Porphyromonas gingivalis Vaccine: Antigens and Mucosal Adjuvants
Abstract
:1. Introduction
2. Antigens Associated with Pg Vaccine
2.1. Fimbriae
2.2. Hemagglutinin
2.3. Gingipains
2.4. Capsular Polysaccharide
2.5. Outer Membrane Protein
2.6. Heat-Shock Protein
2.7. Outer Membrane Vesicles
3. The Application of Mucosal Adjuvants in Pg Vaccine
3.1. Immunostimulatory Adjuvants
3.1.1. Escherichia coli Heat-Labile Enterotoxin and Cholera Toxin
3.1.2. Toll-like Receptor Agonists
TLR3 Agonist
TLR4 Agonist
TLR5 Agonist
TLR9 Agonist
3.1.3. FMS-like Tyrosine Kinase 3 Ligand
3.1.4. Cytokines
3.1.5. Live Vectors
3.1.6. Saponin
Adjuvant/Delivery | Antigen | Model | Administration | Ref. |
---|---|---|---|---|
CT | OMP | Mouse | in., oral, sl. | [20,21] |
mCTA/LTB | OMP | Mouse | in. | [22] |
CTB | FimA | Mouse | in., oral | [30,71] |
FimA (DNA) | Mouse | oral | [31] | |
Kgp (HArep domain) | Mouse | in. | [72,105] | |
MPL | Kgp (HArep domain) | Mouse | in. | [105] |
rHagB | Mouse | in. | [36] | |
Poly (I:C) | OMV | Mouse | in. | [65,66] |
FlaB | RgpA (Hgp44 domain) | Mouse | in., sl. | [88] |
CpG-ODN | Fima/HA2 (DNA) | Rat | in. | [14] |
GroEL | Mouse | sl. | [12] | |
OMP | Mouse | oral | [92] | |
DNA plasmid: CpG-ODN | FimA | Mouse | in. | [13] |
DNA plasmid: pFL | OMP | Mouse | sl. | [56] |
DNA plasmid: Flt3l | FimA | Mouse | in. | [13] |
DNA plasmid: IL-15 | FimA (DNA) | Mouse | in. | [97] |
FimA/HA2 (DNA) | Rat | in. | [14] | |
Live carrier: Streptococcus gordonii | FimA | Rat | oral | [99] |
Live carrier: Salmonella typhimurium | HagA/B | Mouse | oral | [100,101] |
saponin derivative GPI-0100 | HagB | Mouse | sc., in. | [37] |
Liposome GM-53 or MDP-Lys(L18) | FimA | Mouse | oral, sc. | [106,107] |
HVJ envelope vector | RgpA (DNA) | Mouse | in. | [108] |
3.2. Antigen Delivery Adjuvants
3.2.1. Liposomes
3.2.2. Lipid Nanoparticles
3.2.3. Virus-like Particles
3.2.4. Microneedle Array
4. Immune Pathway
4.1. Mucosal Immunity
4.2. The Application of Mucosal Immune Pathways in Pg Vaccine
5. Status and Challenges of Pg Vaccine
5.1. Current Situation
5.2. Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, W.; Zhou, W.; Wang, H.; Liang, S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv. Protein Chem. Struct. Biol. 2020, 120, 45–84. [Google Scholar] [CrossRef] [PubMed]
- Lunar Silva, I.; Cascales, E. Molecular Strategies Underlying Porphyromonas gingivalis Virulence. J. Mol. Biol. 2021, 433, 166836. [Google Scholar] [CrossRef] [PubMed]
- Badiger, A.B.; Gowda, T.M.; Chandra, K.; Mehta, D.S. Bilateral Interrelationship of Diabetes and Periodontium. Curr. Diabetes Rev. 2019, 15, 357–362. [Google Scholar] [CrossRef]
- Lalla, E.; Papapanou, P.N. Diabetes mellitus and periodontitis: A tale of two common interrelated diseases. Nat. Rev. Endocrinol. 2011, 7, 738–748. [Google Scholar] [CrossRef]
- Sanz, M.; Marco Del Castillo, A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and cardiovascular diseases: Consensus report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef] [PubMed]
- Kavarthapu, A.; Gurumoorthy, K. Linking chronic periodontitis and oral cancer: A review. Oral Oncol. 2021, 121, 105375. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Li, S.; Ma, Z.; Liang, S.; Shan, T.; Zhang, M.; Zhu, X.; Zhang, P.; Liu, G.; Zhou, F.; et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect. Agent. Cancer 2016, 11, 3. [Google Scholar] [CrossRef]
- Ogrendik, M. The Association Between Oral Anaerobic Bacteria and Pancreatic Cancer. World J. Oncol. 2023, 14, 174–177. [Google Scholar] [CrossRef]
- Tanaka, S.; Murakami, Y.; Ogiwara, T.; Shoji, M.; Seto, K.; Nagasaki, M.; Fujisawa, S. Frequency of reactivity for Porphyromonas gingivalis and Prevotella spp. in supra- and subgingival plaques, and periodontal clinical parameters according to subject age. J. Periodontol. 2002, 73, 877–885. [Google Scholar] [CrossRef]
- Ahmadi, H.; Ebrahimi, A.; Ahmadi, F. Antibiotic Therapy in Dentistry. Int. J. Dent. 2021, 2021, 6667624. [Google Scholar] [CrossRef]
- Jepsen, K.; Falk, W.; Brune, F.; Fimmers, R.; Jepsen, S.; Bekeredjian-Ding, I. Prevalence and antibiotic susceptibility trends of periodontal pathogens in the subgingival microbiota of German periodontitis patients: A retrospective surveillance study. J. Clin. Periodontol. 2021, 48, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Kobayashi, R.; Hagiwara-Hamano, M.; Kurita-Ochiai, T.; Komiya, M. Sublingual immunization with recombinant GroEL plus CpG-ODN inhibits Porphyromonas gingivalis-induced inflammation and alveolar bone loss. Mol. Oral Microbiol. 2022, 37, 31–41. [Google Scholar] [CrossRef]
