Condensed Matter > Strongly Correlated Electrons
[Submitted on 7 Feb 2022 (v1), last revised 21 Feb 2022 (this version, v2)]
Title:Sr$_2$IrO$_4$/Sr$_3$Ir$_2$O$_7$ superlattice for a model 2D quantum Heisenberg antiferromagnet
View PDFAbstract:Spin-orbit entangled pseudospins hold promise for a wide array of exotic magnetism ranging from a Heisenberg antiferromagnet to a Kitaev spin liquid depending on the lattice and bonding geometry, but many of the host materials suffer from lattice distortions and deviate from idealized models in part due to inherent strong pseudospin-lattice coupling. Here, we report on the synthesis of a magnetic superlattice comprising the single ($n$=1) and the double ($n$=2) layer members of the Ruddlesden-Popper series iridates Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ alternating along the $c$-axis, and provide a comprehensive study of its lattice and magnetic structures using scanning transmission electron microscopy, resonant elastic and inelastic x-ray scattering, third harmonic generation measurements and Raman spectroscopy. The superlattice is free of the structural distortions reported for the parent phases and has a higher point group symmetry, while preserving the magnetic orders and pseudospin dynamics inherited from the parent phases, featuring two magnetic transitions with two symmetry-distinct orders. We infer weaker pseudospin-lattice coupling from the analysis of Raman spectra and attribute it to frustrated magnetic-elastic couplings. Thus, the superlattice expresses a near ideal network of effective spin-one-half moments on a square lattice.
Submission history
From: Hoon Kim [view email][v1] Mon, 7 Feb 2022 07:33:49 UTC (8,959 KB)
[v2] Mon, 21 Feb 2022 02:33:00 UTC (8,959 KB)
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.