huang, C.-P.; Dong, C.-D. Nitrogen and Boron Co-Doped Lignin Biochar for Enhancing Calcium Peroxide Activation toward Organic Micropollutants Decontamination in Waste Activated Sludge and Related Microbial Structure Dynamics. Bioresour. Technol. 2023, 372, 128673. [Google Scholar] [CrossRef]
- Camiré, A.; Chabot, B.; Lajeunesse, A. Sorption Capacities of a Lignin-Based Electrospun Nanofibrous Material for Pharmaceutical Residues Remediation in Water. In Sorption in 2020s; Kyzas, G., Lazaridis, N., Eds.; IntechOpen: Rijeka, Republika Hrvatska, 2019. [Google Scholar]
- Facchi, D.P.; Cazetta, A.L.; Canesin, E.A.; Almeida, V.C.; Bonafé, E.G.; Kipper, M.J.; Martins, A.F. New Magnetic Chitosan/Alginate/Fe3O4@SiO2 Hydrogel Composites Applied for Removal of Pb(II) Ions from Aqueous Systems. Chem. Eng. J. 2018, 337, 595–608. [Google Scholar] [CrossRef]
- Hanbali, G.; Jodeh, S.; Hamed, O.; Bol, R.; Khalaf, B.; Qdemat, A.; Samhan, S. Enhanced Ibuprofen Adsorption and Desorption on Synthesized Functionalized Magnetic Multiwall Carbon Nanotubes from Aqueous Solution. Materials 2020, 13, 115911. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Singh, P.N.; Tara, N.; Pal, S.; Chaudhry, S.A.; Sinha, I. Arsenic Removal from Water by Starch Functionalized Maghemite Nano-Adsorbents: Thermodynamics and Kinetics Investigations. Colloids Interface Sci. Commun. 2020, 36, 100263. [Google Scholar] [CrossRef]
- Liang, R.; Li, Y.; Huang, L.; Wang, X.; Hu, X.; Liu, C.; Chen, M.; Chen, J. Pb2+ Adsorption by Ethylenediamine-Modified Pectins and Their Adsorption Mechanisms. Carbohydr. Polym. 2020, 234, 115911. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Wang, Y.; Li, M.; Liu, K.; Hu, C.; Yan, K.; Sun, G.; Wang, D. Activable Carboxylic Acid Functionalized Crystalline Nanocellulose/PVA-Co-PE Composite Nanofibrous Membrane with Enhanced Adsorption for Heavy Metal Ions. Sep. Purif. Technol. 2017, 186, 70–77. [Google Scholar] [CrossRef]
- Bozorgi, M.; Abbasizadeh, S.; Samani, F.; Mousavi, S.E. Performance of Synthesized Cast and Electrospun PVA/Chitosan/ZnO-NH2 Nano-Adsorbents in Single and Simultaneous Adsorption of Cadmium and Nickel Ions from Wastewater. Environ. Sci. Pollut. Res. 2018, 25, 17457–17472. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, L.; Zeng, H.; Rhimi, B.; Wang, C. Novel Polyethyleneimine Functionalized Chitosan-Lignin Composite Sponge with Nanowall-Network Structures for Fast and Efficient Removal of Hg(Ii) Ions from Aqueous Solution. Environ. Sci. Nano 2020, 7, 793–802. [Google Scholar] [CrossRef]
- Yan, X.; Fei, Y.; Zhong, L.; Wei, W. Arsenic Stabilization Performance of a Novel Starch-Modified Fe-Mn Binary Oxide Colloid. Sci. Total Environ. 2020, 707, 136064. [Google Scholar] [CrossRef]
- Abdolmaleki, A.Y.; Zilouei, H.; Khorasani, S.N.; Zargoosh, K. Adsorption of Tetracycline from Water Using Glutaraldehyde-Crosslinked Electrospun Nanofibers of Chitosan/Poly(Vinyl Alcohol). Water Sci. Technol. 2018, 77, 1324–1335. [Google Scholar] [CrossRef]
- Chai, K.; Lu, K.; Xu, Z.; Tong, Z.; Ji, H. Rapid and Selective Recovery of Acetophenone from Petrochemical Effluents by Crosslinked Starch Polymer. J. Hazard. Mater. 2018, 348, 20–28. [Google Scholar] [CrossRef]
- Balasubramani, K.; Sivarajasekar, N.; Sarojini, G.; Naushad, M. Removal of Antidiabetic Pharmaceutical (Metformin) Using Graphene Oxide Microcrystalline Cellulose (GOMCC): Insights to Process Optimization, Equilibrium, Kinetics, And Machine Learning. Ind. Eng. Chem. Res. 2023, 62, 4713–4728. [Google Scholar] [CrossRef]
- Sharma, M.; Tavares, A.P.M.; Nunes, J.C.F.; Singh, N.; Mondal, D.; Neves, M.C.; Prasad, K.; Freire, M.G. Hybrid Alginate-Protein Cryogel Beads: Efficient and Sustainable Bio-Based Materials to Purify Immunoglobulin G Antibodies. Green Chem. 2020, 22, 2225–2233. [Google Scholar] [CrossRef]
- Bergamonti, L.; Bergonzi, C.; Graiff, C.; Lottici, P.P.; Bettini, R.; Elviri, L. 3D Printed Chitosan Scaffolds: A New TiO2 Support for the Photocatalytic Degradation of Amoxicillin in Water. Water Res. 2019, 163, 114841. [Google Scholar] [CrossRef]