- Kobuchi, K.; Kataoka, K.; Taguchi, Y.; Miyake, T.; Umeda, M. Nasal double DNA adjuvant induces salivary FimA-specific secretory IgA antibodies in young and aging mice and blocks Porphyromonas gingivalis binding to a salivary protein. BMC Oral Health 2019, 19, 188. [Google Scholar] [CrossRef]
- Bai, G.; Yu, H.; Guan, X.; Zeng, F.; Liu, X.; Chen, B.; Liu, J.; Tian, Y. CpG immunostimulatory oligodeoxynucleotide 1826 as a novel nasal ODN adjuvant enhanced the protective efficacy of the periodontitis gene vaccine in a periodontitis model in SD rats. BMC Oral Health 2021, 21, 403. [Google Scholar] [CrossRef]
- Takahashi, Y.; Cueno, M.E.; Kamio, N.; Iinuma, T.; Hasegawa, Y.; Imai, K. Porphyromonas gingivalis Mfa1 fimbria putatively binds to TLR2 and induces both IL-6 and IL-8 production in human bronchial epithelial cells. Biochem. Biophys. Res. Commun. 2022, 589, 35–40. [Google Scholar] [CrossRef]
- Miya, C.; Cueno, M.E.; Suzuki, R.; Maruoka, S.; Gon, Y.; Kaneko, T.; Yonehara, Y.; Imai, K. Porphyromonas gingivalis gingipains potentially affect MUC5AC gene expression and protein levels in respiratory epithelial cells. FEBS Open Bio 2021, 11, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Rocha, F.G.; Berges, A.; Sedra, A.; Ghods, S.; Kapoor, N.; Pill, L.; Davey, M.E.; Fairman, J.; Gibson, F.C., 3rd. A Porphyromonas gingivalis Capsule-Conjugate Vaccine Protects From Experimental Oral Bone Loss. Front. Oral Health 2021, 2, 686402. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.; Tzianabos, A.O.; Genco, C.A.; Gibson, F.C., 3rd. Immunization with Porphyromonas gingivalis capsular polysaccharide prevents P. gingivalis-elicited oral bone loss in a murine model. Infect. Immun. 2003, 71, 2283–2287. [Google Scholar] [CrossRef]
- Maeba, S.; Otake, S.; Namikoshi, J.; Shibata, Y.; Hayakawa, M.; Abiko, Y.; Yamamoto, M. Transcutaneous immunization with a 40-kDa outer membrane protein of Porphyromonas gingivalis induces specific antibodies which inhibit coaggregation by P. gingivalis. Vaccine 2005, 23, 2513–2521. [Google Scholar] [CrossRef]
- Cai, Y.; Kurita-Ochiai, T.; Kobayashi, R.; Hashizume, T.; Yamamoto, M. Nasal immunization with the 40-kDa outer membrane protein of Porphyromonas gingivalis plus cholera toxin induces protective immunity in aged mice. J. Oral Sci. 2013, 55, 107–114. [Google Scholar] [CrossRef]
- Ikeda, T.; Kobayashi, R.; Kurita-Ochiai, T. Comparison of mucosal immune response after oral, nasal or sublingual immunization with an outer membrane protein of Porphyromonas gingivalis. Int. J. Oral-Med. Sci. 2014, 12, 121–128. [Google Scholar] [CrossRef]
- Momoi, F.; Hashizume, T.; Kurita-Ochiai, T.; Yuki, Y.; Kiyono, H.; Yamamoto, M. Nasal vaccination with the 40-kilodalton outer membrane protein of Porphyromonas gingivalis and a nontoxic chimeric enterotoxin adjuvant induces long-term protective immunity with reduced levels of immunoglobulin E antibodies. Infect. Immun. 2008, 76, 2777–2784. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara-Takahashi, K.; Watanabe, T.; Shimogishi, M.; Shibasaki, M.; Umeda, M.; Izumi, Y.; Nakagawa, I. Phylogenetic diversity in fim and mfa gene clusters between Porphyromonas gingivalis and Porphyromonas gulae, as a potential cause of host specificity. J. Oral Microbiol. 2020, 12, 1775333. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, F.; Murakami, Y.; Nishikawa, K.; Hasegawa, Y.; Kawaminami, S. Surface components of Porphyromonas gingivalis. J. Periodontal Res. 2009, 44, 1–12. [Google Scholar] [CrossRef]
- Kugaji, M.; Muddapur, U.; Bhat, K.; Joshi, V.; Manubolu, M.; Pathakoti, K.; Peram, M.R.; Kumbar, V. Variation in the Occurrence of fimA Genotypes of Porphyromonas gingivalis in Periodontal Health and Disease. Int. J. Environ. Res. Public Health 2020, 17, 1826. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhou, X.D.; Zheng, Q.H.; Wang, Y.; Tang, L.; Huang, D.M. Distribution of Porphyromonas gingivalis fimA genotypes in chronic apical periodontitis associated with symptoms. J. Endod. 2010, 36, 1790–1795. [Google Scholar] [CrossRef]
- Moreno, S.; Contreras, A. Functional differences of Porphyromonas gingivalis Fimbriae in determining periodontal disease pathogenesis: A literature review. Colomb. Med. 2013, 44, 48–56. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Nagano, K. Porphyromonas gingivalis FimA and Mfa1 fimbriae: Current insights on localization, function, biogenesis, and genotype. Jpn. Dent. Sci. Rev. 2021, 57, 190–200. [Google Scholar] [CrossRef]
