Mei Symmetry and Invariants of Quasi-Fractional Dynamical Systems with Non-Standard Lagrangians
Abstract
:1. Introduction
2. Mei Symmetry and Invariants of Quasi-Fractional Dynamical System Based on Exponential Lagrangians
3. Mei Symmetry and Invariants of Quasi-Fractional Dynamical System Based on Power-Law Lagrangians
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Derivation of the Euler–Lagrange Equations for Quasi-Fractional Dynamical System with Exponential Lagrangians
Appendix B. Derivation of the Euler–Lagrange Equations for Quasi-Fractional Dynamical System with Power-Law Lagrangians
References
- Noether, A.E. Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Phys. Kl. 1918, 2, 235–257. [Google Scholar]
- Lutzky, M. Dynamical symmetries and conserved quantities. J. Phys. A Math. Gen. 1979, 12, 973–981. [Google Scholar] [CrossRef]
- Bluman, G.W.; Anco, S.C. Symmetry and Integration Methods for Differential Equations; Springer: New York, NY, USA, 2002. [Google Scholar]
- Mei, F.X. Form invariance of Lagrange system. J. Beijing Inst. Technol. 2000, 9, 120–124. [Google Scholar]
- Mei, F.X. Symmetries and Conserved Quantities of Constrained Mechanical Systems; Beijing Institute of Technology Press: Beijing, China, 2004. [Google Scholar]
- Hojman, S.A. A new conservation law constructed without using either Lagrangians or Hamiltonians. J. Phys. A Math. Gen. 1992, 25, L291–L295. [Google Scholar] [CrossRef]
- Ma, W.X. Conservation laws of discrete evolution equations by symmetries and adjoint symmetries. Symmetry 2015, 7, 714–725. [Google Scholar] [CrossRef]
- Ma, W.X. Conservation laws by symmetries and adjoint symmetries. Discret. Cont. Dyn. S 2018, 11, 707–721. [Google Scholar] [CrossRef]
- Mei, F.X. Advances in the symmetries and conserved quantities of classical constrained systems. Adv. Mech. 2009, 39, 37–43. [Google Scholar]
- Galiullin, A.S.; Gafarov, G.G.; Malaishka, R.P.; Khwan, A.M. Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems; UFN: Moscow, Russia, 1997. [Google Scholar]
- Mei, F.X. Lie symmetries and conserved quantities of constrained mechanical systems. Acta Mech. 2000, 141, 135–148. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, X.H. Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 2015, 81, 469–480. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Lie symmetry analysis on time scales and its application on mechanical systems. J. Vib. Control 2019, 25, 581–592. [Google Scholar] [CrossRef]
- Jia, L.Q.; Wang, X.X.; Zhang, M.L.; Han, Y.L. Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 2012, 69, 1807–1812. [Google Scholar] [CrossRef]
- Zhang, Y. Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type. Int. J. Non-Linear Mech. 2018, 101, 36–43. [Google Scholar] [CrossRef]
- Djukić, D.S. Adiabatic invariants for dynamical systems with one degree of freedom. Int. J. Non-Linear Mech. 1981, 16, 489–498. [Google Scholar] [CrossRef]
- Jiang, W.A.; Luo, S.K. A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 2012, 67, 475–482. [Google Scholar] [CrossRef]
- Song, C.J.; Zhang, Y. Conserved quantities and adiabatic invariants for fractional generalized Birkhoffian systems. Int. J. Non-Linear Mech. 2017, 90, 32–38. [Google Scholar] [CrossRef]
- Yang, M.J.; Luo, S.K. Fractional symmetrical perturbation method of finding adiabatic invariants of disturbed dynamical systems. Int. J. Non-Linear Mech. 2018, 101, 16–25. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.P. Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. Int. J. Non-Linear Mech. 2018, 105, 165–172. [Google Scholar] [CrossRef]
- Luo, S.K.; Yang, M.J.; Zhang, X.T.; Dai, Y. Basic theory of fractional Mei symmetrical perturbation and its application. Acta Mech. 2018, 229, 1833–1848. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, X.H. Perturbation to Lie symmetry and adiabatic invariants for Birkhoffian systems on time scales. Commun. Nonlinear Sci. Numer. Simulat. 2019, 75, 251–261. [Google Scholar] [CrossRef]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1978. [Google Scholar]
- Alekseev, A.I.; Arbuzov, B.A. Classical Yang-Mills field theory with nonstandard Lagrangians. Theor. Math. Phys. 1984, 59, 372–378. [Google Scholar] [CrossRef]
