Studies on the Kinetics of Doxazosin Degradation in Simulated Environmental Conditions and Selected Advanced Oxidation Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Irradiation Systems
2.3. Absorbance Measurements
2.4. Experimental Procedures
2.5. Direct Photolysis
2.6. H2O2—Assisted Photodegradation Process
2.7. Fenton and Photo-Fenton Processes
2.8. Photo Sulfite System
3. Results and Discussion
3.1. Initial Studies
3.2. Direct Photolysis in Laboratory Conditions
3.3. Factors Influencing Photolysis of Doxazosin in Environmental Conditions
3.4. Kinetics of DOX Decomposition Under Influence of Some Advanced Oxidation Processes
3.5. A DFT Mechanistic Study of the DOX Decomposition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Generation and potential engineering solutions. Environ. Technol. Innov. 2017, 8, 40–56. [CrossRef]
- Dimpe, K.M.; Nomngongo, P.N. Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. Trends Anal. Chem. 2016, 82, 199–207. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Combined extraction and microextraction techniques: Recent trends and future perspectives. Trends Anal. Chem. 2018, 103, 74–86. [Google Scholar] [CrossRef]
- Wang, X.; Huang, P.; Ma, X.; Du, X.; Lu, X. Enhanced in-out-tube solid-phase microextraction by molecularly imprinted polymers-coated capillary followed by HPLC for endocrine disrupting chemical analysis. Talanta 2019, 194, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Aznar, R.; Albero, B.; Sanchez-Brunete, C.; Miguel, E.; Martin-Girela, I.; Tadeo, J.L. Simultaneous determination of multiclass emerging contaminants in aquatic plants by ultrasound-assisted matrix solid-phase dispersion and GC-MS. Environ. Sci. Pollut. Res. 2017, 24, 7911–7920. [Google Scholar] [CrossRef]
- Loos RTavazzi, S.; Mariani, G.; Suurkuusk, G.; Paracchini, B.; Umlauf, G. Analysis of emerging contaminants in water, fish and suspended particulate matter (SPM) in the joint danube survey using solid phase extraction followed by UHPLC-MS-MS and GC analysis. Sci. Total Environ. 2017, 607–608, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Jauković, Z.D.; Grujić, S.D.; Bujagić, I.V.M.; Lauśević, M.D. Determination of sterols and steroid hormones in surface water and wastewater using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Microchem. J. 2017, 135, 39–47. [Google Scholar] [CrossRef]
- Ebele, A.J.; Abdallah, M.A.-E.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contracept. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions—A review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [PubMed]
- Blum, K.M.; Andersson, P.L.; Ahrens, L.; Wiberg, K.; Haglund, P. Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants. Sci. Total Environ. 2018, 612, 1532–1542. [Google Scholar] [CrossRef]
- Grandclement, C.; Seyssiecq, I.; Piram, A.; Wong-Wah-Chung, P.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumeng, P. From the conventional biological wastewater treatment to hybrid process, the evaluation of organic micropollutant removal: A review. Water Res. 2017, 111, 297–317. [Google Scholar] [CrossRef] [PubMed]
- Boczkaj, G.; Fernandes, A. Wastewater treatment by means of advanced process at basic pH conditions: A review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar] [CrossRef]