- Koh, E.M.; Kim, J.; Kim, T.G.; Moon, J.H.; Oh, J.H.; Lee, J.Y.; Jang, Y.S. Cloning and characterization of heavy and light chain genes encoding the FimA-specific monoclonal antibodies that inhibit Porphyromonas gingivalis adhesion. Microbiol. Immunol. 2011, 55, 199–210. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kumada, H.; Hamada, N.; Haishima, Y.; Ozono, S.; Isaka, M.; Yasuda, Y.; Tochikubo, K.; Umemoto, T. Induction of immune responses and prevention of alveolar bone loss by intranasal administration of mice with Porphyromonas gingivalis fimbriae and recombinant cholera toxin B subunit. Oral Microbiol. Immunol. 2007, 22, 374–380. [Google Scholar] [CrossRef]
- Shin, E.A.; Lee, J.Y.; Kim, T.G.; Park, Y.K.; Langridge, W.H. Synthesis and assembly of an adjuvanted Porphyromonas gingivalis fimbrial antigen fusion protein in plants. Protein Expr. Purif. 2006, 47, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Aleksijević, L.H.; Aleksijević, M.; Škrlec, I.; Šram, M.; Šram, M.; Talapko, J. Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases. Pathogens 2022, 11, 1173. [Google Scholar] [CrossRef] [PubMed]
- Smalley, J.W.; Olczak, T. Heme acquisition mechanisms of Porphyromonas gingivalis—Strategies used in a polymicrobial community in a heme-limited host environment. Mol. Oral Microbiol. 2017, 32, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Yuzawa, S.; Kurita-Ochiai, T.; Hashizume, T.; Kobayashi, R.; Abiko, Y.; Yamamoto, M. Sublingual vaccination with fusion protein consisting of the functional domain of hemagglutinin A of Porphyromonas gingivalis and Escherichia coli maltose-binding protein elicits protective immunity in the oral cavity. FEMS Immunol. Med. Microbiol. 2012, 64, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Black, K.P.; Michalek, S.M. Host responses to recombinant hemagglutinin B of Porphyromonas gingivalis in an experimental rat model. Infect. Immun. 1999, 67, 4352–4359. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.B.; Martin, M.; Michalek, S.M.; Katz, J. Mechanisms of monophosphoryl lipid A augmentation of host responses to recombinant HagB from Porphyromonas gingivalis. Infect. Immun. 2002, 70, 3557–3565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, Q.B.; Marciani, D.J.; Martin, M.; Clements, J.D.; Michalek, S.M.; Katz, J. Effectiveness of the quillaja saponin semi-synthetic analog GPI-0100 in potentiating mucosal and systemic responses to recombinant HagB from Porphyromonas gingivalis. Vaccine 2003, 21, 4459–4471. [Google Scholar] [CrossRef]
- Gaddis, D.E.; Michalek, S.M.; Katz, J. Requirement of TLR4 and CD14 in dendritic cell activation by Hemagglutinin B from Porphyromonas gingivalis. Mol. Immunol. 2009, 46, 2493–2504. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Nguyen, K.A.; Potempa, J. Dichotomy of gingipains action as virulence factors: From cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontol. 2000 2010, 54, 15–44. [Google Scholar] [CrossRef]
- de Jongh, C.A.; Bikker, F.J.; de Vries, T.J.; Werner, A.; Gibbs, S.; Krom, B.P. Porphyromonas gingivalis interaction with Candida albicans allows for aerobic escape, virulence and adherence. Biofilm 2024, 7, 100172. [Google Scholar] [CrossRef]
- Olsen, I.; Potempa, J. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases. J. Oral Microbiol. 2014, 6, 24800. [Google Scholar] [CrossRef] [PubMed]
- Chow, Y.C.; Yam, H.C.; Gunasekaran, B.; Lai, W.Y.; Wo, W.Y.; Agarwal, T.; Ong, Y.Y.; Cheong, S.L.; Tan, S.A. Implications of Porphyromonas gingivalis peptidyl arginine deiminase and gingipain R in human health and diseases. Front. Cell Infect. Microbiol. 2022, 12, 987683. [Google Scholar] [CrossRef] [PubMed]
- Gibson, F.C., 3rd; Genco, C.A. Prevention of Porphyromonas gingivalis-induced oral bone loss following immunization with gingipain R1. Infect. Immun. 2001, 69, 7959–7963. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Roy, F.; Dou, Y.; Zhang, K.; Tang, H.; Fletcher, H.M. Role of Acetyltransferase PG1842 in Gingipain Biogenesis in Porphyromonas gingivalis. J. Bacteriol. 2018, 200, e00385-18. [Google Scholar] [CrossRef]
- Wilensky, A.; Potempa, J.; Houri-Haddad, Y.; Shapira, L. Vaccination with recombinant RgpA peptide protects against Porphyromonas gingivalis-induced bone loss. J. Periodontal Res. 2017, 52, 285–291. [Google Scholar] [CrossRef]