- Fei, Y.; Li, Y.; Han, S.; Ma, J. Adsorptive Removal of Ciprofloxacin by Sodium Alginate/Graphene Oxide Composite Beads from Aqueous Solution. J. Colloid Interface Sci. 2016, 484, 196–204. [Google Scholar] [CrossRef]
- Dong, H.; Ning, Q.; Li, L.; Wang, Y.; Wang, B.; Zhang, L.; Tian, R.; Li, R.; Chen, J.; Xie, Q. A Comparative Study on the Activation of Persulfate by Bare and Surface-Stabilized Nanoscale Zero-Valent Iron for the Removal of Sulfamethazine. Sep. Purif. Technol. 2020, 230, 115869. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Zhong, W.; Li, C.; Li, L.; Zhang, H. Facile Synthesis of Ultrasmall Si Particles Embedded in Carbon Framework Using Si-Carbon Integration Strategy with Superior Lithium Ion Storage Performance. Chem. Eng. J. 2017, 319, 1–8. [Google Scholar] [CrossRef]
- Ram, B.; Chauhan, G.S. New Spherical Nanocellulose and Thiol-Based Adsorbent for Rapid and Selective Removal of Mercuric Ions. Chem. Eng. J. 2018, 331, 587–596. [Google Scholar] [CrossRef]
- Geng, C.; Lin, R.; Yang, P.; Liu, P.; Guo, L.; Fang, Y.; Cui, B. Mild Routine to Prepare Fe-Mn Bimetallic Nano-Cluster (Fe-Mn NCs) and Its Magnetic Starch-Based Composite Adsorbent (Fe-Mn@SCAs) for Wide PH Range Adsorption for Hg(Ⅱ) Sewage. J. Taiwan Inst. Chem. Eng. 2023, 144, 104768. [Google Scholar] [CrossRef]
- Zhou, F.; Feng, X.; Yu, J.; Jiang, X. High Performance of 3D Porous Graphene/Lignin/Sodium Alginate Composite for Adsorption of Cd(II) and Pb(II). Environ. Sci. Pollut. Res. 2018, 25, 15651–15661. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Xiao, G.; Su, H. Fabrication of Biomaterial/TiO2 Composite Photocatalysts for the Selective Removal of Trace Environmental Pollutants. Chin. J. Chem. Eng. 2019, 27, 1416–1428. [Google Scholar] [CrossRef]
- Zhuang, Y.; Kong, Y.; Wang, X.; Shi, B. Novel One Step Preparation of a 3D Alginate Based MOF Hydrogel for Water Treatment. New J. Chem. 2019, 43, 7202–7208. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Senan, P.; Suchithra, P.S. Evaluation of Iron(III)-Coordinated Amino-Functionalized Poly(Glycidyl Methacrylate)-Grafted Cellulose for Arsenic(V) Adsorption from Aqueous Solutions. Water. Air. Soil Pollut. 2011, 220, 101–116. [Google Scholar] [CrossRef]
- Haider, S.; Ali, F.A.A.; Haider, A.; Al-Masry, W.A.; Al-Zeghayer, Y. Novel Route for Amine Grafting to Chitosan Electrospun Nanofibers Membrane for the Removal of Copper and Lead Ions from Aqueous Medium. Carbohydr. Polym. 2018, 199, 406–414. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, W.; Yue, Y.; Xuan, L.; Ni, X.; Han, G. Electrospun Cellulose Nanocrystals/Chitosan/Polyvinyl Alcohol Nanofibrous Films and Their Exploration to Metal Ions Adsorption. Polymers 2018, 10, 1046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, Z.; Deng, N.; Ju, J.; Li, Y.; Cheng, B.; Kang, W.; Yan, J. Tree-like Cellulose Nanofiber Membranes Modified by Citric Acid for Heavy Metal Ion (Cu 2+) Removal. Cellulose 2019, 26, 945–958. [Google Scholar] [CrossRef]
- Karim, M.R.; Aijaz, M.O.; Alharth, N.H.; Alharbi, H.F.; Al-Mubaddel, F.S.; Awual, M.R. Composite Nanofibers Membranes of Poly(Vinyl Alcohol)/Chitosan for Selective Lead(II) and Cadmium(II) Ions Removal from Wastewater. Ecotoxicol. Environ. Saf. 2019, 169, 479–486. [Google Scholar] [CrossRef]
- Li, J.; Zuo, K.; Wu, W.; Xu, Z.; Yi, Y.; Jing, Y.; Dai, H.; Fang, G. Shape Memory Aerogels from Nanocellulose and Polyethyleneimine as a Novel Adsorbent for Removal of Cu(II) and Pb(II). Carbohydr. Polym. 2018, 196, 376–384. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Li, Y.; Yang, C. Removal of Cr (VI) with a Spiral Wound Chitosan Nanofiber Membrane Module via Dead-End Filtration. J. Memb. Sci. 2017, 544, 333–341. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Dong, S.; Zhang, G.; Shi, X.; Xiang, C.; Li, L. Adsorption of Hexavalent Chromium by Novel Chitosan/Poly(Ethylene Oxide)/Permutit Electrospun Nanofibers. New J. Chem. 2018, 42, 17740–17749. [Google Scholar] [CrossRef]
