The Biochemical Toxin Arsenal from Ant Venoms
Abstract
:1. Introduction
2. Toxins from Non-Stinging Ants
3. Peptides
3.1. Ant Venom Peptides
3.1.1. Cytolytic Peptides
3.1.2. Neurotoxic Peptides
3.1.3. Uncharacterized Peptides
3.2. Proposed Rational Nomenclature System for Ant Venom Peptides
Subfamily | Generic Toxin Name | Toxin Abbreviation |
---|---|---|
Agroecomyrmecinae | Agroecomyrmecitoxin | AGRTX |
Amblyoponerinae | Amblyotoxin | ABTX |
Dorylinae | Dorylitoxin | DRTX |
Ectatomminae | Ectatotoxin | ECTX |
Heteroponerinae | Heteroponeritoxin | HETX |
Leptanilinae | Leptanilitoxin | LETX |
Martialinae | Martialitoxin | MATX |
Myrmeciinae | Myrmeciitoxin | MIITX |
Myrmicinae | Myrmicitoxin | MYRTX |
Paraponerinae | Paraponeritoxin | PPOTX |
Ponerinae | Poneritoxin | PONTX |
Proceratiinae | Proceratoxin | PROTX |
Pseudomyrmecinae | Pseudomyrmecitoxin | PSDTX |
- The toxin name should begin with a Greek letter prefix denoting the biological activity or molecular target (if known) of the peptide; see King et al. for a summary [75]. Where the target is not known the toxin should have a prefix of “U”. As only a few pharmacological activities have been determined to date this will be an ongoing process. Haemolytic, cytolytic or antibacterial peptides that have activity against bacteria, fungus, insect or vertebrate cells are denoted by the Greek letter “M” to denote a general action to cause membrane perturbation. Neurotoxic peptides (i.e., poneratoxin and ectatomin) which target voltage-gated sodium or calcium ion channels have been identified by the prefixes “δ” and “ω”, respectively.
- The Greek letter prefix will be followed by a generic toxin name. As all ants are grouped into a single family (Formicidae), we propose to slightly modify King′s nomenclature which uses family names and use the 13 extant stinging subfamily names instead (Figure 1A). This will allow the toxins to be compared and will highlight the evolutionary relationship between different toxins. A list of the proposed generic toxin names and their corresponding abbreviations is proposed in Table 1 for all extant subfamilies of stinging ants. These names and their abbreviations have been carefully chosen so that they do not overlap with current toxins from other venomous animals nor other chemical groups. NB: non-stinging ants are thought to contain mostly non-peptidic venom components, and are therefore not included.
- The toxin name is then followed by an uppercase letter that indicates the genus of the ant and a lowercase letter which identifies the species of the ant from which it was isolated. An additional one or two lowercase letters may be required to distinguish species with the same first letters. Due to several taxonomic revisions concerning ants, their species names are often subject to modifications; therefore, all ant venom studies should follow the world′s largest online ant database AntCat [6] when defining the most current species name.
- Finally, an alpha-numerical code will be used to separate different structural classes of peptides based on their molecular scaffold and amino acid sequences. An Arabic numeral will be used to distinguish different toxins from the same species with little amino acid homology or different three-dimensional structures. A lowercase letter will also be added in order to distinguish isotoxins. The isotoxins are named based on the sequence alignment analyses presented in the review of Aili et al. [29]. The definition of isotoxin groups by Olivera et al. [77] will be used to distinguish isotoxins. Toxins from the same ant species will be classified in the same isotoxin group when there is ≥ 50% similarity in molecular size, biological function as well as amino acid sequence.
Species (Subfamily) | Original Toxin Name | Proposed Toxin Name | Abbreviation | Reference |
---|---|---|---|---|
Paraponera clavata (Paraponerinae) | Poneratoxin | δ-Paraponeritoxin-Pc1a | δ-PPOTX-Pc1a | [57] |
Neoponera goeldii (Ponerinae) | Ponericin G1 | M-poneritoxin-Ng3a | M-PONTX-Ng3a | [12] |
Ponericin G2 | U1-poneritoxin-Ng3b | U1-PONTX-Ng3b | [12] | |
Ponericin G3 | M-poneritoxin-Ng3c | M-PONTX-Ng3c | [12] | |
Ponericin G4 | M-poneritoxin-Ng3d | M-PONTX-Ng3d | [12] | |
Ponericin G5 | U1-poneritoxin-Ng3e | U1-PONTX-Ng3e | [12] | |
Ponericin G6 | M-poneritoxin-Ng3f | M-PONTX-Ng3f | [12] | |
Ponericin G7 | U1-poneritoxin-Ng3g | U1-PONTX-Ng3g | [12] | |
Ponericin L1 | U1-poneritoxin-Ng2a | U1-PONTX-Ng2a | [12] | |
Ponericin L2 | M-poneritoxin-Ng2b | M-PONTX-Ng2b | [12] | |
Ponericin W1 | M-poneritoxin-Ng1a | M-PONTX-Ng1a | [12] | |
Ponericin W2 | U1-poneritoxin-Ng1b | U1-PONTX-Ng1b | [12] | |
Ponericin W3 | M-poneritoxin-Ng1c | M-PONTX-Ng1c | [12] | |
Ponericin W4 | M-poneritoxin-Ng1d | M-PONTX-Ng1d | [12] | |
Ponericin W5 | M-poneritoxin-Ng1e | M-PONTX-Ng1e | [12] | |
Ponericin W6 | M-poneritoxin-Ng1f | M-PONTX-Ng1f | [12] | |
Neoponera inversa (Ponerinae) | Ponericin Pi I1 | U1-poneritoxin-Ni3a | U1-PONTX-Ni3a | [38] |
Ponericin Pi I2 | U1-poneritoxin-Ni3b | U1-PONTX-Ni3b | [38] | |
Ponericin Pi I3 | U1-poneritoxin-Ni3c | U1-PONTX-Ni3c | [38] | |
Ponericin Pi I4 | U1-poneritoxin-Ni3d | U1-PONTX-Ni3d | [38] | |
Ponericin Pi II1 | U1-poneritoxin-Ni1a | U1-PONTX-Ni1a | [38] | |
Ponericin Pi II2 | U1-poneritoxin-Ni1b | U1-PONTX-Ni1b | [38] | |
Ponericin Pi III1 | U1-poneritoxin-Ni2a | U1-PONTX-Ni2a | [38] | |
Neoponera apicalis (Ponerinae) | Ponericin Pa I1 | U1-poneritoxin-Na3a | U1-PONTX-Na3a | [38] |
Ponericin Pa I2 | U1-poneritoxin-Na3b | U1-PONTX-Na3b | [38] | |
Ponericin Pa II 1 | U1-poneritoxin-Na1a | U1-PONTX-Na1a | [38] | |
Ponericin Pa II 2 | U1-poneritoxin-Na1b | U1-PONTX-Na1b | [38] | |
Ponericin Pa IV1 | U1-poneritoxin-Na2a | U1-PONTX-Na2a | [38] | |
Dinoponera australis (Ponerinae) | Dinoponeratoxin Da-1039 | U1-poneritoxin-Da1a | U1-PONTX-Da1a | [39] |