- O’Brien-Simpson, N.M.; Pathirana, R.D.; Paolini, R.A.; Chen, Y.Y.; Veith, P.D.; Tam, V.; Ally, N.; Pike, R.N.; Reynolds, E.C. An immune response directed to proteinase and adhesin functional epitopes protects against Porphyromonas gingivalis-induced periodontal bone loss. J. Immunol. 2005, 175, 3980–3989. [Google Scholar] [CrossRef] [PubMed]
- Frazer, L.T.; O’Brien-Simpson, N.M.; Slakeski, N.; Walsh, K.A.; Veith, P.D.; Chen, C.G.; Barr, I.G.; Reynolds, E.C. Vaccination with recombinant adhesins from the RgpA-Kgp proteinase-adhesin complex protects against Porphyromonas gingivalis infection. Vaccine 2006, 24, 6542–6554. [Google Scholar] [CrossRef] [PubMed]
- van Winkelhoff, A.J.; Appelmelk, B.J.; Kippuw, N.; de Graaff, J. K-antigens in Porphyromonas gingivalis are associated with virulence. Oral Microbiol. Immunol. 1993, 8, 259–265. [Google Scholar] [CrossRef]
- Laine, M.L.; Appelmelk, B.J.; van Winkelhoff, A.J. Novel polysaccharide capsular serotypes in Porphyromonas gingivalis. J. Periodontal Res. 1996, 31, 278–284. [Google Scholar] [CrossRef]
- d’Empaire, G.; Baer, M.T.; Gibson, F.C., 3rd. The K1 serotype capsular polysaccharide of Porphyromonas gingivalis elicits chemokine production from murine macrophages that facilitates cell migration. Infect. Immun. 2006, 74, 6236–6243. [Google Scholar] [CrossRef]
- Laine, M.L.; Appelmelk, B.J.; van Winkelhoff, A.J. Prevalence and distribution of six capsular serotypes of Porphyromonas gingivalis in periodontitis patients. J. Dent. Res. 1997, 76, 1840–1844. [Google Scholar] [CrossRef]
- Schifferle, R.E.; Chen, P.B.; Davern, L.B.; Aguirre, A.; Genco, R.J.; Levine, M.J. Modification of experimental Porphyromonas gingivalis murine infection by immunization with a polysaccharide-protein conjugate. Oral Microbiol. Immunol. 1993, 8, 266–271. [Google Scholar] [CrossRef]
- Veith, P.D.; Gorasia, D.G.; Reynolds, E.C. Towards defining the outer membrane proteome of Porphyromonas gingivalis. Mol. Oral Microbiol. 2021, 36, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.; Watanabe, K.; Tahara, T.; Nakazawa, K.; Ishida, I.; Shibata, Y.; Kobayashi, T.; Yoshie, H.; Abiko, Y.; Umemoto, T. The r40-kDa outer membrane protein human monoclonal antibody protects against Porphyromonas gingivalis-induced bone loss in rats. J. Periodontol. 2007, 78, 933–939. [Google Scholar] [CrossRef]
- Namikoshi, J.; Otake, S.; Maeba, S.; Hayakawa, M.; Abiko, Y.; Yamamoto, M. Specific antibodies induced by nasally administered 40-kDa outer membrane protein of Porphyromonas gingivalis inhibits coaggregation activity of P. gingivalis. Vaccine 2003, 22, 250–256. [Google Scholar] [CrossRef]
- Zhang, T.; Hashizume, T.; Kurita-Ochiai, T.; Yamamoto, M. Sublingual vaccination with outer membrane protein of Porphyromonas gingivalis and Flt3 ligand elicits protective immunity in the oral cavity. Biochem. Biophys. Res. Commun. 2009, 390, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Romero-Lastra, P.; Sánchez, M.C.; Llama-Palacios, A.; Figuero, E.; Herrera, D.; Sanz, M. Gene expression of Porphyromonas gingivalis ATCC 33277 when growing in an in vitro multispecies biofilm. PLoS ONE 2019, 14, e0221234. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E.; Kantyka, T.; Plaza, K.; Schmidt, K.H.; Pfister, W.; Potempa, J.; Eick, S. Benzamidine derivatives inhibit the virulence of Porphyromonas gingivalis. Mol. Oral Microbiol. 2013, 28, 192–203. [Google Scholar] [CrossRef]
- Hinode, D.; Grenier, D.; Mayrand, D. Purification and characterization of a DnaK-like and a GroEL-like protein from Porphyromonas gingivalis. Anaerobe 1995, 1, 283–290. [Google Scholar] [CrossRef]
- Hinode, D.; Nakamura, R.; Grenier, D.; Mayrand, D. Cross-reactivity of specific antibodies directed to heat shock proteins from periodontopathogenic bacteria and of human origin [corrected]. Oral Microbiol. Immunol. 1998, 13, 55–58. [Google Scholar] [CrossRef]
- Choi, J.I.; Choi, K.S.; Yi, N.N.; Kim, U.S.; Choi, J.S.; Kim, S.J. Recognition and phagocytosis of multiple periodontopathogenic bacteria by anti-Porphyromonas gingivalis heat-shock protein 60 antisera. Oral Microbiol. Immunol. 2005, 20, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Yi, N.N.; Kim, U.S.; Choi, J.S.; Kim, S.J.; Choi, J.I. Porphyromonas gingivalis heat shock protein vaccine reduces the alveolar bone loss induced by multiple periodontopathogenic bacteria. J. Periodontal Res. 2006, 41, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.K.; Zhang, J.J.; Gan, D.; Zou, J.K.; Wu, R.X.; Tian, Y.; Yin, Y.; Li, X.; Chen, F.M.; He, X.T. Roles of extracellular vesicles in periodontal homeostasis and their therapeutic potential. J. Nanobiotechnol. 2022, 20, 545. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H.; Hirota, K.; Yoshida, K.; Weng, Y.; He, Y.; Shiotsu, N.; Ikegame, M.; Uchida-Fukuhara, Y.; Tanai, A.; Guo, J. Outer membrane vesicles of Porphyromonas gingivalis: Novel communication tool and strategy. Jpn. Dent. Sci. Rev. 2021, 57, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Nakao, R.; Hasegawa, H.; Ochiai, K.; Takashiba, S.; Ainai, A.; Ohnishi, M.; Watanabe, H.; Senpuku, H. Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS ONE 2011, 6, e26163. [Google Scholar] [CrossRef] [PubMed]