- Koushkbaghi, S.; Zakialamdari, A.; Pishnamazi, M.; Ramandi, H.F.; Aliabadi, M.; Irani, M. Aminated-Fe3O4 Nanoparticles Filled Chitosan/PVA/PES Dual Layers Nanofibrous Membrane for the Removal of Cr(VI) and Pb(II) Ions from Aqueous Solutions in Adsorption and Membrane Processes. Chem. Eng. J. 2018, 337, 169–182. [Google Scholar] [CrossRef]
- Bashar, M.M.; Zhu, H.; Yamamoto, S.; Mitsuishi, M. Superhydrophobic Surfaces with Fluorinated Cellulose Nanofiber Assemblies for Oil-Water Separation. RSC Adv. 2017, 7, 37168–37174. [Google Scholar] [CrossRef]
- Beyer, J.; Trannum, H.C.; Bakke, T.; Hodson, P.V.; Collier, T.K. Environmental Effects of the Deepwater Horizon Oil Spill: A Review. Mar. Pollut. Bull. 2016, 110, 28–51. [Google Scholar] [CrossRef] [PubMed]
- Daksa Ejeta, D.; Wang, C.F.; Kuo, S.W.; Chen, J.K.; Tsai, H.C.; Hung, W.S.; Hu, C.C.; Lai, J.Y. Preparation of Superhydrophobic and Superoleophilic Cotton-Based Material for Extremely High Flux Water-in-Oil Emulsion Separation. Chem. Eng. J. 2020, 402, 126289. [Google Scholar] [CrossRef]
- Kollarigowda, R.H.; Bhyrappa, H.M.; Cheng, G. Stimulus-Responsive Biopolymeric Surface: Molecular Switches for Oil/Water Separation. ACS Appl. Bio Mater. 2019, 2, 4249–4257. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Dong, F.; Yang, X.; Liu, H.; Guo, L.; Qian, Y.; Wang, A.; Wang, S.; Luo, J. Preparation and Characterization of Cellulose Grafted with Epoxidized Soybean Oil Aerogels for Oil-Absorbing Materials. J. Agric. Food Chem. 2019, 67, 637–643. [Google Scholar] [CrossRef]
- Fouad, R.R.; Aljohani, H.A.; Shoueir, K.R. Biocompatible Poly(Vinyl Alcohol) Nanoparticle-Based Binary Blends for Oil Spill Control. Mar. Pollut. Bull. 2016, 112, 46–52. [Google Scholar] [CrossRef]
- Mirshahghassemi, S.; Lead, J.R. Oil Recovery from Water under Environmentally Relevant Conditions Using Magnetic Nanoparticles. Environ. Sci. Technol. 2015, 49, 11729–11736. [Google Scholar] [CrossRef]
- da Rosa Schio, R.; da Rosa, B.C.; Gonçalves, J.O.; Pinto, L.A.A.; Mallmann, E.S.; Dotto, G.L.; da Rosa, B.C.; Pinto, L.A.A.; Gonçalves, J.O.; da Rosa Schio, R.; et al. Synthesis of a Bio–Based Polyurethane/Chitosan Composite Foam Using Ricinoleic Acid for the Adsorption of Food Red 17 Dye. Int. J. Biol. Macromol. 2019, 121, 373–380. [Google Scholar] [CrossRef]
- Soares, S.F.; Rodrigues, M.I.; Trindade, T.; Daniel-da-Silva, A.L. Chitosan-Silica Hybrid Nanosorbents for Oil Removal from Water. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 532, 305–313. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, Y.; Tao, H.; Yuan, B. Bio-Based Porous Aerogel with Bionic Structure and Hydrophobic Polymer Coating for Efficient Absorption of Oil/Organic Liquids. Polymers 2022, 14, 4579. [Google Scholar] [CrossRef]
- Jian, J.; Fang, Y.; Li, W.-L.; Chen, Q.-Y.; Tian, H.-Y.; You, S.-L. Estimate of Heavy Metals in Soil with Non-Soil Removed. J. Data Anal. Inf. Process. 2017, 05, 140–155. [Google Scholar] [CrossRef]
- Laitinen, O.; Ojala, J.; Sirviö, J.A.; Liimatainen, H. Sustainable Stabilization of Oil in Water Emulsions by Cellulose Nanocrystals Synthesized from Deep Eutectic Solvents. Cellulose 2017, 24, 1679–1689. [Google Scholar] [CrossRef]
- Doshi, B.; Repo, E.; Heiskanen, J.P.; Sirviö, J.A.; Sillanpää, M. Effectiveness of N,O-Carboxymethyl Chitosan on Destabilization of Marine Diesel, Diesel and Marine-2T Oil for Oil Spill Treatment. Carbohydr. Polym. 2017, 167, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Doshi, B.; Repo, E.; Heiskanen, J.P.; Sirviö, J.A.; Sillanpää, M. Sodium Salt of Oleoyl Carboxymethyl Chitosan: A Sustainable Adsorbent in the Oil Spill Treatment. J. Clean. Prod. 2018, 170, 339–350. [Google Scholar] [CrossRef]
- Gang, Z.S.; Xi, G.C.; Jing, Z.; Chao, F.; Xiao, J.C. Adsorption Characteristics of Residual Oil on Amphiphilic Chitosan Derivative. Water Sci. Technol. 2010, 61, 2363–2374. [Google Scholar] [CrossRef]