Dinoponeratoxin Da-1585 | U1-poneritoxin-Da3a | U1-PONTX-Da3a | [39] | |
Dinoponeratoxin Da-1837 | U1-poneritoxin-Da2a | U1-PONTX-Da2a | [39] | |
Dinoponeratoxin Da-2501 | U1-poneritoxin-Da3b | U1-PONTX-Da3b | [39] | |
Dinoponeratoxin Da-3105 | U1-poneritoxin-Da4a | U1-PONTX-Da4a | [39] | |
Dinoponeratoxin Da-3177 | M-poneritoxin-Da4b | M-PONTX-Da4b | [39] | |
Dinoponera quadriceps (Ponerinae) | Dinoponeratoxin Dq-762 | U1-poneritoxin-Dq1a | U1-PONTX-Dq1a | [37] |
Dinoponeratoxin Dq-987 | U1-poneritoxin-Dq1b | U1-PONTX-Dq1b | [37] | |
Dinoponeratoxin Dq-1031 | U1-poneritoxin-Dq1c | U1-PONTX-Dq1c | [37] | |
Dinoponeratoxin Dq-1062 | U1-poneritoxin-Dq2a | U1-PONTX-Dq2a | [37] | |
Dinoponeratoxin Dq-1133 | U1-poneritoxin-Dq2b | U1-PONTX-Dq2b | [37] | |
Dinoponeratoxin Dq-1289 | U1-poneritoxin-Dq2c | U1-PONTX-Dq2c | [37] | |
Dinoponeratoxin Dq-1839 | U1-poneritoxin-Dq3a | U1-PONTX-Dq3a | [37] | |
Dinoponeratoxin Dq-1840 | U1-poneritoxin-Dq3b | U1-PONTX-Dq3b | [37] | |
Dinoponeratoxin Dq-1856 | U1-poneritoxin-Dq3c | U1-PONTX-Dq3c | [37] | |
Dinoponeratoxin Dq-1897 | U1-poneritoxin-Dq3d | U1-PONTX-Dq3d | [37] | |
Dinoponeratoxin Dq-1984 | U1-poneritoxin-Dq3e | U1-PONTX-Dq3e | [37] | |
Dinoponeratoxin Dq-3104 | M-poneritoxin-Dq4a | M-PONTX-Dq4a | [37] | |
Dinoponeratoxin Dq-3162 | M-poneritoxin-Dq4b | M-PONTX-Dq4b | [37] | |
Dinoponeratoxin Dq-3163 | U1-poneritoxin-Dq4c | U1-PONTX-Dq4c | [37] | |
Dinoponeratoxin Dq-3178 | U1-poneritoxin-Dq4d | U1-PONTX-Dq4d | [37] | |
Dinoponeratoxin ICK-like | U1-poneritoxin-Dq5a | U1-PONTX-Dq5a | [69] |
Species (Subfamily) | Original Toxin Name | Proposed Toxin Name | Abbreviation | Reference |
---|---|---|---|---|
Tetramorium bicarinatum (Myrmicinae) | Bicarinalin 1 | M-myrmicitoxin-Tb1a | M-MYRTX-Tb1a | [40] |
P 17 | U1-myrmicitoxin-Tb2a | U1-MYRTX-Tb2a | [40] | |
Ectatomma tuberculatum (Ectatomminae) | Ectatomin-Et1 | ω/M-ectatotoxin-Et1a | ω/M-ECTX-Et1a | [62] |
Ectatomin-Et2 | U1-ectatotoxin-Et1b | U1-ECTX-Et1b | [78] | |
Ectatomma brunneum (Ectatomminae) | Ectatomin-Eq1 | U1-ectatotoxin-Eb1a | U1-ECTX-Eb1a | [78] |
Ectatomin-Eq2 | U1-ectatotoxin-Eb1b | U1-ECTX-Eb1b | [78] | |
Ponericin-Q42 | M-ectatotoxin-Eb2a | M-ECTX-Eb2a | [45] | |
Ponericin-Q49 | M-ectatotoxin-Eb2b | M-ECTX-Eb2b | [45] | |
Ponericin-Q50 | M-ectatotoxin-Eb2c | M-ECTX-Eb2c | [45] | |
Pseudomyrmex triplarinus (Pseudomyrmecinae) | Myrmexin I | U1-pseudomyrmecitoxin-Pt1a | U1-PSDTX-Pt1a | [65] |
Myrmexin II | U1-pseudomyrmecitoxin-Pt1b | U1-PSDTX-Pt1b | [65] | |
Myrmexin III | U1-pseudomyrmecitoxin-Pt1c | U1-PSDTX-Pt1c | [65] | |
Myrmexin IV | U1-pseudomyrmecitoxin-Pt1d | U1-PSDTX-Pt1d | [65] | |
Myrmexin V | U1-pseudomyrmecitoxin-Pt1e | U1-PSDTX-Pt1e | [65] | |
Myrmexin VI | U1-pseudomyrmecitoxin-Pt1f | U1-PSDTX-Pt1f | [65] | |
Myrmecia pilosula (Myrmeciinae) | Myr p 157–112 | M-myrmeciitoxin-Mp1a | M-MIITX-Mp1a | [79] |
Myr p 1 57–112 (Ile5) | M-myrmeciitoxin-Mp1b | M-MIITX-Mp1b | [79] | |
Myr p 1 65–112 | M-myrmeciitoxin-Mp1c | M-MIITX-Mp1c | [79] | |
Myr p 1 68–112 | M-myrmeciitoxin-Mp1d | M-MIITX-Mp1d | [79] | |
Myr p 1 71–112 | M-myrmeciitoxin-Mp1e | M-MIITX-Mp1e | [79] | |
Myr p 1 86–112 | U1-myrmeciitoxin-Mp1f | U1-MIITX-Mp1f | [79] | |
Pilosulin 3a | M-myrmeciitoxin-Mp2a | M-MIITX-Mp2a | [41] | |
Pilosulin 3b | M-myrmeciitoxin-Mp2b | M-MIITX-Mp2b | [41] | |
Pilosulin 4 | M-myrmeciitoxin-Mp3a | M-MIITX-Mp3a | [41] | |
Pilosulin 5 | M-myrmeciitoxin-Mp4a | M-MIITX-Mp4a | [42] |
4. Ant Venom Proteins
4.1. Toxic Venom Proteins
4.1.1. Neurotoxic Proteins
4.1.2. Proteins that Promote Venom Diffusion or Modulate Victim Defense Mechanisms
4.1.3. Proteins that Promote Tissue Damage or Cause Inflammation
4.1.4. Allergens
4.1.5. Antimicrobial Proteins
4.2. Identified Proteins with Unknown Functions
5. Ant Alkaloids
Subfamily | Ant Genus | Structural Family | Trivial Name | Reference |
---|---|---|---|---|
Myrmicinae | Atta Acromyrmex | Pyrroles | Trail pheromone | [132] |
Messor | Pyridines | Anabaseine Anabasine | [133,134] | |
Aphaenogaster | Pyridines | Anabaseine | [135] | |
Megalomyrmex | Pyrrolidines Pyrrolines Pyrrolizidines | - | [136] | |
Monomorium | Farnesylamine Pyrrolidines Indolizidines | Monomorines (trail pheromones) | [137] | |
Myrmicaria | Polycyclic indolizidines Pyrrolo-indolizidines | Myrmicarins | [138] | |
Solenopsis | Piperidine and piperideine Dialkylpyrrolidines and Pirrolines Indolizidines | Solenopsins Histrionicotoxins Gephyrotoxin | [139,140,141] | |
Carebarella 1 | Pyrrolidines | Histrionicotoxins Gephyrotoxin | [142] | |
Leptothorax Harpagoxenus | Alkylpyrrolidines | – | [143] | |
Formicinae | Nylanderia Brachymyrmex | Alkyl-hydroxyl-indolizidines | Pumiliotoxins 2 | [144] |
Pseudomyrmecinae | Tetraponera | Pyrimidines | Tetraponerines | [145] |
5.1. Production of Alkaloids in Ant Venoms
5.2. Solenopsins: A Case Study of Ant Venom Alkaloids
5.2.1. Solenopsin Chemistry
5.2.2. Solenopsin Pharmacology
6. Other Toxins
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Van Emden, H.F. Subclass pterygota, division endopterygota, order Hymenoptera (Sawflies, Ants, Bees and Wasps) 120,000 described species. In Handbook of Agricultural Entomology; John Wiley & Sons: Oxford, UK, 2013; pp. 193–220. [Google Scholar]
- Robertson, P.L. A morphological and functional study of the venom apparatus in representatives of some major groups of Hymenoptera. Aust J. Zool. 1968, 16, 133–166. [Google Scholar] [CrossRef]
- Hölldobler, B.; Wilson, E.-O. The Ants; Harvard University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Wilson, E.O. Success and Dominance in Ecosystems: The Case of the Social Insects; Ecology Institute: Oldendorf/Luhe, Germany, 1990. [Google Scholar]
- Bolton, B. An online catalog of the ants of the world. Available online: http://antcat.org (accessed on 1 October 2015).
