Condensed Matter > Superconductivity
[Submitted on 29 Apr 2019 (v1), last revised 2 Jul 2020 (this version, v2)]
Title:Type-II Ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline films
View PDFAbstract:Recent emergence of two-dimensional (2D) crystalline superconductors has provided a promising platform to investigate novel quantum physics and potential applications. To reveal essential quantum phenomena therein, ultralow temperature transport investigation on high quality ultrathin superconducting films is critically required, although it has been quite challenging experimentally. Here we report a systematic transport study on the ultrathin crystalline PdTe2 films grown by molecular beam epitaxy (MBE). Interestingly, a new type of Ising superconductivity in 2D centrosymmetric materials is revealed by the detection of large in-plane critical field more than 7 times Pauli limit. Remarkably, in perpendicular magnetic field, we provide solid evidence of anomalous metallic state characterized by the resistance saturation at low temperatures with high quality filters. The robust superconductivity with intriguing quantum phenomena in the macro-size ambient-stable ultrathin PdTe2 films remains almost the same for 20 months, showing great potentials in electronic and spintronic applications.
Submission history
From: Jian Wang [view email][v1] Mon, 29 Apr 2019 13:58:25 UTC (3,181 KB)
[v2] Thu, 2 Jul 2020 04:08:17 UTC (2,247 KB)
Current browse context:
cond-mat.supr-con
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.