- Kang, Y.L.; Zhang, J.; Wu, G.; Zhang, M.X.; Chen, S.C.; Wang, Y.Z. Full-Biobased Nanofiber Membranes toward Decontamination of Wastewater Containing Multiple Pollutants. ACS Sustain. Chem. Eng. 2018, 6, 11783–11792. [Google Scholar] [CrossRef]
- Ahmad, S.; Siddiqi, W.A.; Ahmad, S. Sustainable Nanocomposite Porous Absorbent and Membrane Sieves: Definition, Classification, History, Properties, Synthesis, Applications, and Future Prospects. J. Environ. Chem. Eng. 2023, 11, 109367. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, C.; Mathew, A.P. Mechanically Robust High Flux Graphene Oxide—Nanocellulose Membranes for Dye Removal from Water. J. Hazard. Mater. 2019, 371, 484–493. [Google Scholar] [CrossRef]
- Vatanpour, V.; Pasaoglu, M.E.; Barzegar, H.; Teber, O.O.; Kaya, R.; Bastug, M.; Khataee, A.; Koyuncu, I. Cellulose Acetate in Fabrication of Polymeric Membranes: A Review. Chemosphere 2022, 295, 133914. [Google Scholar] [CrossRef]
- Braunschweig, J.; Bosch, J.; Meckenstock, R.U. Iron Oxide Nanoparticles in Geomicrobiology: From Biogeochemistry to Bioremediation. N. Biotechnol. 2013, 30, 793–802. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, W.; Li, Y.; Wu, Y.; Chen, Y.; Xiao, W. Modification, Application and Reaction Mechanisms of Nano-Sized Iron Sulfide Particles for Pollutant Removal from Soil and Water: A Review. Chem. Eng. J. 2019, 362, 144–159. [Google Scholar] [CrossRef]
- Koetsem, F.V.; Havere, L.V.; Laing, G. Du Impact of Carboxymethyl Cellulose Coating on Iron Sulphide Nanoparticles Stability, Transport, and Mobilization Potential of Trace Metals Present in Soils and Sediment. J. Environ. Manag. 2016, 168, 210–218. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.-M.; Liang, X.-F.; Sun, Y.; Qin, X. Effect and Mechanism of Immobilization of Cadmium and Lead Compound Contaminated Soil Using New Hybrid Material. Huan Jing Ke Xue = Huanjing kexue 2011, 32, 581–588. [Google Scholar]
- Lin, J.; He, F.; Su, B.; Sun, M.; Owens, G.; Chen, Z. The Stabilizing Mechanism of Cadmium in Contaminated Soil Using Green Synthesized Iron Oxide Nanoparticles under Long-Term Incubation. J. Hazard. Mater. 2019, 379, 120832. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Liu, T.; Wang, X.; Li, F.; Lv, Y.; Cui, J.; Zeng, X.; Yuan, Y.; Liu, C. Chemosphere Simultaneous Alleviation of Cadmium and Arsenic Accumulation in Rice by Applying Zero-Valent Iron and Biochar to Contaminated Paddy Soils. Chemosphere 2018, 195, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zhang, W.; Yan, J.; Han, L.; Gao, W.; Liu, R.; Chen, M. Bioresource Technology Effective Removal of Heavy Metal by Biochar Colloids under Different Pyrolysis Temperatures. Bioresour. Technol. 2016, 206, 217–224. [Google Scholar] [CrossRef]
- Xue, W.; Huang, D.; Zeng, G.; Wan, J.; Cheng, M. Chemosphere Performance and Toxicity Assessment of Nanoscale Zero Valent Iron Particles in the Remediation of Contaminated Soil: A Review. Chemosphere 2018, 210, 1145–1156. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Chen, W.; Zhu, S.; Liu, N.; Zhu, L. Immobilization of Lead and Cadmium from Aqueous Solution and Contaminated Sediment Using Nano-Hydroxyapatite. Environ. Pollut. 2010, 158, 514–519. [Google Scholar] [CrossRef]
- Liang, S.; Jin, Y.; Liu, W.; Li, X.; Shen, S.; Ding, L. Feasibility of Pb Phytoextraction Using Nano-Materials Assisted Ryegrass: Results of a One-Year Fi Eld-Scale Experiment. J. Environ. Manag. 2017, 190, 170–175. [Google Scholar] [CrossRef]
- Wu, H.; Lai, C.; Zeng, G.; Liang, J.; Chen, J.; Xu, J.; Dai, J.; Li, X.; Liu, J.; Chen, M.; et al. Critical Reviews in Biotechnology The Interactions of Composting and Biochar and Their Implications for Soil Amendment and Pollution Remediation: A Review. Crit. Rev. Biotechnol. 2016, 37, 754–764. [Google Scholar] [CrossRef]
