Computer Science > Information Theory
[Submitted on 18 Oct 2016 (v1), last revised 14 Apr 2017 (this version, v2)]
Title:Conic Quadratic Formulations for Wireless Communications Design
View PDFAbstract:As a wide class of resource management problems in wireless communications are nonconvex and even NP-hard in many cases, finding globally optimal solutions to these problems is of little practical interest. Towards more pragmatic approaches, there is a rich literature on iterative methods aiming at finding a solution satisfying necessary optimality conditions to these problems. These approaches have been derived under several similar mathematical frameworks such as inner approximation algorithm, concave-convex procedure, majorization-minimization algorithm, and successive convex approximation (SCA). However, a large portion of existing algorithms arrive at a relatively generic program at each iteration, which is less computationally efficient compared to a more standard convex formulation. This paper proposes \emph{numerically efficient} transformations and approximations for SCA-based methods to deal with nonconvexity in wireless communications design. More specifically, the central goal is to show that various nonconvex problems in wireless communications can be iteratively solved by conic quadratic optimization. We revisit various examples to demonstrate the advantages of the proposed approximations. Theoretical complexity analysis and numerical results show the superior efficiency in terms of computational cost of our proposed solutions compared to the existing ones.
Submission history
From: Quang-Doanh Vu [view email][v1] Tue, 18 Oct 2016 08:46:55 UTC (612 KB)
[v2] Fri, 14 Apr 2017 11:12:40 UTC (611 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.