- Brady, S.; Fisher, B.; Schultz, T.; Ward, P. The rise of army ants and their relatives: diversification of specialized predatory doryline ants. BMC Evol. Biol. 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.S. Taxonomy, phylogenetics and evolution. In Ant ecology; Lach, L., Parr, C.L., Abott, K.L., Eds.; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Ward, P.S. Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: formicidae). Zootaxa 2007, 1668, 549–563. [Google Scholar]
- Cerdá, X.; Dejean, A. Predation by ants on arthropods and other animals. In Predation in the Hymenoptera: an evolutionary perspective; Polidori, C., Ed.; TransWorld Research Network: Kerala, India, 2011; pp. 39–78. [Google Scholar]
- Orivel, J.; Dejean, A. Comparative effect of the venoms of ants of the genus Pachycondyla (Hymenoptera: Ponerinae). Toxicon 2001, 39, 195–201. [Google Scholar] [CrossRef]
- Orivel, J.; Redeker, V.; Le Caer, J.P.; Krier, F.; Revol-Junelles, A.M.; Longeon, A.; Chaffotte, A.; Dejean, A.; Rossier, J. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J. Biol. Chem. 2001, 276, 17823–17829. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.O. Biochemistry of insect venoms. Annu. Rev. Entomol. 1982, 27, 339–368. [Google Scholar] [CrossRef] [PubMed]
- Frederickson, M.E.; Gordon, D.M. The devil to pay: A cost of mutualism with Myrmelachista schumanni ants in ‘devil's gardens’ is increased herbivory on Duroia hirsuta trees. Proc. Roy. Soc. Lond. B 2007, 274, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.D.; Jungnickel, H.; Keegans, S.J.; do Nascimento, R.R.; Billen, J.; Gobin, B.; Ito, F. Comparative survey of abdominal gland secretions of the ant subfamily Ponerinae. J. Chem. Ecol. 2003, 29, 95–114. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.O. Chemistry, pharmacology and chemical ecology of ant venoms. In Venoms of the Hymenoptera: Biochemical, Pharmacological and Behavioural Aspects; Piek, T., Ed.; Academic Press: London, UK, 1986; pp. 425–508. [Google Scholar]
- Brand, J.M. Fire ant venom alkaloids: Their contribution to chemosystematics and biochemical evolution. Biochem. Syst. Ecol. 1978, 6, 337–340. [Google Scholar] [CrossRef]
- Schmidt, J.O.; Blum, M.S. The biochemical constituents of the venom of the harvester ant, Pogonomyrmex badius. Comp. Biochem. Physiol. C 1978, 61C, 239–247. [Google Scholar] [CrossRef]
- Touchard, A.; Dauvois, M.; Arguel, M.-J.; Petitclerc, F.; Leblanc, M.; Dejean, A.; Orivel, J.; Nicholson, G.M.; Escoubas, P. Elucidation of the unexplored biodiversity of ant venom peptidomes via MALDI-TOF mass spectrometry and its application for chemotaxonomy. J. Proteomics 2014, 105, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.G.P. Venom toxins of fire ants. In Venom genomics and proteomics; Gopalakrishnakone, P., Calvete, J.J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 1–16. [Google Scholar]
- Fox, E.G.P.; Pianaro, A.; Solis, D.R.; Delabie, J.H.C.; Vairo, B.C.; Machado, E.d.A.; Bueno, O.C. Intraspecific and intracolonial variation in the profile of venom alkaloids and cuticular hydrocarbons of the fire ant Solenopsis saevissima Smith (Hymenoptera: Formicidae). Psyche: Psyche: J. Entomol. 2012, 2012, 1–10. [Google Scholar]
- Schmidt, J.O. Ant venoms: A study of venom diversity. In Pesticide and Venom Neurotoxicity; Shankland, D.L., Hollingworth, R.M., Smyth, T., Jr., Eds.; Springer: New York, NY, USA, 1978; pp. 247–263. [Google Scholar]
- Attygalle, A.B.; Morgan, E.D. Chemicals from the glands of ants. Chem. Soc. Rev. 1984, 13, 245–278. [Google Scholar] [CrossRef]
- Billen, J.; Gobin, B. Trail following in army ants (Hymenoptera, Formicidae). Neth. J. Zool. 1996, 46, 272–280. [Google Scholar] [CrossRef]
- Tragust, S.; Mitteregger, B.; Barone, V.; Konrad, M.; Ugelvig, L.V.; Cremer, S. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr. Biol. 2013, 23, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Beard, R.L. Insect toxins and venoms. Annu. Rev. Entomol. 1963, 8, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hefetz, A.; Blum, M.S. Biosynthesis of formic acid by the poison glands of formicine ants. Biochim. Biophys. Acta 1978, 543, 484–496. [Google Scholar] [CrossRef]
- LeBrun, E.G.; Jones, N.T.; Gilbert, L.E. Chemical warfare among invaders: A detoxification interaction facilitates an ant invasion. Science 2014, 343, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Aili, S.R.; Touchard, A.; Escoubas, P.; Padula, M.P.; Orivel, J.; Dejean, A.; Nicholson, G.M. Diversity of peptide toxins from stinging ant venoms. Toxicon 2014, 92, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.G.; Schultz, T.R.; Fisher, B.L.; Ward, P.S. Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc. Natl. Acad. Sci. 2006, 103, 18172–18177. [Google Scholar] [CrossRef] [PubMed]
- Frederickson, M.E.; Greene, M.J.; Gordon, D.M. Ecology: ‘Devil's gardens’ bedevilled by ants. Nature 2005, 437, 495–496. [Google Scholar] [CrossRef] [PubMed]
- King, G.F.; Hardy, M.C. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 2013, 58, 475–496. [Google Scholar] [CrossRef] [PubMed]
- Possani, L.V.D.; Rodríguez de la Vega, R. Scorpion venom peptides. In Handbook of Biologically Active Peptides; Kastin, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 339–354. [Google Scholar]
- Rodríguez de la Vega, R.C.; Schwartz, E.F.; Possani, L.D. Mining on scorpion venom biodiversity. Toxicon 2010, 56, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Terlau, H.; Olivera, B.M. Conus venoms: A rich source of novel ion channel-targeted peptides. Physiol. Rev. 2004, 84, 41–68. [Google Scholar] [CrossRef] [PubMed]
- Touchard, A.; Koh, J.M.S.; Aili, S.R.; Dejean, A.; Nicholson, G.M.; Orivel, J.; Escoubas, P. The complexity and structural diversity of ant venom peptidomes is revealed by mass spectrometry profiling. Rapid Commun. Mass Spectrom. 2015, 29, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Cologna, C.T.; Cardoso, J.D.S.; Jourdan, E.; Degueldre, M.; Upert, G.; Gilles, N.; Uetanabaro, A.P.T.; Costa Neto, E.M.; Thonart, P.; de Pauw, E. Peptidomic comparison and characterization of the major components of the venom of the giant ant Dinoponera quadriceps collected in four different areas of Brazil. J. Proteomics 2013, 94, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Orivel, J. L'adaptation à la vie arboricole de la fourmi Pachycondyla goeldii (Hymenoptera: ponerinae). Ph.D. Thesis, Université de Paris XIII, Paris, France, 2000. Available online: http://cat.inist.fr/?aModele=afficheN&cpsidt=200149 (accessed online: 19 January 2016) . [Google Scholar]