- Nakao, R.; Hasegawa, H.; Dongying, B.; Ohnishi, M.; Senpuku, H. Assessment of outer membrane vesicles of periodontopathic bacterium Porphyromonas gingivalis as possible mucosal immunogen. Vaccine 2016, 34, 4626–4634. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, Y. Research progress in the development of natural-product-based mucosal vaccine adjuvants. Front. Immunol. 2023, 14, 1152855. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, F.Z.; Skwarczynski, M.; Toth, I. Developments in Vaccine Adjuvants. Methods Mol. Biol. 2022, 2412, 145–178. [Google Scholar] [CrossRef]
- Lavelle, E.C.; Ward, R.W. Mucosal vaccines—Fortifying the frontiers. Nat. Rev. Immunol. 2022, 22, 236–250. [Google Scholar] [CrossRef]
- Montero, D.A.; Vidal, R.M.; Velasco, J.; George, S.; Lucero, Y.; Gómez, L.A.; Carreño, L.J.; García-Betancourt, R.; O’Ryan, M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front. Med. 2023, 10, 1155751. [Google Scholar] [CrossRef]
- Kim, T.G.; Huy, N.X.; Kim, M.Y.; Jeong, D.K.; Jang, Y.S.; Yang, M.S.; Langridge, W.H.; Lee, J.Y. Immunogenicity of a cholera toxin B subunit Porphyromonas gingivalis fimbrial antigen fusion protein expressed in E. coli. Mol. Biotechnol. 2009, 41, 157–164. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Q.B.; Balkovetz, D.F.; Lewis, J.P.; Clements, J.D.; Michalek, S.M.; Katz, J. Effectiveness of the B subunit of cholera toxin in potentiating immune responses to the recombinant hemagglutinin/adhesin domain of the gingipain Kgp from Porphyromonas gingivalis. Vaccine 2005, 23, 4734–4744. [Google Scholar] [CrossRef] [PubMed]
- Qadri, F.; Akhtar, M.; Bhuiyan, T.R.; Chowdhury, M.I.; Ahmed, T.; Rafique, T.A.; Khan, A.; Rahman, S.I.A.; Khanam, F.; Lundgren, A.; et al. Safety and immunogenicity of the oral, inactivated, enterotoxigenic Escherichia coli vaccine ETVAX in Bangladeshi children and infants: A double-blind, randomised, placebo-controlled phase 1/2 trial. Lancet Infect. Dis. 2020, 20, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Chowdhury, M.I.; Bhuiyan, T.R.; Kaim, J.; Ahmed, T.; Rafique, T.A.; Khan, A.; Rahman, S.I.A.; Khanam, F.; Begum, Y.A.; et al. Evaluation of the safety and immunogenicity of the oral inactivated multivalent enterotoxigenic Escherichia coli vaccine ETVAX in Bangladeshi adults in a double-blind, randomized, placebo-controlled Phase I trial using electrochemiluminescence and ELISA assays for immunogenicity analyses. Vaccine 2019, 37, 5645–5656. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Baldwin, J.; Brar, D.; Salunke, D.B.; Petrovsky, N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr. Opin. Chem. Biol. 2022, 70, 102172. [Google Scholar] [CrossRef]
- Luchner, M.; Reinke, S.; Milicic, A. TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases. Pharmaceutics 2021, 13, 142. [Google Scholar] [CrossRef]
- Lamoot, A.; Jangra, S.; Laghlali, G.; Warang, P.; Singh, G.; Chang, L.A.; Park, S.C.; Singh, G.; De Swarte, K.; Zhong, Z.; et al. Lipid Nanoparticle Encapsulation Empowers Poly(I:C) to Activate Cytoplasmic RLRs and Thereby Increases Its Adjuvanticity. Small 2023, 20, e2306892. [Google Scholar] [CrossRef]
- Ko, K.H.; Cha, S.B.; Lee, S.H.; Bae, H.S.; Ham, C.S.; Lee, M.G.; Kim, D.H.; Han, S.H. A novel defined TLR3 agonist as an effective vaccine adjuvant. Front. Immunol. 2023, 14, 1075291. [Google Scholar] [CrossRef]
- Stahl-Hennig, C.; Eisenblätter, M.; Jasny, E.; Rzehak, T.; Tenner-Racz, K.; Trumpfheller, C.; Salazar, A.M.; Uberla, K.; Nieto, K.; Kleinschmidt, J.; et al. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog. 2009, 5, e1000373. [Google Scholar] [CrossRef]
- Mata-Haro, V.; Cekic, C.; Martin, M.; Chilton, P.M.; Casella, C.R.; Mitchell, T.C. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 2007, 316, 1628–1632. [Google Scholar] [CrossRef]
