引用本文: |
Citation: |
表面增强光学力与光操纵研究进展
Advances in surface-enhanced optical forces and optical manipulations
-
金属纳米结构在光激发下产生的表面等离激元, 可导致亚波长光场局域、近场增强等效应, 在表面增强光谱、超灵敏传感、微流控芯片、光学力等方面有重要的应用. 对于光学力而言, 首先, 由于表面等离激元共振及其导致的电场增强对于入射波长、几何结构等具有较强的依赖性, 而光学力又与电场分布密切相关, 所以可利用光镊(会聚光束)来操纵或筛选金属纳米颗粒; 其次, 入射光激发金属纳米颗粒聚集体后, 在间隙形成的较大的近场增强和梯度, 也可看作一种“等离激元镊”, 用于操纵其他颗粒; 最后, 当入射光的偏振改变甚至为新型光束的情况下, 光学操纵将具有更高的自由度. 本文首先简要介绍了表面等离激元增强光学力的计算; 之后围绕光镊作用于等离激元金属纳米颗粒, 等离激元镊作用于其他颗粒, 与偏振、新型光场或手性结构相关的等离激元光学力这三个方面, 综述了近年来表面等离激元金属纳米颗粒光学力和光操纵的一些新进展; 最后提出了表面增强光学力与光操纵的若干研究趋势.The localized surface plasmons in metal nanostructures under optical excitation will lead to near-field localization and enhancement, which have shown important applications in surface enhancement spectroscopy, ultra-sensitive sensing, microfluidic chip, enhanced optical force, etc. The plasmon resonance and the resulting electric field enhancement strongly depend on wavelength and structure geometry. As a result, the optical force will be closely related to the field distribution, that is, the optical force can be used to manipulate and sort plasmonic metal structures. The large near-field enhancement and gradient of metal nanoparticle aggregates can also be used as a " plasmonic tweezer” to manipulate other particles. Furthermore, in the case of changing the incident polarization and even for a new type of structured laser beam, the optical manipulation has a higher degree of freedom. In this review, having briefly introduced the plasmon-enhanced optical force, we focus on the recent advances in the following three aspects: 1) the manipulation of plasmonic nanoparticles by optical tweezer, 2) the manipulation of other particles by plasmonic tweezer, and 3) dependence of plasmonic optical force on the polarization, optical angular momentum, structured light and the structured chirality. Comparing with other topics of plasmon- enhanced light-interactions, there is plenty of room for further developing the plasmon-enhanced optical force and optical manipulation. Several research trends can be foreseen. 1) More precise optical manipulating and sorting of nanoparticles (even sub-nanometer). For example, more sensitive special resonant modes (e.g. Fano resonance) of plasmonic nanostructure can be utilized. For some nanostructures with small feature sizes, especially when the gap size is close to 1 nm, the non-local effect has a certain effect on the plasmon resonance. Therefore, when calculating the optical force in this case, non-local effects and possibly other quantum effects should be considered. 2) Richer laser fields, that is, using various new structured fields and chiral structures provides a higher degree of freedom for the optical forces and optical manipulation. Also, the localized surface plasmons can be combined with propagating surface plasmons. 3) Wider applications of plasmonic optical forces, especially in combination with other effects and even interdiscipline, e.g. enhanced spectroscopy, enhanced single particle chemical reactions, nonlinear optical effects, and photothermal manipulations.