- Johnson, S.R.; Copello, J.A.; Evans, M.S.; Suarez, A.V. A biochemical characterization of the major peptides from the venom of the giant Neotropical hunting ant Dinoponera australis. Toxicon 2010, 55, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Rifflet, A.; Gavalda, S.; Téné, N.; Orivel, J.; Leprince, J.; Guilhaudis, L.; Génin, E.; Vétillard, A.; Treilhou, M. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum. Peptides 2012, 38, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, H.; Akagi, M.; Imai, H.T.; Taylor, R.W.; Kubo, T. Molecular cloning and biological characterization of novel antimicrobial peptides, pilosulin 3 and pilosulin 4, from a species of the Australian ant genus Myrmecia. Arch. Biochem. Biophys. 2004, 428, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, H.; Akagi, M.; Imai, H.T.; Taylor, R.W.; Wiese, M.D.; Davies, N.W.; Kubo, T. Pilosulin 5, a novel histamine-releasing peptide of the Australian ant, Myrmecia pilosula (Jack Jumper Ant). Arch. Biochem. Biophys. 2008, 477, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Wiese, M.D.; Chataway, T.K.; Davies, N.W.; Milne, R.W.; Brown, S.G.; Gai, W.P.; Heddle, R.J. Proteomic analysis of Myrmecia pilosula (jack jumper) ant venom. Toxicon 2006, 47, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Wanandy, T.; Gueven, N.; Davies, N.W.; Brown, S.G.A.; Wiese, M.D. Pilosulins: A review of the structure and mode of action of venom peptides from an Australian ant Myrmecia pilosula. Toxicon 2015, 98, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Pluzhnikov, K.A.; Kozlov, S.A.; Vassilevski, A.A.; Vorontsova, O.V.; Feofanov, A.V.; Grishin, E.V. Linear antimicrobial peptides from Ectatomma quadridens ant venom. Biochimie 2014, 107, 211–215. [Google Scholar] [CrossRef] [PubMed]
- King, M.A.; Wu, Q.X.; Donovan, G.R.; Baldo, B.A. Flow cytometric analysis of cell killing by the jumper ant venom peptide pilosulin 1. Cytometry 1998, 32, 268–273. [Google Scholar] [CrossRef]
- Wu, Q.X.; King, M.A.; Donovan, G.R.; Alewood, D.; Alewood, P.; Sawyer, W.H.; Baldo, B.A. Cytotoxicity of pilosulin 1, a peptide from the venom of the jumper ant Myrmecia pilosula. Biochim. Biophys. Acta 1998, 1425, 74–80. [Google Scholar] [CrossRef]
- Kuhn-Nentwig, L. Antimicrobial and cytolytic peptides of venomous arthropods. Cell. Mol. Life Sci. 2003, 60, 2651–2668. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-C.; Wang, S.-X.; Zhu, Y.; Zhu, S.-Y.; Li, W.-X. Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides 2004, 25, 143–150. [Google Scholar] [CrossRef]
- Kozlov, S.A.; Vassilevski, A.A.; Feofanov, A.V.; Surovoy, A.Y.; Karpunin, D.V.; Grishin, E.V. Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) thatexemplify biomolecular diversity. J. Biol. Chem. 2006, 281, 20983–20992. [Google Scholar] [CrossRef] [PubMed]
- Kuzmenkov, A.I.; Fedorova, I.M.; Vassilevski, A.A.; Grishin, E.V. Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments. Biochim. Biophys. Acta 2013, 1828, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Vassilevski, A.; Kozlov, S.; Samsonova, O.; Egorova, N.; Karpunin, D.; Pluzhnikov, K.; Feofanov, A.; Grishin, E. Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem. J. 2008, 411, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Cremer, S.; Armitage, S.A.O.; Schmid-Hempel, P. Social immunity. Curr. Biol. 2007, 17, R693–R702. [Google Scholar] [CrossRef] [PubMed]
- Turillazzi, S.; Mastrobuoni, G.; Dani, F.R.; Moneti, G.; Pieraccini, G.; la Marca, G.; Bartolucci, G.; Perito, B.; Lambardi, D.; Cavallini, V.; et al. Dominulin A and B: Two new antibacterial peptides identified on the cuticle and in the venom of the social paper wasp Polistes dominulus using MALDI-TOF, MALDI-TOF/TOF, and ESI-ion trap. J. Am. Soc. Mass Spectrom. 2006, 17, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, G.M. Spider venom peptides. In Handbook of biologically active peptides; Kastin, A., Ed.; Elsevier: San Diego, CA, USA, 2006; pp. 461–472. [Google Scholar]
- Maschwitz, U.; Hahn, M.; Schönegge, P. Paralysis of prey in ponerine ants. Naturwissenschaften 1979, 66, 213–214. [Google Scholar] [CrossRef]
- Piek, T.; Duval, A.; Hue, B.; Karst, H.; Lapied, B.; Mantel, P.; Nakajima, T.; Pelhate, M.; Schmidt, J.O. Poneratoxin, a novel peptide neurotoxin from the venom of the ant, Paraponera clavata. Comp. Biochem. Physiol. B.-Biochem. Mol. Biol. 1991, 99, 487–495. [Google Scholar] [CrossRef]
- Piek, T.; Hue, B.; Mantel, P.; Nakajima, T.; Schmidt, J.O. Pharmacological characterization and chemical fractionation of the venom of the ponerine ant, Paraponera clavata. Comp. Biochem. Physiol. B.-Biochem. Mol. Biol. 1991, 99, 481–486. [Google Scholar] [CrossRef]
- Duval, A.; Malecot, C.O.; Pelhate, M.; Piek, T. Poneratoxin, a new toxin from an ant venom, reveals an interconversion between two gating modes of the Na channels in frog skeletal muscle fibres. Pflugers Arch. 1992, 420, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Hendrich, A.B.; Mozrzymas, J.W.; Konopinska, D.; Scuka, M. The effect of poneratoxin on neuromuscular transmission in the rat diaphragm. Cell. Mol. Biol. Lett. 2002, 7, 195–202. [Google Scholar] [PubMed]
- Szolajska, E.; Poznanski, J.; Ferber, M.L.; Michalik, J.; Gout, E.; Fender, P.; Bailly, I.; Dublet, B.; Chroboczek, J. Poneratoxin, a neurotoxin from ant venom. Structure and expression in insect cells and construction of a bio-insecticide. Eur. J. Biochem. 2004, 271, 2127–2136. [Google Scholar] [CrossRef] [PubMed]
- Pluzhnikov, K.A.; Nol'de, D.E.; Tertyshnikova, S.M.; Sukhanov, S.V.; Sobol, A.G.; Torgov, M.; Filippov, A.K.; Arsen'ev, A.S.; Grishin, E.V. Structure activity study of the basic toxic component of venom from the ant Ectatomma tuberculatum. Bioorg. Khim. 1994, 20, 857–871. [Google Scholar]
- Arseniev, A.S.; Pluzhnikov, K.A.; Nolde, D.E.; Sobol, A.G.; Torgov, M.; Sukhanov, S.V.; Grishin, E.V. Toxic principle of selva ant venom is a pore-forming protein transformer. FEBS Lett. 1994, 347, 112–116. [Google Scholar] [CrossRef]
- Pluzhnikov, K.; Nosyreva, E.; Shevchenko, L.; Kokoz, Y.; Schmalz, D.; Hucho, F.; Grishin, E. Analysis of ectatomin action on cell membranes. Eur. J. Biochem. 1999, 262, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Hink, W.F. Isolation and characterization of myrmexins, six isoforms of venom proteins with anti-inflammatory activity from the tropical ant, Pseudomyrmex triplarinus. Toxicon 2000, 38, 1403–1413. [Google Scholar] [CrossRef]
