Possible Causes of Extreme Variation of Benzo[a]pyrene Acute Toxicity Test on Daphnia magna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Test Organism
2.3. Acute Toxicity Tests of BaP
2.4. Exposure Concentrations
2.5. Molecular Docking
2.6. MD Simulation
3. Results and Discussion
3.1. Effect of Experiment Conditions
3.2. Effect of Light
3.3. EC50 Value of BaP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, R.; Hubberstey, A.V. Benzo(a)Pyrene Exposure Causes Adaptive Changes in P53 and CYP1A Gene Expression in Brown Bullhead (Ameiurus nebulosus). Aquat. Toxicol. 2014, 156, 201–210. [Google Scholar] [CrossRef]
- Zena, R.; Speciale, A.; Calabro, C.; Calo, M.; Palombieri, D.; Saija, A.; Cimino, F.; Trombetta, D.; Lo Cascio, P. Exposure of Sea Bream (Sparus aurata) to Toxic Concentrations of Benzo[a]Pyrene: Possible Human Health Effect. Ecotoxicol. Environ. Saf. 2015, 122, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Elfawy, H.A.; Anupriya, S.; Mohanty, S.; Patel, P.; Ghosal, S.; Panda, P.K.; Das, B.; Verma, S.K.; Patnaik, S. Molecular Toxicity of Benzo(a)Pyrene Mediated by Elicited Oxidative Stress Infer Skeletal Deformities and Apoptosis in Embryonic Zebrafish. Sci. Total Environ. 2021, 789, 147989. [Google Scholar] [CrossRef] [PubMed]
- Rajasekhar, B.; Nambi, I.M.; Govindarajan, S.K. Human Health Risk Assessment of Ground Water Contaminated with Petroleum PAHs Using Monte Carlo Simulations: A Case Study of an Indian Metropolitan City. J. Environ. Manag. 2018, 205, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, Y.; Han, C.; Fang, H.; Weng, J.; Shu, X.; Pan, Y.; Ma, L. Polycyclic Aromatic Hydrocarbons in Surface Waters from the Seven Main River Basins of China: Spatial Distribution, Source Apportionment, and Potential Risk Assessment. Sci. Total Environ. 2021, 752, 141764. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Nahrgang, J.; Tollefsen, K.E. Transcriptomic Analysis Reveals Dose-Dependent Modes of Action of Benzo(a)Pyrene in Polar Cod (Boreogadus Saida). Sci. Total Environ. 2019, 653, 176–189. [Google Scholar] [CrossRef]
- Chen, C.C.; Shi, Y.; Zhu, Y.; Zeng, J.; Qian, W.; Zhou, S.; Ma, J.; Pan, K.; Jiang, Y.; Tao, Y.; et al. Combined Toxicity of Polystyrene Microplastics and Ammonium Perfluorooctanoate to Daphnia magna: Mediation of Intestinal Blockage. Water Res. 2022, 219, 118536. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Yim, B.; Kim, J.; Kim, H.; Lee, Y. Molecular Characterization of ABC Transporters in Marine Ciliate, Euplotes Crassus: Identification and Response to Cadmium and Benzo[a]Pyrene. Mar. Pollut. Bull. 2017, 124, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Pan, L.; Wang, L. Toxic Effects upon Exposure to Benzo[a]Pyrene in Juvenile White Shrimp Litopenaeus Vannamei. Environ. Toxicol. Pharmacol. 2015, 39, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Bukowska, B.; Duchnowicz, P. Molecular Mechanisms of Action of Selected Substances Involved in the Reduction of Benzo[a]Pyrene-Induced Oxidative Stress. Molecules 2022, 27, 1379. [Google Scholar] [CrossRef]
- Xue, W.L.; Warshawsky, D. Metabolic Activation of Polycyclic and Heterocyclic Aromatic Hydrocarbons and DNA Damage: A Review. Toxicol. Appl. Pharmacol. 2005, 206, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Buhler, D.R.; Williams, D.E. Enzymes Involved in Metabolism of PAH by Fshes and Other Aquatic Animals: Oxidative Enzymes (or Phase I Enzymes). In Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment; CRC Press: Boca Raton, FL, USA, 1989; pp. 151–184. [Google Scholar]
- Guo, B.; Feng, D.; Xu, Z.; Qi, P.; Yan, X. Acute Benzo[a]Pyrene Exposure Induced Oxidative Stress, Neurotoxicity and Epigenetic Change in Blood Clam Tegillarca Granosa. Sci. Rep. 2021, 11, 18744. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Verhaar, H.J.M.; Van Leeuwen, C.J.; Hermens, J.L.M. Classifying Environmental Pollutants. Chemosphere 1992, 25, 471–491. [Google Scholar] [CrossRef]
- Schmidt, S.N.; Armitage, J.M.; Arnot, J.A.; Mackay, D.; Mayer, P. Linking Algal Growth Inhibition to Chemical Activity: Excess Toxicity below 0.1% of Saturation. Chemosphere 2018, 208, 880–886. [Google Scholar] [CrossRef]
- Li, J.J.; Yue, Y.X.; Jiang, J.F.; Shi, S.J.; Wu, H.X.; Zhao, Y.H.; Che, F.F. Assessment of Toxic Mechanisms and Mode of Action to Three Different Levels of Species for 14 Antibiotics Based on Interspecies Correlation, Excess Toxicity, and QSAR. Chemosphere 2023, 317, 137795. [Google Scholar] [CrossRef]
- David, R.M.; Dakic, V.; Williams, T.D.; Winter, M.J.; Chipman, J.K. Transcriptional Responses in Neonate and Adult Daphnia magna in Relation to Relative Susceptibility to Genotoxicants. Aquat. Toxicol. 2011, 104, 192–204. [Google Scholar] [CrossRef]
- Bundschuh, M.; Hahn, T.; Ehrlich, B.; Hoeltge, S.; Kreuzig, R.; Schulz, R. Acute Toxicity and Environmental Risks of Five Veterinary Pharmaceuticals for Aquatic Macroinvertebrates. Bull. Environ. Contam. Toxicol. 2016, 96, 139–143. [Google Scholar] [CrossRef]
- OECD Test No. 202: Daphnia Sp. Acute Immobilisation Test. In OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems; OECD: Paris, France, 2004; Section 2; pp. 1–12.