-
Keywords:
- surface plasmons /
- metal nanoparticles /
- optical force /
- optical manipulation
[1] Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar
[2] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar
[3] Dholakia K, Reece P, Gu M 2008 Chem. Soc. Rev. 37 42Google Scholar
[4] Spesyvtseva S E S, Dholakia K 2016 ACS Photon. 3 719Google Scholar
[5] Bendix P M, Jauffred L, Norregaard K, Oddershede L B 2014 IEEE J. Sel. Top. Quantum Electron. 20 15
[6] Daly M, Sergides M, Nic Chormaic S 2015 Laser Photon. Rev. 9 309Google Scholar
[7] Bradac C 2018 Adv. Opt. Mater. 6 1800005Google Scholar
[8] Svoboda K, Block S M 1994 Opt. Lett. 19 930Google Scholar
[9] Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar
[10] Li Z, Xu H 2016 Adv. Phys. X 1 492
[11] Shegai T, Li Z, Dadosh T, Zhang Z, Xu H, Haran G 2008 Proc. Natl. Acad. Sci. USA 105 16448Google Scholar
[12] Li Z, Shegai T, Haran G, Xu H 2009 ACS Nano 3 637Google Scholar
[13] Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar
[14] Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801Google Scholar
[15] Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong L, Käll M 2015 ACS Nano 9 3453Google Scholar
[16] Yang C, Wei S, Tong L 2014 Sci. Sin.: Phys. Mech. Astron. 44 1127Google Scholar
[17] Juan M L, Righini M, Quidant R 2011 Nat. Photon. 5 349Google Scholar
[18] Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, Lim C, Qiu C W 2017 Light-Sci. Appl. 6 e17039Google Scholar
[19] Raziman T V, Wolke R J, Martin O J F 2015 Faraday Discuss. 178 421Google Scholar
[20] Polimeno P, Magazzù A, Iatì M A, Patti F, Saija R, Esposti Boschi C D, Donato M G, Gucciardi P G, Jones P H, Volpe G, Maragò O M 2018 J. Quant. Spectrosc. RA 218 131Google Scholar
[21] Shoji T, Tsuboi Y 2014 J. Phys. Chem. Lett. 5 2957Google Scholar
[22] Richards D, Zayats A, Nieto-Vesperinas M, Chaumet P C, Rahmani A 2004 Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 362 719Google Scholar
[23] Urban A S, Carretero-Palacios S, Lutich A A, Lohmuller T, Feldmann J, Jackel F 2014 Nanoscale 6 4458Google Scholar
[24] Yuan Y, Lin Y, Gu B, Panwar N, Tjin S C, Song J, Qu J, Yong K T 2017 Coordin. Chem. Rev. 339 138Google Scholar
[25] Liu J, Li Z 2018 Micromachines 9 232Google Scholar
[26] Gwo S, Chen H Y, Lin M H, Sun L, Li X 2016 Chem. Soc. Rev. 45 5672Google Scholar
[27] Marago O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807Google Scholar
[28] Arias-González J R, Nieto-Vesperinas M 2003 J. Opt. Soc. Am. A 20 1201Google Scholar
[29] Phillips W D 1998 Rev. Mod. Phys. 70 721Google Scholar
[30] Ashkin A 1992 Biophys. J. 61 569Google Scholar
[31] Xu H, Käll M 2002 Phys. Rev. Lett. 89 246802Google Scholar
[32] Hallock A J, Redmond P L, Brus L E 2005 Proc. Natl. Acad. Sci. USA 102 1280Google Scholar
[33] Miljković V D, Pakizeh T, Sepulveda B, Johansson P, Käll M 2010 J. Phys. Chem. C 114 7472Google Scholar