- Gmurek, M.; Olak-Kucharczyk, M.; Ledakowicz, S. Photochemical decomposition of endocrine disrupting compounds—A review. Chem Eng. J. 2017, 310, 437–456. [Google Scholar] [CrossRef]
- Ismail, L.; Ferronato, C.; Fine, L.; Jaber, F.; Chovelon, J.M. Effect of water constituents on the degradation of sulfaclozine in the three systems UV/TiO2, UV/K2S2O8, and UV/TiO2/K2S2O8. Environ. Sci. Pollut. Res. 2018, 25, 2561–2663. [Google Scholar] [CrossRef] [PubMed]
- Fast, S.A.; Gude, V.G.; Truax, D.D.; Martin, J.; Magbanua, B.S. A critical evaluation of advanced oxidation processes for emerging contaminants removal. Environ. Process 2017, 4, 283–302. [Google Scholar] [CrossRef]
- Omar, M.A.; Mohamed, A.-M.I.; Derayea, S.M.; Hammad, M.A.; Mohamed, A.A. An efficient spectrofluorimetric method adopts doxazosin, terazosin and afluzosin coupling with orthophtalaldehyde: Application in human plasma. Spectochim. Acta Part A 2018, 195, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Jekell, A.; Kalani, M.; Kahan, T. The effects of alpha 1-adrenoceptor blockade and angiotensyn converting enzyme inhibition on central and brachial blood pressure and vascular reactivity: The doxazosin-ramipril study. Heart Vessels 2017, 32, 674–684. [Google Scholar] [CrossRef]
- Anzenbacher, P.; Zanger, U.M. Metabolism of Drugs and Other Xenobitics; John Willey & Sons: Weinheim, Germany, 2012. [Google Scholar]
- Ojha, T.; Bakshi, M.; Charkraborti, A.K.; Singh, S. The ICH guidance in practice: Stress decomposition studies on three piperazinyl quinazoline adrenergic receptor—Blocking agents and comparison of their degradation behaviour. J. Pharm. Biomed Anal. 2003, 31, 775–783. [Google Scholar] [CrossRef]
- Zafirou, O.C.; Joussot-Dubien, J.; Zepp, R.G.; Zika, R.G. Photochemistry of natural waters. Environ. Sci. Technol. 1984, 18, 358A–371A. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Liang, J.; Wu, B.; Zuo, J.; Zuo, Y. Role of humic substances in the photodegradation of naproxen under simulated sunlight. Chemosphere 2017, 187, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Canonica, S. Oxidation of organic contaminants induced by excited triplet states. Chimia 2007, 61, 641–644. [Google Scholar] [CrossRef]
- Yang, Y.; Pignatello, J. Participation of halogens in photochemical reactions in natural and treated waters. Molecules 2017, 22, 1684. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Parker, K.M. Halogen radical oxidants in natural and engineered aquatic systems. Environ. Sci. Technol. 2018, 52, 9579–9594. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.G.; Munikrishnappa, C.; Nagraj, B.; Rajashekhar, K.E. Effect of chloride and sulfate ions on the advanced photo Fenton and modified photo-Fenton degradation of alizarin red S. J. Mol. Catal. A Chem. 2013, 374–375, 125–131. [Google Scholar] [CrossRef]
- Zepp, R.G.; Holgne, J.; Bader, H. Nitrate-induced photooxidation of trace organic chemicals in water. Environ. Sci. Technol. 1987, 21, 443–450. [Google Scholar] [CrossRef]