- Touchard, A.; Labrière, N.; Roux, O.; Petitclerc, F.; Orivel, J.; Escoubas, P.; Koh, J.; Nicholson, G.M.; Dejean, A. Venom toxicity and composition in three Pseudomyrmex ant species having different nesting modes. Toxicon 2014, 88, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Craik, D.J.; Daly, N.L.; Waine, C. The cystine knot motif in toxins and implications for drug design. Toxicon 2001, 39, 43–60. [Google Scholar] [CrossRef]
- Herzig, V.; King, G.F. The cystine knot is responsible for the exceptional stability of the insecticidal spider toxin ω-Hexatoxin-Hv1a. Toxins 2015, 7, 4366–4380. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.F.C.; Huang, C.; Chong, C.M.; Leung, S.W.; Prieto-da-Silva, Á.R.B.; Havt, A.; Quinet, Y.P.; Martins, A.M.C.; Lee, S.M.Y.; Rádis-Baptista, G. Transcriptome analysis in venom gland of the predatory giant ant Dinoponera quadriceps: Insights into the polypeptide toxin arsenal of hymenopterans. PLoS One 2014, 9. [Google Scholar] [CrossRef]
- Lavergne, V.; Harliwong, I.; Jones, A.; Miller, D.; Taft, R.J.; Alewood, P.F. Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks. Proc. Natl. Acad. Sci. USA 2015, 112, E3782–E3791. [Google Scholar] [CrossRef] [PubMed]
- Escoubas, P.; Quinton, L.; Nicholson, G.M. Venomics: Unravelling the complexity of animal venoms with mass spectrometry. J. Mass Spectrom. 2008, 43, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Von Reumont, B.; Campbell, L.; Jenner, R. Quo Vadis Venomics? A roadmap to neglected venomous invertebrates. Toxins 2014, 6, 3488–3551. [Google Scholar] [CrossRef] [PubMed]
- Donovan, G.R.; Street, M.D.; Baldo, B.A.; Alewood, D.; Alewood, P.; Sutherland, S. Identification of an IgE-binding determinant of the major allergen Myr pI from the venom of the Australian jumper ant Myrmecia pilosula. Biochim. Biophys. Acta 1994, 1204, 48–52. [Google Scholar] [CrossRef]
- Wiese, M.D.; Brown, S.G.A.; Chataway, T.K.; Davies, N.W.; Milne, R.W.; Aulfrey, S.J.; Heddle, R.J. Myrmecia pilosula (Jack Jumper) ant venom: Identification of allergens and revised nomenclature. Allergy 2007, 62, 437–443. [Google Scholar] [CrossRef] [PubMed]
- King, G.F.; Gentz, M.C.; Escoubas, P.; Nicholson, G.M. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 2008, 52, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Undheim, E.A.; Jones, A.; Clauser, K.R.; Holland, J.W.; Pineda, S.S.; King, G.F.; Fry, B.G. Clawing through evolution: Toxin diversification and convergence in the ancient lineage Chilopoda (Centipedes). Mol. Biol. Evol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.S.; Fuentes-Silva, D.; King, G.F. Development of a rational nomenclature for naming peptide and protein toxins from sea anemones. Toxicon 2012, 60, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Pluzhnikov, K.; Shevchenko, L.; Grishin, E. Ant polypeptide toxins. In Methods and tools in biosciences and medicine: Animal toxins; Rochat, H., Martin-Eauclaire, M.-F., Eds.; Birkhäuser: Basel, Switzerland, 2000; pp. 90–98. [Google Scholar]
- Davies, N.W.; Wiese, M.D.; Brown, S.G. Characterisation of major peptides in 'jack jumper' ant venom by mass spectrometry. Toxicon 2004, 43, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Donovan, G.R.; Street, M.D.; Baldo, B.A. Separation of jumper ant (Myrmecia pilosula) venom allergens: A novel group of highly basic proteins. Electrophoresis 1995, 16, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Leluk, J.; Schmidt, J.; Jones, D. Comparative studies on the protein composition of hymenopteran venom reservoirs. Toxicon 1989, 27, 105–114. [Google Scholar] [CrossRef]
- De Lima, P.R.; Brochetto-Braga, M.R. Hymenoptera venom review focusing on Apis mellifera. J. Venom. Anim. Toxins 2003, 9, 149–162. [Google Scholar]
- dos Santos Pinto, J.R.A.; Fox, E.G.P.; Saidemberg, D.M.; Santos, L.D.; da Silva Menegasso, A.R.; Costa-Manso, E.; Machado, E.A.; Bueno, O.C.; Palma, M.S. Proteomic view of the venom from the fire ant Solenopsis invicta Buren. J. Proteome Res. 2012, 11, 4643–4653. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.G.P.; Solis, D.R.; dos Santos, L.D.; dos Santos Pinto, J.R.A.; da Silva Menegasso, A.R.; Silva, R.C.M.C.; Palma, M.S.; Bueno, O.C.; de Alcântara Machado, E. A simple, rapid method for the extraction of whole fire ant venom (Insecta: Formicidae: Solenopsis). Toxicon 2013, 65, 5–8. [Google Scholar]
- Bouzid, W.; Klopp, C.; Verdenaud, M.; Ducancel, F.; Vétillard, A. Profiling the venom gland transcriptome of Tetramorium bicarinatum (Hymenoptera: Formicidae): The first transcriptome analysis of an ant species. Toxicon 2013, 70, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Baer, H.; Liu, T.Y.; Anderson, M.C.; Blum, M.; Schmid, W.H.; James, F.J. Protein components of fire ant venom (Solenopsis invicta). Toxicon 1979, 17, 397–405. [Google Scholar] [CrossRef]
- Torres, A.; Quinet, Y.; Havt, A.; Rádis-Baptista, G.; Martins, A. Molecular pharmacology and toxynology of venom from ants. In An Integrated View of the Molecular Recognition and Toxinology—From Analytical Procedures to Biomedical Applications; InTech: Rijeka, Croatia, 2013; pp. 207–222. [Google Scholar]
- dos Santos, L.D.; da Silva Menegasso, A.R.; dos Santos Pinto, J.R.; Santos, K.S.; Castro, F.M.; Kalil, J.E.; Palma, M.S. Proteomic characterization of the multiple forms of the PLAs from the venom of the social wasp Polybia paulista. Proteomics 2011, 11, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- von Sicard, N.A.; Candy, D.J.; Anderson, M. The biochemical composition of venom from the pavement ant (Tetramorium caespitum L.). Toxicon 1989, 27, 1127–1133. [Google Scholar] [CrossRef]
- Hink, W.F.; Pappas, P.W.; Jaworski, D.C. Partial biochemical characterization of venom from the ant, Pseudomyrmex triplarinus. Toxicon 1994, 32, 763–772. [Google Scholar] [CrossRef]
- Bouzid, W.; Verdenaud, M.; Klopp, C.; Ducancel, F.; Noirot, C.; Vétillard, A. De Novo sequencing and transcriptome analysis for Tetramorium bicarinatum: A comprehensive venom gland transcriptome analysis from an ant species. BMC Genomics 2014, 15, 987. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.; Pimenta, A.M.C.; Bemquerer, M.P.; Santoro, M.M.; Beirao, P.S.L.; Lima, M.E.; Figueiredo, S.G.; Bloch, C., Jr.; Vasconcelos, E.A.R.; Campos, F.A.P.; et al. Comparison of the partial proteomes of the venoms of Brazilian spiders of the genus Phoneutria. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 2006, 142, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.V.F.; Zamudio, F.Z.; Lucas, S.; Fox, J.W.; Frau, A.; Prestipino, G.; Possani, L.D. Scorpion toxins from Tityus cambridgei that affect Na+-channels. Toxicon 2002, 40, 557–562. [Google Scholar] [CrossRef]