[34] Chu P, Mills D L 2007 Phys. Rev. Lett. 99 127401Google Scholar
[35] Li Z, Käll M, Xu H 2008 Phys. Rev. B 77 085412Google Scholar
[36] Zelenina A S, Quidant R, Nieto-Vesperinas M 2007 Opt. Lett. 32 1156Google Scholar
[37] Kohoutek J, Dey D, Bonakdar A, Gelfand R, Sklar A, Memis O G, Mohseni H 2011 Nano Lett. 11 3378Google Scholar
[38] Nome R A, Guffey M J, Scherer N F, Gray S K 2009 J. Phys. Chem. A 113 4408Google Scholar
[39] Prikulis J, Svedberg F, Käll M, Enger J, Ramser K, Goksör M, Hanstorp D 2004 Nano Lett. 4 115Google Scholar
[40] Svedberg F, Li Z, Xu H, Käll M 2006 Nano Lett. 6 2639Google Scholar
[41] Fazio B, D’Andrea C, Foti A, Messina E, Irrera A, Donato M G, Villari V, Micali N, Maragò O M, Gucciardi P G 2016 Sci. Rep. 6 26952Google Scholar
[42] Xu H, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar
[43] Tong L, Miljkovic V D, Johansson P, Käll M 2011 Nano Lett. 11 4505Google Scholar
[44] Herrmann L O, Valev V K, Tserkezis C, Barnard J S, Kasera S, Scherman O A, Aizpurua J, Baumberg J J 2014 Nat. Commun. 5 4568Google Scholar
[45] Toussaint K C, Liu M, Pelton M, Pesic J, Guffey M J, Guyot-Sionnest P, Scherer N F 2007 Opt. Express 15 12017Google Scholar
[46] Liu H, Ng J, Wang S B, Lin Z F, Hang Z H, Chan C T, Zhu S N 2011 Phys. Rev. Lett. 106 087401Google Scholar
[47] Tumkur T U, Yang X, Cerjan B, Halas N J, Nordlander P, Thomann I 2016 Nano Lett. 16 7942Google Scholar
[48] Tumkur T, Yang X, Zhang C, Yang J, Zhang Y, Naik G V, Nordlander P, Halas N J 2018 Nano Lett. 18 2040Google Scholar
[49] Zhang C, Tumkur T, Yang J, Lou M, Dong L, Zhou L, Nordlander P, Halas N J 2018 Nano Lett. 18 6509Google Scholar
[50] Merlein J, Kahl M, Zuschlag A, Sell A, Halm A, Boneberg J, Leiderer P, Leitenstorfer A, Bratschitsch R 2008 Nat. Photon. 2 230Google Scholar
[51] Hansen P M, Bhatia V K, Harrit N, Oddershede L 2005 Nano Lett. 5 1937Google Scholar
[52] Zelenina A S, Quidant R, Badenes G, Nieto-Vesperinas M 2006 Opt. Lett. 31 2054Google Scholar
[53] Gargiulo J, Violi I L, Cerrota S, Chvátal L, Cortés E, Perassi E M, Diaz F, Zemánek P, Stefani F D 2017 ACS Nano 11 9678Google Scholar
[54] Huergo M A, Maier C M, Castez M F, Vericat C, Nedev S, Salvarezza R C, Urban A S, Feldmann J 2016 ACS Nano 10 3614Google Scholar
[55] Li Z, Zhang S, Tong L, Wang P, Dong B, Xu H 2013 ACS Nano 8 701
[56] Chen H, Liu S, Zi J, Lin Z 2015 ACS Nano 9 1926Google Scholar
[57] Chen H, Ye Q, Zhang Y, Shi L, Liu S, Jian Z, Lin Z 2017 Phys. Rev. A 96 023809Google Scholar
[58] Cao T, Mao L, Gao D, Ding W, Qiu C W 2016 Nanoscale 8 5657Google Scholar
[59] Gao D, Shi R, Huang Y, Gao L 2017 Phys. Rev. A 96 043826Google Scholar
[60] Bian X, Gao D L, Gao L 2017 Opt. Express 25 24566Google Scholar
[61] Yang Y, Shi Z, Li J, Li Z Y 2016 Photon. Res. 4 65Google Scholar
[62] Yang Y, Jiang X, Ruan B, Dai X, Xiang Y 2018 Opt. Mater. Express 8 211
[63] Wenjie Y, Longkun Y, Jianing C, Yaqi W, Peijie W, Zhipeng L 2017 Adv. Mater. 29 1702893Google Scholar