- Dehmani, Y.; Ba Mohammed, B.; Oukhrib, R.; Dehbi, A.; Lamhasni, T.; Brahmi, Y.; El-Kordy, A.; Franco, D.S.P.; Georgin, J.; Lima, E.C.; et al. Adsorption of Various Inorganic and Organic Pollutants by Natural and Synthetic Zeolites: A Critical Review. Arab. J. Chem. 2024, 17, 105474. [Google Scholar] [CrossRef]
- Georgin, J.; Franco, D.S.P.; Manzar, M.S.; Meili, L.; El Messaoudi, N. A Critical and Comprehensive Review of the Current Status of 17β-Estradiol Hormone Remediation through Adsorption Technology. Environ. Sci. Pollut. Res. 2024, 31, 24679–24712. [Google Scholar] [CrossRef] [PubMed]
- Şenol, Z.M.; El Messaoudi, N.; Ciğeroglu, Z.; Miyah, Y.; Arslanoğlu, H.; Bağlam, N.; Kazan-Kaya, E.S.; Kaur, P.; Georgin, J. Removal of Food Dyes Using Biological Materials via Adsorption: A Review. Food Chem. 2024, 450, 139398. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, W.; Zhang, J.; Zhang, X.; Li, Y. Effects of Co-Present Cations and Anions on Hexachlorobenzene Removal by Activated Carbon, Nano Zerovalent Iron and Nano Zerovalent/Activated Carbon Composite. Desalination Water Treat. 2016, 57, 20494–20502. [Google Scholar] [CrossRef]
- Choi, H.; Al-abed, S.R.; Agarwal, S.; Dionysiou, D.D. Synthesis of Reactive Nano-Fe/Pd Bimetallic System-Impregnated Activated Carbon for the Simultaneous Adsorption and Dechlorination of PCBs. Chem. Mater. 2008, 20, 3649–3655. [Google Scholar] [CrossRef]
- Elanchezhiyan, S.S.D.; Prabhu, S.M.; Kim, Y.; Park, C.M. Applied Surface Science Lanthanum-Substituted Bimetallic Magnetic Materials Assembled Carboxylate-Rich Graphene Oxide Nanohybrids as Highly Efficient Adsorbent for Perfluorooctanoic Acid Adsorption from Aqueous Solutions. Appl. Surf. Sci. 2020, 509, 144716. [Google Scholar] [CrossRef]
- Kang, S.; Wang, G.; Wang, Z.; Cai, W. Monodispersed Zerovalent Iron Nanoparticles Decorated Carbon Submicrospheres for Enhanced Removal of DDT from Aqueous Solutions. ChemistrySelect 2019, 4, 12134–12142. [Google Scholar] [CrossRef]
- Escobar, N.; Laibach, N. Sustainability Check for Bio-Based Technologies: A Review of Process-Based and Life Cycle Approaches. Renew. Sustain. Energy Rev. 2021, 135, 110213. [Google Scholar] [CrossRef]
Bio-Based Materials | Synthesis Method | Primary Component | Contaminant | Removal Time (min) and Efficiency (%)t | Mechanism of Removal | Reference |
---|---|---|---|---|---|---|
Soda–lignin gels extracted from Nypa fruiticans | Chemical method | Lignin | Pb2+ | 55/96.34 | Electrostatic interaction | [166] |
Lignin-based carbon/ZnO hybrid nanocomposite | Chemical method | Lignin | Rhodamine B | 50/79.2 | Electrostatic interaction, H-bonds | [167] |
TiO2/pyrolytic carbon from Kraft lignin, 31 | X | Lignin | MB, rhodamine B | x/85 and 88 | x | [168] |
NPs@Fe3O4-lignin | Chemical method | Lignin | Cr(VI) | 24/100 | x | [169] |
Lignin-based flocculant (LBF) combined with polyaluminum chloride (acrylamide and dimethyl diallyl ammonium chloride monomers) | X | Lignin | Disperse yellow | 60/93.58 | x | [170] |
Hydroxypropyl sulfonated lignin | Chemical method | Lignin | Blue 79 | x/94.27 | x | [171] |
Polypyrrole/lignin–graphite felt | Chemical method | Lignin | Acid orange | 20/92.55 | Electrostatic interaction | [172] |
Chitosan/carboxymethyl cellulose | Cross-linked | Cellulose | Cu2+ and Pb2+ | x/>99 | Electrostatic interaction | [173] |
Cu-MCC (microcrystalline cellulose) | Grafting | Cellulose | Prometryn | x/98.46 | Electrostatic interaction | [174] |
α-Fe2O3 magnetic NPs on immobilized Bacillus sp. | x | Cellulose | Atrazine | x/90 | Microbial enzyme and surface activity | [175] |
Fe3O4-ECH-CS (chitosan) on immobilized S. cerevisiae | x | Chitosan | Atrazine | x/88 | Binding to intracellular space and surface hydroxy and amine groups of chitosan Reductive dechlorination and chlorination by Fe3O4 | [176] |
Sugarcane cellulose-based composite hydrogel enhanced by g-C3N4 nanosheets | Grafting | Cellulose | MB | 45/99 | Electrostatic interaction | [177] |
Fe3O4-based starch–poly(acrylic acid) | X | Cellulose | Cu(II), Pb(II), CR, and methylene violet | x/95, 88, 93 and 93 | Spontaneous and chemical | [178] |