- Gutierrez Mdel, C.; Abarca, C.; Possani, L.D. A toxic fraction from scolopendra venom increases the basal release of neurotransmitters in the ventral ganglia of crustaceans. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003, 135, 205–214. [Google Scholar] [CrossRef]
- Rates, B.; Bemquerer, M.P.; Richardson, M.; Borges, M.H.; Morales, R.A.V.; De Lima, M.E.; Pimenta, A.M.C. Venomic analyses of Scolopendra viridicornis nigra and Scolopendra angulata (Centipede, Scolopendromorpha): Shedding light on venoms from a neglected group. Toxicon 2007, 49, 810–826. [Google Scholar] [CrossRef] [PubMed]
- Zalat, S.; Schmidt, J.; Moawad, T.I. Lipase and phospholipase activities of Hymenoptera venoms (wasps and ants). Egyptian J. Biol. 2003, 5, 138–147. [Google Scholar]
- Ford, S.A.; Baldo, B.A.; Weiner, J.; Sutherland, S. Identification of jack-jumper ant (Myrmecia pilosula) venom allergens. Clin. Exp. Allergy 1991, 21, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.R.; Dove, D.E.; Jacobson, R.S. Allergens in Hymenoptera venom: XX. Isolation of four allergens from imported fire ant (Solenopsis invicta) venom. J. Allergy Clin. Immunol. 1988, 82, 818–827. [Google Scholar] [CrossRef]
- Hoffman, D.R.; Sakell, R.H.; Schmidt, M. Sol i 1, the phospholipase allergen of imported fire ant venom. J. Allergy Clin. Immunol. 2005, 115, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.R. Ant venoms. Curr. Opin. Allergy Clin. Immunol. 2010, 10, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Marcon, F.; Purtell, L.; Santos, J.; Hains, P.G.; Escoubas, P.; Graudins, A.; Nicholson, G.M. Characterization of monomeric and multimeric snake neurotoxins and other bioactive proteins from the venom of the lethal Australian common copperhead (Austrelaps superbus). Biochem. Pharmacol. 2013, 85, 1555–1573. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.O.; Blum, M.S.; Overal, W.L. Comparative enzymology of venoms from stinging Hymenoptera. Toxicon 1986, 24, 907–921. [Google Scholar] [CrossRef]
- Kuhn-Nentwig, L.; Schaller, J.; Nentwig, W. Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae). Toxicon 2004, 43, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Wanstall, J.C.; De la Lande, I. Fractionation of bulldog ant venom. Toxicon 1974, 12. [Google Scholar] [CrossRef]
- Cui, F.; Lin, Z.; Wang, H.; Liu, S.; Chang, H.; Reeck, G.; Qiao, C.; Raymond, M.; Kang, L. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects. Insect Biochem. Mol. Biol. 2011, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bonasio, R.; Zhang, G.; Ye, C.; Mutti, N.S.; Fang, X.; Qin, N.; Donahue, G.; Yang, P.; Li, Q.; Li, C.; et al. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 2010, 329, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Mamillapalli, R.; Haimovitz, R.; Ohad, M.; Shinitzky, M. Enhancement and inhibition of snake venom phosphodiesterase activity by lysophospholipids. FEBS Lett. 1998, 436, 256–258. [Google Scholar] [CrossRef]
- Parkinson, N.; Smith, I.; Weaver, R.; Edwards, J.P. A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Biochem. Mol. Biol. 2001, 31, 57–63. [Google Scholar] [CrossRef]
- Danneels, E.L.; Rivers, D.B.; De Graaf, D.C. Venom proteins of the parasitoid wasp Nasonia vitripennis: recent discovery of an untapped pharmacopee. Toxins 2010, 2, 494–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peiren, N.; de Graaf, D.C.; Vanrobaeys, F.; Danneels, E.L.; Devreese, B.; Van Beeumen, J.; Jacobs, F.J. Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon 2008, 52, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Resende, V.M.F.; Vasilj, A.; Santos, K.S.; Palma, M.S.; Shevchenko, A. Proteome and phosphoproteome of Africanized and European honeybee venoms. Proteomics 2013, 13, 2638–2648. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.C.; Day, A.J.; De la Lande, I.S. Phospholipase A in the venom of the Australian bulldog ant Myrmecia pyriformis. Toxicon 1968, 6, 109–112. [Google Scholar] [CrossRef]
- Magalhaes, G.S.; Caporrino, M.C.; Della-Casa, M.S.; Kimura, L.F.; Prezotto-Neto, J.P.; Fukuda, D.A.; Portes-Junior, J.A.; Neves-Ferreira, A.G.; Santoro, M.L.; Barbaro, K.C. Cloning, expression and characterization of a phospholipase D from Loxosceles gaucho venom gland. Biochimie 2013, 95, 1773–1783. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Cerrillo, B.; Olvera, A.; Odell, G.V.; Zamudio, F.; Paniagua-Solís, J.; Alagón, A.; Stock, R.P. Genetic and enzymatic characterization of sphingomyelinase D isoforms from the North American fiddleback spiders Loxosceles boneti and Loxosceles reclusa. Toxicon 2004, 44, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Angulo, Y.; Olamendi-Portugal, T.; Possani, L.D.; Lomonte, B. Isolation and characterization of myotoxin II from Atropoides (Bothrops) nummifer snake venom, a new Lys49 phospholipase A2 homologue. Int J. Biochem. Cell. Biol. 2000, 32, 63–71. [Google Scholar] [CrossRef]
- Nagai, H.; Oshiro, N.; Takuwa-Kuroda, K.; Iwanaga, S.; Nozaki, M.; Nakajima, T. A new polypeptide toxin from the nematocyst venom of an Okinawan sea anemone Phyllodiscus semoni (Japanese name “unbachi-isoginchaku”). Biosci. Biotechnol. Biochem. 2002, 66, 2621–2625. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Gomes, A. Viper venom-induced inflammation and inhibition of free radical formation by pure compound (2-hydroxy-4-methoxy benzoic acid) isolated and purified from anantamul (Hemidesmus indicus R.BR) root extract. Toxicon 1998, 36, 207–215. [Google Scholar] [CrossRef]
- Bull, H.; Murray, P.G.; Thomas, D.; Fraser, A.; Nelson, P.N. Acid phosphatases. Mol. Pathol. 2002, 55, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.R. Allergens in Hymenoptera venom XXIV: The amino acid sequences of imported fire ant venom allergens Sol i II, Sol i III, and Sol i IV. J. Allergy Clin. Immunol. 1993, 91, 71–78. [Google Scholar] [CrossRef]
- Hoffman, D.R. Hymenoptera venom allergens. Clin. Rev. Allergy Immunol. 2006, 30, 109–128. [Google Scholar] [CrossRef]
- Lockwood, S.A.; HaghiPour-Peasley, J.; Hoffman, D.R.; Deslippe, R.J. Identification, expression, and immuno-reactivity of Sol i 2 & Sol i 4 venom proteins of queen red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae). Toxicon 2012, 60, 752–759. [Google Scholar] [PubMed]
- Borer, A.S.; Wassmann, P.; Schmidt, M.; Hoffman, D.R.; Zhou, J.J.; Wright, C.; Schirmer, T.; Marković-Housley, Z. Crystal structure of Sol i 2: A major allergen from fire ant venom. J. Mol. Biol. 2012, 415, 635–648. [Google Scholar] [CrossRef] [PubMed]