[64] Nan F, Yan Z 2018 Nano Lett. 18 4500Google Scholar
[65] Wu W, Zhu X, Zuo Y, Liang L, Zhang S, Zhang X, Yang Y 2016 ACS Photon. 3 2497Google Scholar
[66] Volpe G, Quidant R, Badenes G, Petrov D 2006 Phys. Rev. Lett. 96 238101Google Scholar
[67] Ivinskaya A, Petrov M I, Bogdanov A A, Shishkin I, Ginzburg P, Shalin A S 2017 Light-Sci. Appl. 6 e16258Google Scholar
[68] Righini M, Zelenina A S, Girard C, Quidant R 2007 Nat. Phys. 3 477Google Scholar
[69] Righini M, Volpe G, Girard C, Petrov D, Quidant R 2008 Phys. Rev. Lett. 100 186804Google Scholar
[70] Guo G, Feng T, Xu Y 2018 Opt. Lett. 43 4961Google Scholar
[71] Chen J, Ng J, Lin Z, Chan C T 2011 Nat. Photon. 5 531Google Scholar
[72] Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882Google Scholar
[73] Yang L, Li P L, Wang H, Li Z 2018 Chin. Phys. B 27 94216Google Scholar
[74] Li P, Pan D, Yang L, Wei H, He S, Xu H, Li Z 2019 Nanoscale 11 2153Google Scholar
[75] Yang C, Pan D, Tong L, Xu H 2016 Nanoscale 8 19195Google Scholar
[76] Lu J, Yang H, Zhou L, Yang Y, Luo S, Li Q, Qiu M 2017 Phys. Rev. Lett. 118 043601Google Scholar
[77] Huang Q, Lee J, Arce F T, Yoon I, Angsantikul P, Liu J, Shi Y, Villanueva J, Thamphiwatana S, Ma X, Zhang L, Chen S, Lal R, Sirbuly D J 2017 Nat. Photon. 11 352Google Scholar
[78] Righini M, Ghenuche P, Cherukulappurath S, Myroshnychenko V, García de Abajo F J, Quidant R 2009 Nano Lett. 9 3387Google Scholar
[79] Grigorenko A N, Roberts N W, Dickinson M R, Zhang Y 2008 Nat. Photon. 2 365Google Scholar
[80] Zhang W, Huang L, Santschi C, Martin O J 2010 Nano Lett. 10 1006Google Scholar
[81] Tsuboi Y, Shoji T, Kitamura N, Takase M, Murakoshi K, Mizumoto Y, Ishihara H 2010 J. Phys. Chem. Lett. 1 2327Google Scholar
[82] Roxworthy B J, Ko K D, Kumar A, Fung K H, Chow E K, Liu G L, Fang N X, Toussaint Jr K C 2012 Nano Lett. 12 796Google Scholar
[83] Tanaka Y, Kaneda S, Sasaki K 2013 Nano Lett. 13 2146Google Scholar
[84] Berthelot J, Acimovic S S, Juan M L, Kreuzer M P, Renger J, Quidant R 2014 Nat. Nanotechnol. 9 295Google Scholar
[85] Yoo D, Gurunatha K L, Choi H K, Mohr D A, Ertsgaard C T, Gordon R, Oh S H 2018 Nano Lett. 18 3637Google Scholar
[86] Juan M L, Gordon R, Pang Y, Eftekhari F, Quidant R 2009 Nat. Phys. 5 915Google Scholar
[87] Chen C, Juan M L, Li Y, Maes G, Borghs G, van Dorpe P, Quidant R 2012 Nano Lett. 12 125Google Scholar
[88] Mestres P, Berthelot J, Aćimović S S, Quidant R 2016 Light-Sci. Appl. 5 e16092Google Scholar
[89] Jensen R A, Huang I C, Chen O, Choy J T, Bischof T S, Lončar M, Bawendi M G 2016 ACS Photon. 3 423Google Scholar
[90] Yoon S J, Lee J, Han S, Kim C K, Ahn C W, Kim M K, Lee Y H 2018 Nat. Commun. 9 2218Google Scholar
[91] Sainidou R, Garcia de Abajo F J 2008 Phys. Rev. Lett. 101 136802Google Scholar
[92] Huang W H, Li S F, Xu H T, Xiang Z X, Long Y B, Deng H D 2018 Opt. Express 26 6202Google Scholar