Cellulose aerogel nanocomposites | x | Cellulose | MB | 60/99 | Electrostatic interaction | [179] |
Lignin-derived porous carbon | Casting method | Lignin | Orange II | 24/98 | Electrostatic interaction | [180] |
Succinic anhydride-functionalized CNCs | Grafting | Cellulose | Cr(III) Cr(VI) | x/94.84, 98.33% | Electrostatic interaction | [181] |
CoMn2O4 NPs on lignin supported on fibrous phosphosilicate, 10 (diameter of the NPs of CoMn2O4) | Grafting method | Lignin | 4-Nitrophenol | 55/99.8 | X | [182] |
Fe2O3/lignocellulose nanocomposite | x | Lignocellulose | Nitrate | 15/97.68 | X | [183] |
2,2,6,6-Tetramethyl-1-piperidinyloxy-oxidized cellulose nanofibers | Grafting | Cellulose | Copper | x/100 | Electrostatic interaction | [184] |
Esterified cellulose nanofibers/graphene oxide | Chemical treatments (esterification) | Cellulose | Ciprofloxacin and ofloxacin (antibiotic) | 240/97 and 96, respectively | Electrostatic interaction, hydrogen bonding, and π–π interactions | [185] |
Crosslinked carboxymethyl cellulose-grafted carboxymethyl polyvinyl alcohol | Casting method | Cellulose | Copper | 240/95 | Ion exchange | [186] |
Polyvinyl alcohol blend/cellulose nanofibers | In situ | Cellulose | Anionic and cationic dyes | x/84 | Electrostatic interaction | [187] |
Tin(IV) sulfide/carbonized loofah | Scalable method | Loofah plant | Chrome | 120/99 | Photocatalytic and physical adsorption | [188] |
Sodium styrene sulfonate gels/carboxymethyl cellulose | Radiation grafting | Cellulose | Lead, chromium, iron, and manganese | x/41, 68, 33, and 35, respectively | Electrostatic attraction | [189] |
Poly(ethylenimine)-functionalized cellulose microcrystals | Ion exchange followed by amine functionalization and oxidation | Cellulose | Poly-fluoroalkyl substances | 120/85 | Electrostatic interaction | [190] |
Lignin sulfonate | Grafting method | Lignin | Malachite green dye | 240/97 | Electrostatic interaction | [126] |
Crosslinked cellulose nanocrystals | Freeze-drying | Cellulose | Methylene blue dye | x/86 | Electrostatic attraction | [191] |
Lanthanum hydroxide/poly(ethyleneimine)-grafted alkali lignin | Facile fabrication | Lignin | Phosphate | 60/95 | Surface precipitation and ligand exchange | [165] |
Carboxycellulose nanofibers | Nitro-oxidation | Cellulose | Cadmium | x/84 | Electrostatic interaction | [192] |
Adsorbate | Adsorbent (Bio-Based Composites) | Synthesis Method | pH/Contact Time (min) | Adsorption Capacity (mg g−1) | Efficiency (%) | Reference |
---|---|---|---|---|---|---|
Brilliant cresyl blue | Copolymerized acrylic acid hydroxyethyl methacrylate sodium alginate | Free-radical polymerization | x/100 | x | 94 | [233] |
Direct red 80 | Polyvinyl alcohol chitosan | Electrospinning | 2.1/110 | 151 | X | [220] |
Solophenyl red | Chitosan/polyamide-6 | Electrospinning | 3/x | x | 91 | [234] |
Methylene blue | USM–chitin | Ultrasonication | 10/x | 26.69 | x | [235] |
Congo red | Chitin | Sonoenzymolysis | 6/45 | 232 | x | [236] |
Eriochrome black T | Chitin | Extraction | 5/30 | 167.31 | x | [237] |
Methylene blue | Chitin microspheres | Sol–gel | 8.4/24 | 46 | x | [238] |
Crystal violet | Chitin/ZSM-5 | Hydrothermal | 7.5/x | 1217.3 | x | [239] |
Basic fuchsin | Zeolite/chitin | Hydrothermal | 9/36 | 237.5 | x | [240] |
Direct blue 71 | Chitin/lignin | Mechanical milling | 2.4–8.4/45 | 9.3 | x | [241] |
Crystal violet | Chitin and psyllium | Freeze-drying | 8/25 | 227.11 | x | [242] |
Methyl orange | Chitin/CS-g-PAM | Extraction | 5/x | x | 61 | [243] |
Acid blue 25 | PEI–chitin | Surface modification | 2/67 | 177.32 | x | [243] |
Indigo carmine | Graphene oxide/cellulose acetate nanofibers | Electrospinning | 2/150 | x | 99 | [226] |
Direct red 80 | Chitosan composite/silica/polyvinyl alcohol | Electrospinning | 2/110 | 322 | X | [244] |
Methylene blue | Starch-doped Fe2O3 nanostructures | Co-precipitation | 7/120 | x | X | [245] |
Eosin and ethidium bromide | Gelatin- and cellulose-based hydrogel | Grafting of poly(acrylic acid) | 10/30 | x | X | [246] |