- Wernersson, A.S.; Dave, G. Phototoxicity Identification by Solid Phase Extraction and Photoinduced Toxicity to Daphnia magna. Arch. Environ. Contam. Toxicol. 1997, 32, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Lampi, M.A.; Gurska, J.; McDonald, K.I.C.; Xie, F.; Huang, X.; Dixon, D.G.; Greenberg, B.M. Photoinduced Toxicity of Polycyclic Aromatic Hydrocarbons to Daphnia magna: Ultraviolet-Mediated Effects and the Toxicity of Polycyclic Aromatic Hydrocarbon Photoproducts. Environ. Toxicol. Chem. 2006, 25, 1079–1087. [Google Scholar] [CrossRef]
- Ha, M.; Choi, J. Effects of Environmental Contaminants on Hemoglobin Gene Expression in Daphnia magna: A Potential Biomarker for Freshwater Quality Monitoring. Arch. Environ. Contam. Toxicol. 2009, 57, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yan, Z.; Yi, X.; Lin, Y.; Ni, J.; Gao, X.; Liu, Z.; Shi, X. Comparison of Species Sensitivity Distributions Constructed with Predicted Acute Toxicity Data from Interspecies Correlation Estimation Models and Measured Acute Data for Benzo[a]Pyrene. Chemosphere 2016, 144, 2183–2188. [Google Scholar] [CrossRef]
- Atienzar, F.A.; Conradi, M.; Evenden, A.J.; Jha, A.N.; Depledge, M.H. Qualitative Assessment of Genotoxicity Using Random Amplified Polymorphic DNA: Comparison of Genomic Template Stability with Key Fitness Parameters in Daphnia magna Exposed to Benzo[a]Pyrene. Environ. Toxicol. Chem. 1999, 18, 2275–2282. [Google Scholar] [CrossRef]
- De Bruyn, W.J.; Clark, C.D.; Ottelle, K.; Aiona, P. Photochemical Degradation of Phenanthrene as a Function of Natural Water Variables Modeling Freshwater to Marine Environments. Mar. Pollut. Bull. 2012, 64, 532–538. [Google Scholar] [CrossRef]
- Santana, A.M.; Arif, S.; Evteyeva, K.; Barbosa, F.; Campiglia, A.D. Investigation of the Effects of Dioctyl Sulfosuccinate on the Photodegradation of Benzo[a]Pyrene in Aqueous Solutions under Various Wavelength Regimes. Molecules 2023, 28, 5797. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.; Lharidon, J. Effects of Light on the Cytotoxicity and Genotoxicity of Benzo(a)Pyrene and an Oil Refinery Effluent in the Newt. Environ. Mol. Mutagen. 1994, 24, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Blazquez-Castro, A.; Westberg, M.; Bregnhoj, M.; Breitenbach, T.; Mogensen, D.J.; Etzerodt, M.; Ogilby, P.R. Light-Initiated Oxidative Stress; Sies, H., Ed.; Academic Press Ltd.-Elsevier Science Ltd.: London, UK, 2020; pp. 363–388. ISBN 978-0-12-819696-0. [Google Scholar]
- Zeise, L.; Crouch, E.; Wilson, R. On the Relationship of Toxicity and Carcinogenicity-Reply. RISK Anal. 1985, 5, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Sklarsova, B.; Bednarikova, A.; Kolek, E.; Simko, P. Factors Affecting the Rate of Benzo[a]Pyrene Decomposition in Non-Polar System—A Model Study. J. Food Nutr. Res. 2010, 49, 165–168. [Google Scholar]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-Hydroxy-2′-Deoxyguanosine (8-OHdG): A Critical Biomarker of Oxidative Stress and Carcinogenesis. J. Environ. Sci. Health Part C-Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 120–139. [Google Scholar] [CrossRef]
- Silva, C.; Oliveira, C.; Gravato, C.; Almeida, J.R. Behaviour and Biomarkers as Tools to Assess the Acute Toxicity of Benzo(a)Pyrene in the Common Prawn Palaemon Serratus. Mar. Environ. Res. 2013, 90, 39–46. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.-Y.; Yang, Y.-T.; Zhou, J.-X.; Peng, Z.-X.; Ni, H.-G. Possible Causes of Extreme Variation of Benzo[a]pyrene Acute Toxicity Test on Daphnia magna. Toxics 2024, 12, 714. https://doi.org/10.3390/toxics12100714
Zheng Z-Y, Yang Y-T, Zhou J-X, Peng Z-X, Ni H-G. Possible Causes of Extreme Variation of Benzo[a]pyrene Acute Toxicity Test on Daphnia magna. Toxics. 2024; 12(10):714. https://doi.org/10.3390/toxics12100714
Chicago/Turabian StyleZheng, Zi-Yi, Yu-Ting Yang, Jing-Xuan Zhou, Zhao-Xing Peng, and Hong-Gang Ni. 2024. "Possible Causes of Extreme Variation of Benzo[a]pyrene Acute Toxicity Test on Daphnia magna" Toxics 12, no. 10: 714. https://doi.org/10.3390/toxics12100714