[93] Shao L, Käll M 2018 Adv. Funct. Mater. 28 1706272Google Scholar
[94] Tong L, Miljkovic V D, Käll M 2010 Nano Lett. 10 268Google Scholar
[95] Lehmuskero A, Ogier R, Gschneidtner T, Johansson P, Käll M 2013 Nano Lett. 13 3129Google Scholar
[96] Shao L, Yang Z J, Andrén D, Johansson P, Käll M 2015 ACS Nano 9 12542Google Scholar
[97] Andrén D, Shao L, Odebo Länk N, Aćimović S S, Johansson P, Käll M 2017 ACS Nano 11 10053Google Scholar
[98] Pelton M, Liu M, Kim H Y, Smith G, Guyot-Sionnest P, Scherer N F 2006 Opt. Lett. 31 2075Google Scholar
[99] Wang K, Schonbrun E, Steinvurzel P, Crozier K B 2011 Nat. Commun. 2 469Google Scholar
[100] Kermani H, Rohrbach A 2018 ACS Photon. 5 4660Google Scholar
[101] Zheng Y, Ryan J, Hansen P, Cheng Y T, Lu T J, Hesselink L 2014 Nano Lett. 14 2971Google Scholar
[102] Pan D, Wei H, Gao L, Xu H 2016 Phys. Rev. Lett. 117 166803Google Scholar
[103] Rodríguez-Fortuño F J, Engheta N, Martínez A, Zayats A V 2015 Nat. Commun. 6 8799Google Scholar
[104] Petrov M I, Sukhov S V, Bogdanov A A, Shalin A S, Dogariu A 2016 Laser Photon. Rev. 10 116Google Scholar
[105] Wang K, Schonbrun E, Crozier K B 2009 Nano Lett. 9 2623Google Scholar
[106] Dholakia K, Čižmár T 2011 Nat. Photon. 5 335Google Scholar
[107] Padgett M, Bowman R 2011 Nat. Photon. 5 343Google Scholar
[108] Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H 1998 Nature 394 348Google Scholar
[109] Albaladejo S, Marqués M I, Laroche M, Sáenz J J 2009 Phys. Rev. Lett. 102 113602Google Scholar
[110] Dienerowitz M, Mazilu M, Reece P J, Krauss T F, Dholakia K 2008 Opt. Express 16 4991Google Scholar
[111] Yan Z, Scherer N F 2013 J. Phys. Chem. Lett. 4 2937Google Scholar
[112] Tsai W Y, Huang J S, Huang C B 2014 Nano Lett. 14 547Google Scholar
[113] Zhan Q 2004 Opt. Express 12 3377Google Scholar
[114] Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T, Yuan X 2013 Nat. Commun. 4 2891Google Scholar
[115] Zhang Y, Shen J, Xie Z, Dou X, Min C, Lei T, Liu J, Zhu S, Yuan X 2017 Nanoscale 9 10694Google Scholar
[116] Taylor M A, Waleed M, Stilgoe A B, Rubinsztein-Dunlop H, Bowen W P 2015 Nat. Photon. 9 669Google Scholar
[117] Huft P R, Kolbow J D, Thweatt J T, Lindquist N C 2017 Nano Lett. 17 7920Google Scholar
[118] Liu M, Zentgraf T, Liu Y, Bartal G, Zhang X 2010 Nat. Nanotechnol. 5 570Google Scholar
[119] Wang S B, Chan C T 2014 Nat. Commun. 5 3307Google Scholar
[120] Zhao Y, Saleh A A E, van de Haar M A, Baum B, Briggs J A, Lay A, Reyes-Becerra O A, Dionne J A 2017 Nat. Nanotechnol. 12 1055Google Scholar
[121] Chen H, Jiang Y, Wang N, Lu W, Liu S, Lin Z 2015 Opt. Lett. 40 5530Google Scholar
[122] Kamandi M, Albooyeh M, Veysi M, Rajaei M, Zeng J, Wickramasinghe H K, Capolino F 2018 ACS Photon. 5 4360Google Scholar
[123] Phillips D B, Padgett M J, Hanna S, Ho Y L D, Carberry D M, Miles M J, Simpson S H 2014 Nat. Photon. 8 400Google Scholar