Congo red and titan yellow | Magnetic lignin | x | 7/180 | 198 and 192, respectively | x | [247] |
Congo red | Chitosan–gelatin hydrogel loaded with ZnO | Grafting of acrylamide | 10/480 | x | x | [248] |
Methylene blue | Bacterial cellulose@CdS nanocomposite | “Anchoring–reacting–forming” pathway | x/180 | x | 77 | [249] |
Methylene blue | Cassava starch (hydrogel) | x | x/2700 | 2000 | x | [250] |
Methyl orange | Polyvinyl alcohol/zeolite/chitosan | Electrospinning | 8/14 | 153 | x | [251] |
Reactive black 5 | Polyamide/chitosan | Force spinning | 1/240 | 457 | x | [252] |
Malachite green dye | Hemicellulose | Acetylation and periodate oxidation | 6.5/60 | 456.2 | x | [253] |
Reactive blue 19 | Cellulose nanocrystals grafted with acryloyloxyethyltrimethyl ammonium chloride | Polymerization | 7/x | x | 80 | [254] |
Optilan blue (textile dye) | Starch-coated Fe3O4 nanoparticles | Green synthetic approach | 2/x | 50 | x | [255] |
Methyl orange and acid green 25 | Cationized starch/silica–sand composite | One-step etherification | 5.8 and 6.8, respectively/20 | 458 and 912, respectively | x | [256] |
Eriochrome blue and Congo red | Cellulose | Free-radical polymerization | 7/100 and 200, respectively | 349.3 and 380, respectively | x | [257] |
Methylene blue | Cellulose-based flexible carbon aerogels | Hydrothermal | 8/60 | x | x | [234] |
Methylene blue | Activated carbon composite/starch | Carbonization | 10.5/90 | x | 90 | [249] |
Blue dye 19 | Trimethyl ammonium chloride/cellulose aerogel | Chemical crosslinking and freeze-drying | 7/30 | 160 | x | [258] |
Rhodamine B | Activated carbon/gelatin composite beads | Facile method | 4/45 | 256.4 | x | [259] |
Methyl orange | Pectin/Fe3O4 nanoparticles | Co-precipitation | x | x | x | [260] |
Adsorbate | Adsorbent (Bio-Based Composites) | Synthesis Method | pH/Contact Time (min) | Adsorption Capacity (mg g−1) | Efficiency (%) | Reference |
---|---|---|---|---|---|---|
Copper | Silk fibroin/cellulose acetate | Electrospinning | x/120 | 75.9 | x | [261] |
Copper | Tricarboxylic cellulose nanofiber | x | x/120 | 92.2 | x | [262] |
As (V) | Gelatin hydrogels and UV-cured chitosan | Microwave-assisted | 6/600 | 136.7 | x | [263] |
4-Nitrophenol | Nitrogen and boron co-doped lignin biochar | One-pot carbonization | 11/720 | x | 83 | [264] |
Fluoxetine | Lignin nanofibers | x | 4.5/120 | 185 | x | [265] |
Lead | Fe3O4@SiO2/alginate/chitosan hydrogel | x | 6/120 | 234.7 | x | [266] |
Ibuprofen | FeCl3·4H2O/f-MWCNTs | Solvothermal | 7/120 | 11.8 | x | [267] |
Arsenic | Starch@γ-Fe2O3 | Co-precipitation | 9/120 | 8.67 | 98 | [268] |
Lead | Modified pectins and ethylenediamine | x | 4/x | x | 94 | [269] |
Lead | Poly(vinyl alcohol-co-ethylene)/nanocellulose | Melt blending extrusion | 4/1440 | 471.5 | x | [270] |
Cadmium | Zinc oxide–NH2/poly vinylalcohol/chitosan | Electrospinning and cast method | 6/240 | 139.27 | x | [271] |
Mercury | Lignin–chitosan-functionalized (polyethyleneimine) | Crosslinking | 5.5/120 | 663 | x | [272] |
Uranium | Phosphorylated chitosan cellulose and phosphate-decorated carboxymethyl | Crosslinking | 5/x | 977.5 | x | [273] |
Tetracycline (antibiotic) | PVA/chitosan | Electrospun method | 6/18,000 | 102 | x | [274] |
Acetophenone | Crosslinked starch polymer | Facile one-pot synthetic route | 7/x | 180.2 | x | [275] |
Metformin (Antidiabetic Pharmaceutical) | Microcrystalline cellulose graphene oxide | Chemical oxidation cum exfoliation, acid hydrolysis | 4.5–8.5/x | 132.1 | x | [276] |
Immunoglobulin G | Alginate protein cryogel beads | Extrusion dripping | 5/90 | 175 | x | [277] |
Amoxicillin (antibiotic) | TiO2-supported chitosan scaffolds | Sol–gel transition | 7/180 | x | 50 | [278] |
Ciprofloxacin (antibiotic) | Graphene oxide/sodium alginate composite beads | Magnetic stirring | 4/2880 | 86.12 | x | [279] |
Sulfamethazine | CMC-stabilized nano zero-valent iron, starch | Reduction | 5–9/60 | x | 83 | [280] |