- King, T.P.; Lu, G. Hornet venom allergen antigen 5, Dol m 5: Its T-cell epitopes in mice and its antigenic cross-reactivity with a mammalian testis protein. J. Allergy Clin. Immunol. 1997, 99, 630–639. [Google Scholar] [CrossRef]
- Lee, E.K.; Jeong, K.Y.; Lyu, D.P.; Lee, Y.W.; Sohn, J.H.; Lim, K.J.; Hong, C.S.; Park, J.W. Characterization of the major allergens of Pachycondyla chinensis in ant sting anaphylaxis patients. Clin. Exp. Allergy 2009, 39, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Padavattan, S.; Schmidt, M.; Hoffman, D.R.; Marković-Housley, Z. Crystal structure of the major allergen from fire ant venom, Sol i 3. J. Mol. Biol. 2008, 383, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, D.; Seifert, J.; Ohler, M.; von Bergen, M.; Spencer, P.; Arni, R.K.; Genov, N.; Betzel, C. Pseudechis australis venomics: Adaptation for a defense against microbial pathogens and recruitment of body transferrin. J. Proteome Res. 2011, 10, 2440–2464. [Google Scholar] [CrossRef] [PubMed]
- Aniszewski, T. Alkaloids: Chemistry, Biology, Ecology and Applications; Elsevier: Boston, MA, USA, 2015; p. 481. [Google Scholar]
- Wallace, J.; Mansell, R. Biochemical Interaction between Plants and Insects; Plenum Press: New York, NY, USA, 1975. [Google Scholar]
- Wink, M.; Roberts, M.F. Compartmentation of alkaloid synthesis, transport, and storage. In Alkaloids: Biochemistry, Ecology and Medicinal Application; Wink, M., Roberts, M.F., Eds.; Springer: New York, NY, USA, 1998; pp. 239–262. [Google Scholar]
- MacConnell, J.G.; Blum, M.S.; Fales, H.M. The chemistry of fire ant venom. Tetrahedron 1971, 27, 1129–1139. [Google Scholar] [CrossRef]
- Numata, A.; Ibuka, T. Alkaloids from ants and other insects. In The alkaloids; Brossi, A., Ed.; Academic Press: San Diego, CA, USA, 1987; pp. 193–315. [Google Scholar]
- Tumlinson, J.; Silverstein, R.; Moser, J.; Brownlee, R.; Ruth, J. Identification of the trail pheromone of a leaf-cutting ant, Atta texana. Nature 1971, 234, 348–349. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.F.; Billen, J.P.; Jackson, B.D.; Morgan, E.D. The Dufour gland contents of three species of Euro-African Messor ants and a comparison with those of North American Pogonomyrmex (Hymenoptera: Formicidae). Biochem. Syst. Ecol. 1989, 17, 469–477. [Google Scholar] [CrossRef]
- Wheeler, J.; Olubajo, O.; Storm, C.; Duffield, R. Anabaseine: venom alkaloid of Aphaenogaster ants. Science 1981, 211, 1051–1052. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, S.; Charles, S.; Daloze, D.; Braekman, J.C.; Aron, S.; Pasteels, J.M. Absolute configuration of anabasine from Messor and Aphaenogaster ants. J. Chem. Ecol. 2001, 27, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.; Blum, M.; Fales, H.; Brandão, C.; Lattke, J. Chemistry of venom alkaloids in the ant genus Megalomyrmex. J. Chem. Ecol. 1991, 17, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Talman, E.; Ritter, F.; Verwiel, P. Structure elucidation of pheromones produced by the Pharaoh’s ant, Monomorium pharaonis L. In Mass spectrometry in biochemistry and medicine; Castagnoli, A.F.N., Ed.; Raven Press: New York, NY, USA, 1974; pp. 197–217. [Google Scholar]
- Francke, W.; Schröder, F.; Walter, F.; Sinnwell, V.; Baumann, H.; Kaib, M. New alkaloids from ants: Identification and synthesis of (3R,5S,9R)-3-butyl-5-(1-oxopropyl) indolizidine and (3R,5R,9R)-3-butyl-5-(1-oxopropyl) indolizidine, constituents of the poison gland secretion in Myrmicaria eumenoides (hymenoptera, formicidae). Liebigs Ann. 1995, 1995, 965–977. [Google Scholar] [CrossRef]
- MacConnell, J.G.; Blum, M.S.; Fales, H.M. Alkaloid from fire ant venom: Identification and synthesis. Science 1970, 168, 840–841. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Jones, T.; Hölldobler, B.; Fales, H.; Jaouni, T. Alkaloidal venom mace: offensive use by a thief ant. Naturwissenschaften 1980, 67, 144–145. [Google Scholar] [CrossRef]
- Jones, T.; Torres, J.; Spande, T.; Garraffo, H.; Blum, M.; Snelling, R. Chemistry of venom alkaloids in some Solenopsis (Diplorhoptrum) species from Puerto Rico. J. Chem. Ecol. 1996, 22, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.H.; Adams, R.M.; Spande, T.F.; Garraffo, H.M.; Kaneko, T.; Schultz, T.R. Histrionicotoxin alkaloids finally detected in an ant. J. Nat. Prod. 2012, 75, 1930–1936. [Google Scholar] [CrossRef] [PubMed]
- Allies, A.B.; Bourke, A.F.; Franks, N.R. Propaganda substances in the cuckoo ant Leptothorax kutteri and the slave-maker Harpagoxenus sublaevis. J. Chem. Ecol. 1986, 12, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Saporito, R.A.; Garraffo, H.M.; Donnelly, M.A.; Edwards, A.L.; Longino, J.T.; Daly, J.W. Formicine ants: An arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proc. Natl. Acad. Sci. USA 2004, 101, 8045–8050. [Google Scholar] [CrossRef] [PubMed]
- Braekman, J.C.; Daloze, D.; Pasteeis, J.; Hecke, P.V.; Declercq, J.P.; Sinnwell, V.; Francke, W. Tetraponerine-8, an alkaloidal contact poison in a neoguinean pseudomyrmecine ant, Tetraponera sp. Z Naturforsch. 1987, 42, 627–630. [Google Scholar]
- Pacheco, J.A.; Mackay, W.P.; Lattke, J. The Systematics and Biology of the New World Thief Ants of the Genus SOLENOPSIS (Hymenoptera: Formicidae); Edwin Mellen Press: Ceredigion, UK, 2013. [Google Scholar]
- Pankewitz, F. Unusual natural products in insects: Molecular and chemical analyses of anthraquinone origin in galerucini leaf beetles. Ph.D. Thesis, Freie Universität, Berlin, Germany, 2006. Available online: http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000002645/00_Pankewitz.pdf?hosts= (accessed on 19 January 2016). [Google Scholar]
- Callahan, P.S.; Blum, M.S.; Walker, J.R. Morphology and histology of the poison glands and sting of the imported fire ant (Solenopsis saevissima v. richteri Forel). Ann. Entomol. Soc. Am. 1959, 52, 573–590. [Google Scholar] [CrossRef]
- Fox, E.G.P.; Bueno, O.C.; Yabuki, A.T.; de Jesus, C.M.; Solis, D.R.; Rossi, M.L.; de Lima Nogueira, N. General morphology and ultrastructure of the venom apparatus and convoluted gland of the fire ant, Solenopsis saevissima. J. Insect Sci. 2010, 10, 24. [Google Scholar] [PubMed]
- Leclercq, S.; Braekman, J.C.; Daloze, D.; Pasteels, J.M.; van der Meer, R.K. Biosynthesis of the solenopsins, venom alkaloids of the fire ants. Naturwissenschaften 1996, 83, 222–225. [Google Scholar] [CrossRef]