- Heine, H.; Zamyatina, A. Therapeutic Targeting of TLR4 for Inflammation, Infection, and Cancer: A Perspective for Disaccharide Lipid A Mimetics. Pharmaceuticals 2022, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Duthie, M.S.; Windish, H.P.; Fox, C.B.; Reed, S.G. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 2011, 239, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M.; Collignon, C.; Hervé, C.; Chalon, A.; Welsby, I.; Detienne, S.; van Helden, M.J.; Dutta, S.; Genito, C.J.; Waters, N.C.; et al. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity. npj Vaccines 2017, 2, 25. [Google Scholar] [CrossRef] [PubMed]
- Haghshenas, M.R.; Mousavi, T.; Kheradmand, M.; Afshari, M.; Moosazadeh, M. Efficacy of Human Papillomavirus L1 Protein Vaccines (Cervarix and Gardasil) in Reducing the Risk of Cervical Intraepithelial Neoplasia: A Meta-analysis. Int. J. Prev. Med. 2017, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Fabrizi, F.; Cerutti, R.; Nardelli, L.; Tripodi, F.; Messa, P. HBV vaccination with Fendrix is effective and safe in pre-dialysis CKD population. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Khim, K.; Puth, S.; Radhakrishnan, K.; Nguyen, T.D.; Lee, Y.S.; Jung, C.H.; Lee, S.E.; Rhee, J.H. Deglycosylation of eukaryotic-expressed flagellin restores adjuvanticity. npj Vaccines 2023, 8, 139. [Google Scholar] [CrossRef] [PubMed]
- Clasen, S.J.; Bell, M.E.W.; Borbón, A.; Lee, D.H.; Henseler, Z.M.; de la Cuesta-Zuluaga, J.; Parys, K.; Zou, J.; Wang, Y.; Altmannova, V.; et al. Silent recognition of flagellins from human gut commensal bacteria by Toll-like receptor 5. Sci. Immunol. 2023, 8, eabq7001. [Google Scholar] [CrossRef] [PubMed]
- Puth, S.; Hong, S.H.; Park, M.J.; Lee, H.H.; Lee, Y.S.; Jeong, K.; Kang, I.C.; Koh, J.T.; Moon, B.; Park, S.C.; et al. Mucosal immunization with a flagellin-adjuvanted Hgp44 vaccine enhances protective immune responses in a murine Porphyromonas gingivalis infection model. Hum. Vaccin. Immunother. 2017, 13, 2794–2803. [Google Scholar] [CrossRef] [PubMed]
- Khim, K.; Bang, Y.J.; Puth, S.; Choi, Y.; Lee, Y.S.; Jeong, K.; Lee, S.E.; Rhee, J.H. Deimmunization of flagellin for repeated administration as a vaccine adjuvant. npj Vaccines 2021, 6, 116. [Google Scholar] [CrossRef]
- Kayraklioglu, N.; Horuluoglu, B.; Klinman, D.M. CpG Oligonucleotides as Vaccine Adjuvants. Methods Mol. Biol. 2021, 2197, 51–85. [Google Scholar] [CrossRef]
- Iho, S.; Maeyama, J.; Suzuki, F. CpG oligodeoxynucleotides as mucosal adjuvants. Hum. Vaccin. Immunother. 2015, 11, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hashizume, T.; Kurita-Ochiai, T.; Fujihashi, K.; Yamamoto, M. Oral immunization with Porphyromonas gingivalis outer membrane protein and CpGoligodeoxynucleotides elicits T helper 1 and 2 cytokines for enhanced protective immunity. Mol. Oral Microbiol. 2010, 25, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.D. Development of the CpG Adjuvant 1018: A Case Study. Methods Mol. Biol. 2017, 1494, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Carlson, K.N.; Verhagen, J.C.; Jennings, H.; Verhoven, B.; McMorrow, S.; Pavan-Guimaraes, J.; Chlebeck, P.; Al-Adra, D.P. Single-cell RNA sequencing distinguishes dendritic cell subsets in the rat, allowing advanced characterization of the effects of FMS-like tyrosine kinase 3 ligand. Scand. J. Immunol. 2022, 96, e13159. [Google Scholar] [CrossRef]
- Rahman, T.; Das, A.; Abir, M.H.; Nafiz, I.H.; Mahmud, A.R.; Sarker, M.R.; Emran, T.B.; Hassan, M.M. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023, 169, 156268. [Google Scholar] [CrossRef] [PubMed]
- Tovey, M.G.; Lallemand, C. Adjuvant activity of cytokines. Methods Mol. Biol. 2010, 626, 287–309. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, X.; Jiang, G.; Yang, P. Construction of a sIgA-enhancing anti-Porphyromonas gingivalis FimA vaccine and nasal immunization in mice. Immunol. Lett. 2006, 107, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Ma, J.; Dong, Q.; Liu, Q. Live bacterial vaccine vector and delivery strategies of heterologous antigen: A review. Immunol. Lett. 2018, 197, 70–77. [Google Scholar] [CrossRef]
- Sharma, A.; Honma, K.; Evans, R.T.; Hruby, D.E.; Genco, R.J. Oral immunization with recombinant Streptococcus gordonii expressing porphyromonas gingivalis FimA domains. Infect. Immun. 2001, 69, 2928–2934. [Google Scholar] [CrossRef]
- Kozarov, E.; Miyashita, N.; Burks, J.; Cerveny, K.; Brown, T.A.; McArthur, W.P.; Progulske-Fox, A. Expression and immunogenicity of hemagglutinin A from Porphyromonas gingivalis in an avirulent Salmonella enterica serovar typhimurium vaccine strain. Infect. Immun. 2000, 68, 732–739. [Google Scholar] [CrossRef]