- Calza, P.; Vione, D.; Novelli, A.; Pelizzetti, E.; Minero, C. The role of nitrite and nitrate ions as photosensitizers in the phototransformation of phenolic compounds in seawater. Sci. Total Environ. 2012, 439, 67–75. [Google Scholar] [CrossRef]
- Machutek, A.J.; Morales, J.E.F.; Okano, L.T.; Silvero, C.A.; Quina, F.H. Photolysis of ferric ions in the presence of sulfate or chloride ions: Implications for the photo-Fenton process. Photochem. Photobiol. Sci. 2009, 8, 985–991. [Google Scholar]
- Zepp, R.G.; Faust, B.C.J.; Holgne, J. Hydroxyl formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: The photo-Fenton reaction. Environ. Sci. Technol. 1992, 26, 313–319. [Google Scholar] [CrossRef]
- Gao, H.; Zepp, R.C. Factors influencing photoreactions of dissolved organic matter in a coastal river of the Southeastern United States. Environ. Sci. Technol. 1998, 32, 2940–2946. [Google Scholar] [CrossRef]
- Zepp, R.C.; Schlozhauerm, P.F.; Simmons, M.S.; Miller, G.C.; Baughman, G.L.; Wolfe, N.L. Dynamics of pollutant photoreactions in hydrosphere. Fresenius Z. Anal. Chem. 1984, 319, 119–125. [Google Scholar] [CrossRef]
- Legrini, O.; Oliveros, E.; Braun, A.M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698. [Google Scholar] [CrossRef]
- Jain, B.; Singh, A.K.; Kim, H.; Lichtfouse, E.; Sharma, V.K. Treatment of organic pollutants by homogenous and heterogeneous Fenton reaction process. Environ. Chem. Lett. 2018, 16, 947–967. [Google Scholar] [CrossRef]
- Melin, V.; Hentiquez, A.; Radojkovic, C.; Schwederski, B.; Kaim, W.; Frerr, J.; Contreras, D. Reduction reactivity of catecholamines and their ability to promote a Fenton reaction. Inorg. Chim. Acta 2016, 453, 1–7. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contamination. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Devi, P.; Das, U.; Dalai, A.K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Sci. Total Environ. 2016, 571, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef]
- Guo, Y.; Lou, X.; Fang, C.; Xiao, D.; Wang, Z.; Liu, J. Novel photo-sulfite system: Toward simultaneous transformations of inorganic and organic pollutants. Environ. Sci. Technol. 2013, 47, 11174–11181. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Zhao, Y.Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Barone, W.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comput. Chem. 1998, 19, 404–417. [Google Scholar] [CrossRef]
- El-Desawy, M.; Zayed, M.A.; Ferrag, J. Fragmentation pathway of doxazosin drug: Thermal analysis, mass spectrometry and DFT calculations and NBO analysis. J. Pharm. Appl. Chem. 2017, 3, 45–51. [Google Scholar] [CrossRef]
Studied Process | Used Irradiation | pH | k/min−1 | t1/2/min | % of Degradation | |
---|---|---|---|---|---|---|
Direct photolysis | UV 365 nm | 9 | 2.2 × 10−3 | 314 | 24 | |
UV 254 nm | 5.56 9.0 | 7 × 10−4 4.2 × 10−3 | 986 164 | 13 53 | ||
Suntest | 5.56 9.0 | 4.3 × 10−3 (0–60 min) 3.0 × 10−3 (61–120 min) 1.6 × 10−2 (0–60 min) 1.7 × 10−3 (61–120 min) | 160 (0–60 min) 230 (61–120 min) 44 (0–60 min) 406 (61–120 min) | 46 71 | ||
Direct photolysis in presence of natural matrix | River I | UV365 nm | 7.94 | 2.60 × 10−3 | 266 | 25 |
Suntest | 7.0 × 10−3 | 98 | 54 | |||
River II | UV365 nm | 8.23 | 2.80 × 10−3 | 248 | 27 | |
Suntest | 8.5 × 10−3 | 82 | 61 | |||