- Radwan, M.; Hanora, A.; Khalifa, S.; Abou-El-Ela, S.H. Manzamines: A potential for novel cures. Cell. Cycle 2012, 11, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Nikbakhtzadeh, M.R.; Tirgari, S.; Fakoorziba, M.R.; Alipour, H. Two volatiles from the venom gland of the Samsum ant, Pachycondyla sennaarensis. Toxicon 2009, 54, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Escoubas, P.; Blum, M. The biological activities of ant-derived alkaloids. In Applied Myrmecology: A World Perspective; Vander Meer, R., Jaffe, K., Cedeno, A., Eds.; Westview Press: Boulder, CO, USA, 1990; pp. 482–489. [Google Scholar]
- Pelletier, S.W. Alkaloids: Chemical and Biological Perspectives; Springer: New York, NY, USA, 1983. [Google Scholar]
- Brossi, A. The alkaloids: Chemistry and Pharmacology; Academic Press: New York, NY, USA, 1987. [Google Scholar]
- Bosque, I.; Gonzalez-Gomez, J.C.; Loza, M.I.; Brea, J. Natural tetraponerines: A general synthesis and antiproliferative activity. J. Org. Chem. 2014, 79, 3982–3991. [Google Scholar] [CrossRef] [PubMed]
- Tschinkel, W.R. The Fire Ants; Harvard University Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Chen, J.; Cantrell, C.L.; Shang, H.W.; Rojas, M.G. Piperideine alkaloids from the poison gland of the red imported fire ant (Hymenoptera: Formicidae). J. Agric. Food Chem. 2009, 57, 3128–3133. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fadamiro, H.Y. Re-investigation of venom chemistry of Solenopsis fire ants. I. Identification of novel alkaloids in S. richteri. Toxicon 2009, 53, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Pianaro, A.; Fox, E.G.P.; Bueno, O.C.; Marsaioli, A.J. Rapid configuration analysis of the solenopsins. Tetrahedron: Asymmetry 2012, 23, 635–642. [Google Scholar] [CrossRef]
- Brossi, A. Mammalian alkaloids II. In The alkaloids; Cordell, G.A., Ed.; Academic Press: San Diego, CA, USA, 1993; pp. 119–183. [Google Scholar]
- Jouvenaz, D.; Blum, M.; MacConnell, J. Antibacterial activity of venom alkaloids from the imported fire ant, Solenopsis invicta Buren. Antimicrob. Agents Chemother 1972, 2, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Obin, M.S.; Vander Meer, R.K. Gaster flagging by fire ants (Solenopsis spp.): Functional significance of venom dispersal behavior. J. Chem. Ecol. 1985, 11, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Vander Meer, R.K.; Morel, L. Ant queens deposit pheromones and antimicrobial agents on eggs. Naturwissenschaften 1995, 82, 93–95. [Google Scholar] [CrossRef]
- Blum, M.S.; Walker, J.R.; Callahan, P.S.; Novak, A.F. Chemical, insecticidal and antibiotic properties of fire ant venom. Science 1958, 128, 306–307. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.C.; Chang, R.; Huang, R.N.; Wu, W.J. Comparative toxicity of two fire ant venoms to Spodoptera litura. Sociobiol 2010, 56, 653–663. [Google Scholar]
- Yeh, J.; Narahashi, T.; Almon, R. Characterization of neuromuscular blocking action of piperidine derivatives. J. Pharmacol. Exp. Ther. 1975, 194, 373–383. [Google Scholar] [PubMed]
- Read, G.W.; Lind, N.K.; Oda, C.S. Histamine release by fire ant (Solenopsis) venom. Toxicon 1978, 16, 361–367. [Google Scholar] [CrossRef]
- Foster, D.; Ahmed, K. Effect of piperidines and fire ant venom on ATPase activities from brain homogenate fractions and characterization of Na+-K+ ATPase inhibition. Biochem. Pharmacol. 1977, 26, 983–985. [Google Scholar] [CrossRef]
- Lind, N.K. Mechanism of action of fire ant (Solenopsis) venoms. I. Lytic release of histamine from mast cells. Toxicon 1982, 20, 831–840. [Google Scholar] [CrossRef]
- Javors, M.; Zhou, W.; Maas, J., Jr.; Han, S.; Keenan, R. Effects of fire ant venom alkaloids on platelet and neutrophil function. Life sci. 1993, 53, 1105–1112. [Google Scholar] [CrossRef]
- Yi, G.; Mc Clendon, D.; Desaiah, D.; Goddard, J.; Lister, A.; Moffitt, J.; Vander Meer, R.; de Shazo, R.; Lee, K.; Rockhold, R. Fire ant venom alkaloid, isosolenopsin A, a potent and selective inhibitor of neuronal nitric oxide synthase. Int J. Toxicol. 2003, 22, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Howell, G.; Butler, J.; Farley, J.M.; Liu, H.L.; Nanayakkara, N.; Yates, A.; Gene, B.Y.; Rockhold, R.W. Cardiodepressant and neurologic actions of Solenopsis invicta (imported fire ant) venom alkaloids. Ann. Allergy Asthma Immunol. 2005, 94, 380–386. [Google Scholar] [CrossRef]
- Arbiser, J.L.; Kau, T.; Konar, M.; Narra, K.; Ramchandran, R.; Summers, S.A.; Vlahos, C.J.; Ye, K.; Perry, B.N.; Matter, W. Solenopsin, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis. Blood 2007, 109, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Cavill, G.; Houghton, E. Some pyrazine derivatives from the Argentine ant, Iridomyrmex humilis. Aust J. Chem. 1974, 27, 879–889. [Google Scholar] [CrossRef]
- Grünanger, P.; Pavan, A.; Quilico, S. Chimica degli insetti: Sul secreto odorosco del Formicide Myrmicaria natalensis (Fred). Accad. Nazion Lincei 1960, 28, 293–300. [Google Scholar]
- Brand, J.; Blum, M.; Lloyd, H.A.; Fletcher, D. Monoterpene hydrocarbons in the poison gland secretion of the ant Myrmicaria natalensis (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 1974, 67, 525–526. [Google Scholar] [CrossRef]
- Schultz, D.R.; Arnold, P.I.; Wu, M.C.; Lo, T.M.; Volanakis, J.E.; Loos, M. Isolation and partial characterization of a polysaccharide in ant venom (Pseudomyrmex sp.) that activates the classical complement pathway. Mol. Immunol. 1979, 16, 253–264. [Google Scholar] [CrossRef]
- Cavill, G.W.; Robertson, P.L.; Whitfield, F.B. Venom and venom apparatus of the Bull ant, Myrmecia gulosa (Fabr.). Science 1964, 146, 79–80. [Google Scholar] [CrossRef] [PubMed]
- Billen, J. New structural aspects of the Dufour's and venom glands in social insects. Naturwissenschaften 1987, 74, 340–341. [Google Scholar] [CrossRef]
- Pasteels, J.; Daloze, D.; Boeve, J.L. Aldehydic contact poisons and alarm pheromone of the ant Crematogaster scutellaris (Hymenoptera: Myrmicinae). J. Chem. Ecol. 1989, 15, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touchard, A.; Aili, S.R.; Fox, E.G.P.; Escoubas, P.; Orivel, J.; Nicholson, G.M.; Dejean, A. The Biochemical Toxin Arsenal from Ant Venoms. Toxins 2016, 8, 30. https://doi.org/10.3390/toxins8010030
Touchard A, Aili SR, Fox EGP, Escoubas P, Orivel J, Nicholson GM, Dejean A. The Biochemical Toxin Arsenal from Ant Venoms. Toxins. 2016; 8(1):30. https://doi.org/10.3390/toxins8010030
Chicago/Turabian StyleTouchard, Axel, Samira R. Aili, Eduardo Gonçalves Paterson Fox, Pierre Escoubas, Jérôme Orivel, Graham M. Nicholson, and Alain Dejean. 2016. "The Biochemical Toxin Arsenal from Ant Venoms" Toxins 8, no. 1: 30. https://doi.org/10.3390/toxins8010030