- Musielak, Z.E. Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Math. Theor. 2008, 41, 055205. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Nonlinear dynamics with nonstandard Lagrangians. Qual. Theory Dyn. Syst. 2012, 12, 273–291. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Non-Standard non-local-in-time Lagrangians in classical mechanics. Qual. Theory Dyn. Syst. 2014, 13, 149–160. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent. Comput. Appl. Math. 2014, 33, 163–179. [Google Scholar] [CrossRef]
- Dimitrijevic, D.D.; Milosevic, M. About non-standard Lagrangians in cosmology. AIP Conf. Proc. 2012, 1472, 41. [Google Scholar]
- Zhang, Y.; Zhou, X.S. Noether theorem and its inverse for nonlinear dynamical systems with non-standard Lagrangians. Nonlinear Dyn. 2016, 84, 1867–1876. [Google Scholar] [CrossRef]
- Song, J.; Zhang, Y. Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales. Chin. Phys. B 2017, 26, 201–209. [Google Scholar] [CrossRef]
- Song, J.; Zhang, Y. Noether’s theorems for dynamical systems of two kinds of non-standard Hamiltonians. Acta Mech. 2018, 229, 285–297. [Google Scholar] [CrossRef]
- Fiori, S. Extended Hamiltonian learning on Riemannian manifolds: Theoretical aspects. IEEE T. Neur. Net. Lear. 2011, 22, 687–700. [Google Scholar] [CrossRef]
- Fiori, S. Extended Hamiltonian learning on Riemannian manifolds: Numerical aspects. IEEE T. Neur. Net. Lear. 2012, 23, 7–21. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: San Diego, CA, USA, 1974. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier BV: Amsterdam, The Netherland, 2006. [Google Scholar]
- Riewe, F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 1996, 53, 1890–1899. [Google Scholar] [CrossRef]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E 1997, 55, 3581–3592. [Google Scholar] [CrossRef]
- Agrawal, O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef]
- Baleanu, D.; Trujillo, J.I. A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 1111–1115. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Konjik, S.; Pilipović, S.; Simić, S. Variational problems with fractional derivatives: Invariance conditions and Noether’s theorem. Nonlinear Anal. Theory 2009, 71, 1504–1517. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. Introduction to the Fractional Calculus of Variations; Imperial College Press: London, UK, 2012. [Google Scholar]
- Li, M. Three classes of fractional oscillators. Symmetry 2018, 10, 40. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Commun. Nonlinear Sci. Numer. Simulat. 2016, 36, 81–97. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, Y. Noethe’s theorem for fractional Birkhoffian systems of variable order. Acta Mech. 2016, 227, 2439–2449. [Google Scholar] [CrossRef]
- Meng, W.; Zeng, B.; Li, S.L. A novel fractional-order grey prediction model and its modeling error analysis. Information 2019, 10, 167. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A 2005, 14, 289–298. [Google Scholar]
- El-Nabulsi, R.A.; Torres, D.F.M. Fractional action-like variational problems. J. Math. Phys. 2008, 49, 053521. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Non-standard fractional Lagrangians. Nonlinear Dyn. 2013, 74, 381–394. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Mei, F.X. Symmetries and Invariants of Mechanical Systems; Science Press: Beijing, China, 1999. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, X.-P. Mei Symmetry and Invariants of Quasi-Fractional Dynamical Systems with Non-Standard Lagrangians. Symmetry 2019, 11, 1061. https://doi.org/10.3390/sym11081061
Zhang Y, Wang X-P. Mei Symmetry and Invariants of Quasi-Fractional Dynamical Systems with Non-Standard Lagrangians. Symmetry. 2019; 11(8):1061. https://doi.org/10.3390/sym11081061
Chicago/Turabian StyleZhang, Yi, and Xue-Ping Wang. 2019. "Mei Symmetry and Invariants of Quasi-Fractional Dynamical Systems with Non-Standard Lagrangians" Symmetry 11, no. 8: 1061. https://doi.org/10.3390/sym11081061
APA StyleZhang, Y., & Wang, X.-P. (2019). Mei Symmetry and Invariants of Quasi-Fractional Dynamical Systems with Non-Standard Lagrangians. Symmetry, 11(8), 1061. https://doi.org/10.3390/sym11081061