Computer Science > Computers and Society
[Submitted on 13 Mar 2024]
Title:Towards a Privacy and Security-Aware Framework for Ethical AI: Guiding the Development and Assessment of AI Systems
View PDFAbstract:As artificial intelligence continues its unprecedented global expansion, accompanied by a proliferation of benefits, an increasing apprehension about the privacy and security implications of AI-enabled systems emerges. The pivotal question of effectively controlling AI development at both jurisdictional and organizational levels has become a prominent theme in contemporary discourse. While the European Parliament and Council have taken a decisive step by reaching a political agreement on the EU AI Act, the first comprehensive AI law, organizations still find it challenging to adapt to the fast-evolving AI landscape, lacking a universal tool for evaluating the privacy and security dimensions of their AI models and systems. In response to this critical challenge, this study conducts a systematic literature review spanning the years 2020 to 2023, with a primary focus on establishing a unified definition of key concepts in AI Ethics, particularly emphasizing the domains of privacy and security. Through the synthesis of knowledge extracted from the SLR, this study presents a conceptual framework tailored for privacy- and security-aware AI systems. This framework is designed to assist diverse stakeholders, including organizations, academic institutions, and governmental bodies, in both the development and critical assessment of AI systems. Essentially, the proposed framework serves as a guide for ethical decision-making, fostering an environment wherein AI is developed and utilized with a strong commitment to ethical principles. In addition, the study unravels the key issues and challenges surrounding the privacy and security dimensions, delineating promising avenues for future research, thereby contributing to the ongoing dialogue on the globalization and democratization of AI ethics.
Submission history
From: Anastasija Nikiforova [view email][v1] Wed, 13 Mar 2024 15:39:57 UTC (1,258 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.