Computer Science > Information Retrieval
[Submitted on 20 Apr 2023]
Title:ZEBRA: Z-order Curve-based Event Retrieval Approach to Efficiently Explore Automotive Data
View PDFAbstract:Evaluating the performance of software for automated vehicles is predominantly driven by data collected from the real world. While professional test drivers are supported with technical means to semi-automatically annotate driving maneuvers to allow better event identification, simple data loggers in large vehicle fleets typically lack automatic and detailed event classification and hence, extra effort is needed when post-processing such data. Yet, the data quality from professional test drivers is apparently higher than the one from large fleets where labels are missing, but the non-annotated data set from large vehicle fleets is much more representative for typical, realistic driving scenarios to be handled by automated vehicles. However, while growing the data from large fleets is relatively simple, adding valuable annotations during post-processing has become increasingly expensive. In this paper, we leverage Z-order space-filling curves to systematically reduce data dimensionality while preserving domain-specific data properties, which allows us to explore even large-scale field data sets to spot interesting events orders of magnitude faster than processing time-series data directly. Furthermore, the proposed concept is based on an analytical approach, which preserves explainability for the identified events.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.