- Isoda, R.; Simanski, S.P.; Pathangey, L.; Stone, A.E.; Brown, T.A. Expression of a Porphyromonas gingivalis hemagglutinin on the surface of a Salmonella vaccine vector. Vaccine 2007, 25, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, N.; Zhang, X.; Wang, M.; Liu, Y.; Shi, Y. Potentials of saponins-based adjuvants for nasal vaccines. Front. Immunol. 2023, 14, 1153042. [Google Scholar] [CrossRef]
- Lee, W.; Suresh, M. Vaccine adjuvants to engage the cross-presentation pathway. Front. Immunol. 2022, 13, 940047. [Google Scholar] [CrossRef] [PubMed]
- Skene, C.D.; Sutton, P. Saponin-adjuvanted particulate vaccines for clinical use. Methods 2006, 40, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Lewis, J.P.; Michalek, S.M.; Katz, J. Role of CD80 and CD86 in host immune responses to the recombinant hemagglutinin domain of Porphyromonas gingivalis gingipain and in the adjuvanticity of cholera toxin B and monophosphoryl lipid A. Vaccine 2007, 25, 6201–6210. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Kusumoto, Y.; Kiyono, H.; McGhee, J.R.; Hamada, S. Occurrence of antigen-specific B cells following oral or parenteral immunization with Porphyromonas gingivalis fimbriae. Int. Immunol. 1992, 4, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Shimauchi, H.; Hamada, S. Mucosal and systemic immune responses in BALB/c mice to Bacteroides gingivalis fimbriae administered orally. Infect. Immun. 1989, 57, 3466–3471. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, K.; Ishihara, K.; Kimizuka, R.; Okuda, K. Arg-gingipain A DNA vaccine prevents alveolar bone loss in mice. J. Dent. Res. 2007, 86, 446–450. [Google Scholar] [CrossRef]
- Wang, N.; Chen, M.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release 2019, 303, 130–150. [Google Scholar] [CrossRef] [PubMed]
- Chatzikleanthous, D.; O’Hagan, D.T.; Adamo, R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol. Pharm. 2021, 18, 2867–2888. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef] [PubMed]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 2021, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Apostólico Jde, S.; Lunardelli, V.A.; Coirada, F.C.; Boscardin, S.B.; Rosa, D.S. Adjuvants: Classification, Modus Operandi, and Licensing. J. Immunol. Res. 2016, 2016, 1459394. [Google Scholar] [CrossRef]
- Mdanda, S.; Ubanako, P.; Kondiah, P.P.D.; Kumar, P.; Choonara, Y.E. Recent Advances in Microneedle Platforms for Transdermal Drug Delivery Technologies. Polymers 2021, 13, 2405. [Google Scholar] [CrossRef]
- Creighton, R.L.; Woodrow, K.A. Microneedle-Mediated Vaccine Delivery to the Oral Mucosa. Adv. Healthc. Mater. 2019, 8, e1801180. [Google Scholar] [CrossRef] [PubMed]
- Henry, S.; McAllister, D.V.; Allen, M.G.; Prausnitz, M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 1998, 87, 922–925. [Google Scholar] [CrossRef]
- Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258. [Google Scholar] [CrossRef]
- Chang, H.; Chew, S.W.T.; Zheng, M.; Lio, D.C.S.; Wiraja, C.; Mei, Y.; Ning, X.; Cui, M.; Than, A.; Shi, P.; et al. Cryomicroneedles for transdermal cell delivery. Nat. Biomed. Eng. 2021, 5, 1008–1018. [Google Scholar] [CrossRef]
- DeMuth, P.C.; Min, Y.; Huang, B.; Kramer, J.A.; Miller, A.D.; Barouch, D.H.; Hammond, P.T.; Irvine, D.J. Polymer multilayer tattooing for enhanced DNA vaccination. Nat. Mater. 2013, 12, 367–376. [Google Scholar] [CrossRef]
- Kim, N.W.; Lee, M.S.; Kim, K.R.; Lee, J.E.; Lee, K.; Park, J.S.; Matsumoto, Y.; Jo, D.G.; Lee, H.; Lee, D.S.; et al. Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine. J. Control. Release 2014, 179, 11–17. [Google Scholar] [CrossRef]
- Ma, Y.; Tao, W.; Krebs, S.J.; Sutton, W.F.; Haigwood, N.L.; Gill, H.S. Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity. Pharm. Res. 2014, 31, 2393–2403. [Google Scholar] [CrossRef] [PubMed]
- Trincado, V.; Gala, R.P.; Morales, J.O. Buccal and Sublingual Vaccines: A Review on Oral Mucosal Immunization and Delivery Systems. Vaccines 2021, 9, 1177. [Google Scholar] [CrossRef] [PubMed]
- Mokabari, K.; Iriti, M.; Varoni, E.M. Mucoadhesive Vaccine Delivery Systems for the Oral Mucosa. J. Dent. Res. 2023, 102, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Yewale, C.; Rathi, M.N.; Misra, A. Mucosal immunization: A review of strategies and challenges. Crit. Rev. Ther. Drug Carrier Syst. 2014, 31, 273–303. [Google Scholar] [CrossRef]
- Corthésy, B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol. 2013, 4, 185. [Google Scholar] [CrossRef] [PubMed]