River III | UV365 nm | 7.54 | 2.4 × 10−3 | 290 | 23 | |
Suntest | 14.5 × 10−3 | 48 | 80 | |||
River IV | UV365 nm | 7.29 | 3.1 × 10−3 | 223 | 29 | |
Suntest | 11.0 × 10−3 | 64 | 70 | |||
Carbonate buffer | Suntest | 8.3 | 8.0 ×10−3 | 87 | 59 |
Parameter | River 1 | River 2 | River 3 | River 4 | Reference Value | Ref. |
---|---|---|---|---|---|---|
53°7′ N; 23°7′ E | 53°29′ N; 22°44′ E | 52°20′ N; 23°03′ E | 52°57′ N; 22°57′ E | |||
pH | 7.94 | 8.23 | 7.54 | 7.29 | 3–11 | 44, 45 |
Conductivity/μS/cm | 530 | 560 | 330 | 460 | 10–4000 | 46 |
SO42−/mg L−1 | 15.16 | 77.33 | 116.40 | 14.10 | 10–80 | 47 |
NO3−/mg L−1 | 70.00 | 22.84 | 21.88 | 35.58 | <50 | 44, 45, 48 |
Cl−/mg L−1 | 41.40 | 10.70 | 199.00 | 35.50 | 0.4–170 | 49 |
HCO3−/mval L−1 | 5.80 | 5.00 | 4.80 | 5.60 | <14 | 45 |
Ca/mg L−1 | 101.70 | 9.29 | 9.29 | 75.80 | <250 | 50 |
Mg/mg L−1 | 5.98 | 2.82 | 2.57 | 6.20 | <150 | 50 |
Fediss/mg L−1 | 0.33 | 0.23 | 0.04 | 0.77 | <2 | 51 |
TOC (total organic carbon)/mg L−1 | 4.40 | 1.74 | 1.69 | 1.62 | <40 | 52 |
O2(diss)/mg L−1 | 10.88 | 54.70 | 37.30 | 15.40 | >4 | 53 |
Studied Process | Concentration of H2O2/mol dm−3 | Concentration of Fe2+/mol dm−3 | pH | k/min−1 | t1/2/min | % of Degradation |
---|---|---|---|---|---|---|
UV/H2O2 | 5 × 10−4 | 11.6 × 10−3 | 59.7 | 72 | ||
10−4 | 11.9 × 10−3 | 58.5 | 73 | |||
10−2 | - | 8 | 12.10 × 10−3 | 57.2 | 73.5 | |
5 × 10−2 | 12.50 × 10−3 | 55.5 | 74.5 | |||
Classical Fenton reaction | k/min−1mol−1 dm3 | |||||
10−4 | 10−4 | 52.5 | 982 | 15 | ||
2 × 10−4 | 10−4 | 127.6 | 535 | 27 | ||
10 × 10−4 | 10−4 | 332.8 | 200 | 48 | ||
10−4 | 2 × 10−4 | 51.2 | 956 | 12 | ||
10−4 | 5 × 10−4 | 45.0 | 1351 | 11 | ||
10−4 | 10 × 10−4 | 5.5 | 9823 | 1.5 | ||
Photo-Fenton reaction | 10−4 | 10−4 | 86.6 | 657 | 25 | |
2 × 10−4 | 10−4 | 296.0 | 244 | 46 | ||
10 × 10−4 | 10−4 | 3308.0 | 31 | 100 | ||
10−4 | 2 × 10−4 | 3.5 | 71.8 | 785 | 21 | |
10−4 | 5 × 10−4 | 265.0 | 239 | 50 | ||
10−4 | 10 × 10−4 | 53.0 | 1002 | 17 | ||
UV/Fe(III)-SO32− | Concentration of Fe2(SO4)3/mol dm−3 | Concentration of Na2SO3/mol dm−3 | ||||
5 × 10−5 | 10−3 | 2538 | 22 | 61 | ||
5 × 10−5 | 2 × 10−3 | 1324 | 41 | 63 | ||
5 × 10−5 | 3 × 10−3 | 715 | 77 | 59 | ||
5 × 10−5 | 4 × 10−3 | 394 | 58 | 58 | ||
10−4 | 10−3 | 7892 | 7 | 75 | ||
1.5 × 10−4 | 10−3 | 587 | 93 | 66 | ||
2 × 10−4 | 10−3 | 544 | 100 | 64 | ||
Vis/Fe(III)-SO32 | 10−4 | 10−3 | 1986 | 3 | 100 | |
Vis/Fe(III)-SO32/TBA | 10−4 | 10−3 | 75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpinska, J.; Sokol, A.; Koldys, J.; Ratkiewicz, A. Studies on the Kinetics of Doxazosin Degradation in Simulated Environmental Conditions and Selected Advanced Oxidation Processes. Water 2019, 11, 1001. https://doi.org/10.3390/w11051001
Karpinska J, Sokol A, Koldys J, Ratkiewicz A. Studies on the Kinetics of Doxazosin Degradation in Simulated Environmental Conditions and Selected Advanced Oxidation Processes. Water. 2019; 11(5):1001. https://doi.org/10.3390/w11051001
Chicago/Turabian StyleKarpinska, Joanna, Aneta Sokol, Jolanta Koldys, and Artur Ratkiewicz. 2019. "Studies on the Kinetics of Doxazosin Degradation in Simulated Environmental Conditions and Selected Advanced Oxidation Processes" Water 11, no. 5: 1001. https://doi.org/10.3390/w11051001