Cadmium and lead | Polyethyleneimine/chitosan | x | 7/x | 321 and 341, respectively | [281] | |
Mercury | Thiolated-spherical nanocellulose | Acid hydrolysis | 5.6/20 | 98.6 | x | [282] |
As(III) and As(V) (arsenic) | Binary oxide Mn-Fe/starch | Co-precipitation and redox reaction | 7/120 | 284.6 and 160.6, respectively | x | [273] |
Mercury | Magnetic starch (composite adsorbent) | Co-precipitation | 4–7/110 | 324.4 | x | [283] |
Cadmium and lead | Sodium alginate/lignin/graphene nanocomposite | Hydrothermal polymerization | 6/90 | 79.8 and 226.2, respectively | x | [284] |
Nickel | TiO2–hemicellulose–chitosan | Polymerization, sol–gel method, and self-assembly | 4/x | 370.4 | x | [285] |
Tetracycline (antibiotic) | 3D alginate-based MOF hydrogel | One-step | 8/x | 364.8 | x | [286] |
Oil | Bio-Based Materials | Synthesis Method | Hydrophobic Modification | Adsorption Capacity (mg g−1) | Efficiency (%) | Reference |
---|---|---|---|---|---|---|
Hydraulic oil, kerosene, and toluene | Blends of poly(vinyl alcohol) (nanoparticles) with starch or chitosan | Emulsion polymerization | x | 22.7, 39.3, and 48.7, respectively | X | [301] |
MC252 oil | Polyvinylpyrrolidone-coated magnetite nanoparticles | Hydrothermal method | x | X | 100 | [302] |
Castor oil | Chitosan foam/polyurethane | Polymerization | Ricinoleic acid and chitosan | 267.2 | X | [303] |
Chloroform, n-heptane, cyclohexane, and toluene | Chitosan–silica hybrid | Sol–gel encapsulation | 3-(triethoxysilyl)propyl isocyanate, tetraethyl orthosilicate | X | 90 | [304] |
Organic solvent, gasoline | Modified activated carbon aerogel | Polymer coating | Polydimethylsiloxane | 12.31 | x | [305] |
Crude oil | Polyvinyl alcohol and cellulose nanofibril | Freeze-drying and emulsification | Span-80 | 140 | x | [140] |
Insoluble oil | Bio-based material (CH-PAA-T) | Thermal crosslinking | Polyacrylic acid and chitosan | 990.1 | x | [306] |
Marine diesel | Cellulose nanocrystals | Deep eutectic solvents | Oxalic acid dihydrate and choline chloride | X | x | [307] |
Marine diesel | Carboxymethyl chitosan | Partial carboxymethylation | Monochloroacetic acid | X | x | [308] |
Marine diesel | Oleoyl carboxymethyl chitosan of sodium salt | Acylation and carboxymethylation | Oleoyl chloride | X | 85 | [309] |
Wastewater from oil extraction | Carboxymethyl chitosan-oleoyl-H | Acylation and carboxymethylation | Oleoyl chloride | X | 95 | [310] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgin, J.; Ramos, C.G.; de Oliveira, J.S.; Dehmani, Y.; El Messaoudi, N.; Meili, L.; Franco, D.S.P. A Critical Review of the Advances and Current Status of the Application of Adsorption in the Remediation of Micropollutants and Dyes Through the Use of Emerging Bio-Based Nanocomposites. Sustainability 2025, 17, 2012. https://doi.org/10.3390/su17052012
Georgin J, Ramos CG, de Oliveira JS, Dehmani Y, El Messaoudi N, Meili L, Franco DSP. A Critical Review of the Advances and Current Status of the Application of Adsorption in the Remediation of Micropollutants and Dyes Through the Use of Emerging Bio-Based Nanocomposites. Sustainability. 2025; 17(5):2012. https://doi.org/10.3390/su17052012
Chicago/Turabian StyleGeorgin, Jordana, Claudete Gindri Ramos, Jivago Schumacher de Oliveira, Younes Dehmani, Noureddine El Messaoudi, Lucas Meili, and Dison S. P. Franco. 2025. "A Critical Review of the Advances and Current Status of the Application of Adsorption in the Remediation of Micropollutants and Dyes Through the Use of Emerging Bio-Based Nanocomposites" Sustainability 17, no. 5: 2012. https://doi.org/10.3390/su17052012
APA StyleGeorgin, J., Ramos, C. G., de Oliveira, J. S., Dehmani, Y., El Messaoudi, N., Meili, L., & Franco, D. S. P. (2025). A Critical Review of the Advances and Current Status of the Application of Adsorption in the Remediation of Micropollutants and Dyes Through the Use of Emerging Bio-Based Nanocomposites. Sustainability, 17(5), 2012. https://doi.org/10.3390/su17052012