- Saraf, S.; Jain, S.; Sahoo, R.N.; Mallick, S. Present Scenario of M-Cell Targeting Ligands for Oral Mucosal Immunization. Curr. Drug Targets 2020, 21, 1276–1284. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Sun, Y.; Cui, H.; Zhu, S.J.; Qiu, H.J. Mucosal vaccines: Strategies and challenges. Immunol. Lett. 2020, 217, 116–125. [Google Scholar] [CrossRef]
- Shukla, A.; Khatri, K.; Gupta, P.N.; Goyal, A.K.; Mehta, A.; Vyas, S.P. Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J. Pharm. Pharm. Sci. 2008, 11, 59–66. [Google Scholar] [CrossRef]
- Paris, A.L.; Colomb, E.; Verrier, B.; Anjuère, F.; Monge, C. Sublingual vaccination and delivery systems. J. Control. Release 2021, 332, 553–562. [Google Scholar] [CrossRef]
- He, S.; Mu, H. Microenvironmental pH Modification in Buccal/Sublingual Dosage Forms for Systemic Drug Delivery. Pharmaceutics 2023, 15, 637. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Michel, D.; Getson, H.M.; Chitanda, J.M.; Verrall, R.E.; Badea, I. Development of amino acid substituted gemini surfactant-based mucoadhesive gene delivery systems for potential use as noninvasive vaginal genetic vaccination. Nanomedicine 2015, 10, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Azegami, T.; Yuki, Y.; Sawada, S.; Mejima, M.; Ishige, K.; Akiyoshi, K.; Itoh, H.; Kiyono, H. Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal Immunol. 2017, 10, 1351–1360. [Google Scholar] [CrossRef]
- Tissot, A.C.; Maurer, P.; Nussberger, J.; Sabat, R.; Pfister, T.; Ignatenko, S.; Volk, H.D.; Stocker, H.; Müller, P.; Jennings, G.T.; et al. Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: A double-blind, randomised, placebo-controlled phase IIa study. Lancet 2008, 371, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Nakagami, H.; Osako, M.K.; Koriyama, H.; Nakagami, F.; Tomioka, H.; Shimamura, M.; Kurinami, H.; Takami, Y.; Morishita, R.; et al. Therapeutic vaccine against DPP4 improves glucose metabolism in mice. Proc. Natl. Acad. Sci. USA 2014, 111, E1256–E1263. [Google Scholar] [CrossRef] [PubMed]
- Riese, P.; Sakthivel, P.; Trittel, S.; Guzmán, C.A. Intranasal formulations: Promising strategy to deliver vaccines. Expert. Opin. Drug Deliv. 2014, 11, 1619–1634. [Google Scholar] [CrossRef]
- Ashkenazi, S.; Vertruyen, A.; Arístegui, J.; Esposito, S.; McKeith, D.D.; Klemola, T.; Biolek, J.; Kühr, J.; Bujnowski, T.; Desgrandchamps, D.; et al. Superior relative efficacy of live attenuated influenza vaccine compared with inactivated influenza vaccine in young children with recurrent respiratory tract infections. Pediatr. Infect. Dis. J. 2006, 25, 870–879. [Google Scholar] [CrossRef]
- Sloat, B.R.; Cui, Z. Nasal immunization with anthrax protective antigen protein adjuvanted with polyriboinosinic-polyribocytidylic acid induced strong mucosal and systemic immunities. Pharm. Res. 2006, 23, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, Y.; Kurita-Ochiai, T.; Oguchi, S.; Yamamoto, M. Nasal immunization with Porphyromonas gingivalis outer membrane protein decreases P. gingivalis-induced atherosclerosis and inflammation in spontaneously hyperlipidemic mice. Infect. Immun. 2008, 76, 2958–2965. [Google Scholar] [CrossRef]
- Vasel, D.; Sims, T.J.; Bainbridge, B.; Houston, L.; Darveau, R.; Page, R.C. Shared antigens of Porphyromonas gingivalis and Bacteroides forsythus. Oral Microbiol. Immunol. 1996, 11, 226–235. [Google Scholar] [CrossRef]
- Fan, Q.; Sims, T.J.; Nakagawa, T.; Page, R.C. Antigenic cross-reactivity among Porphyromonas gingivalis serotypes. Oral. Microbiol. Immunol. 2000, 15, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Hyer, R.N.; Janssen, R.S. Immunogenicity and safety of a 2-dose hepatitis B vaccine, HBsAg/CpG 1018, in persons with diabetes mellitus aged 60–70 years. Vaccine 2019, 37, 5854–5861. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yan, T.; Zhang, B.; Chen, Y.; Li, Z. Porphyromonas gingivalis Vaccine: Antigens and Mucosal Adjuvants. Vaccines 2024, 12, 619. https://doi.org/10.3390/vaccines12060619
Wang S, Yan T, Zhang B, Chen Y, Li Z. Porphyromonas gingivalis Vaccine: Antigens and Mucosal Adjuvants. Vaccines. 2024; 12(6):619. https://doi.org/10.3390/vaccines12060619
Chicago/Turabian StyleWang, Shuo, Tong Yan, Bingtao Zhang, Yixiang Chen, and Zhitao Li. 2024. "Porphyromonas gingivalis Vaccine: Antigens and Mucosal Adjuvants" Vaccines 12, no. 6: 619. https://doi.org/10.3390/vaccines12060619
APA StyleWang, S., Yan, T., Zhang, B., Chen, Y., & Li, Z. (2024). Porphyromonas gingivalis Vaccine: Antigens and Mucosal Adjuvants. Vaccines, 12(6), 619. https://doi.org/10.3390/vaccines12060619