[124] Toscano G, Straubel J, Kwiatkowski A, Rockstuhl C, Evers F, Xu H, Mortensen N A, Wubs M 2015 Nat. Commun. 6 7132Google Scholar
[125] Yang L, Wang H, Fang Y, Li Z 2016 ACS Nano 10 1580Google Scholar
[126] Wang H 2018 Sci. Rep. 8 9589Google Scholar
[127] Wang H, Huang S, Xie W, Lin J, Yang L, Li Z 2018 Proc. SPIE 10824, Plasmonics III 10824 1082404
[128] Ni W, Ba H, Lutich A A, Jäckel F, Feldmann J 2012 Nano Lett. 12 4647Google Scholar
[129] Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005Google Scholar
[130] Hoshina M, Yokoshi N, Okamoto H, Ishihara H 2018 ACS Photon. 5 318Google Scholar
[131] Zhang Y, Shen J, Min C, Jin Y, Jiang Y, Liu J, Zhu S, Sheng Y, Zayats A V, Yuan X 2018 Nano Lett. 18 5538Google Scholar
[132] Ren Y X, Kelly T S, Zhang C, Xu H, Chen Z 2017 Opt. Lett. 42 627Google Scholar
[133] Lin L, Wang M, Peng X, Lissek E N, Mao Z, Scarabelli L, Adkins E, Coskun S, Unalan H E, Korgel B A, Liz-Marzán L M, Florin E L, Zheng Y 2018 Nat. Photon. 12 195Google Scholar
-
图 1 (a)银纳米颗粒二聚体和三聚体间隙中心点的光学势[31]; (b)纳米间隙附近光学势的空间分布[31]; (c)光学力与电场增强的比较[32]; (d)偏振平行或垂直于大小不对称二聚体轴时的光学力[33]; (e)光学力与范德瓦耳斯力的比较[34]; (f)领结型二聚体的光学力分布[37]
Fig. 1. (a) Simulated optical potential U(λ) at the gap between Ag nanoparticles (d = 1 nm) in a trimer and a dimer system in water with a plane wave polarized parallel to the symmetry axis[31]; (b) spatial variation of optical potential U around a trimer (R = 25 nm, d = 1 nm) gap excited at a surface plasmon resonance (λ = 760 nm)[31]; (c) a comparison of the field enhancement to the optical force at the surface of one nanoparticle in the gap[32]; (d) calculated optical force for Ag and Au nanoparticle heterodimers (R1 = 10 nm, R2 = 10−40 nm, d = 2 nm) in the parallel and perpendicular polarization with different energies[33]; (e) the resonant optical force for Ag dimer (R = 30 nm), compared to the van der Waals attraction (black) with the energy of 3 eV (blue) and 3.3 eV (red)[34]; (f) optical force map of a bowtie antenna shows hot spots near the gap and two sides[37].
图 2 (a)光学捕获形成颗粒二聚体后的SERS的增强[40]; (b)激光辐射金纳米颗粒成链及其共振峰的变化[44]; (c)二聚体的光学力成像[47]; (d)AFM辅助的Al-Au纳米盘二聚体形变[49]; (e) AFM和暗场散射光谱仪结合实现纳米光学力控制[50]
Fig. 2. (a) Dark-field images of an Ag nano particle and its dimer. The immobilized particle (I) and trapped particle (T) shows no SERS signal. When T being near-field contact with I, the dimer (P) shows an enhanced SERS signal[40]. (b) The threads develop after adding CB molecules and incident fs laser. A dip at the laser wavelength and a peak at the TCPs emerge[44]. (c) Photo-induced force image of an e-beam fabricated gold dimers. The incident polarization is parallel to the dimer axis[47]. (d) Schematic and SEM images of reshaping of Al-Au nanodisk heterodimers before (left) and after (right) illumination[49]. (e) Schematic of the optical manipulation set-up consisting of an AFM and a dark-field scattering spectroscopy system[50].
图 3 (a)硅核-金壳纳米颗粒能流在高斯激发下的能流[55]; (b)光学势与颗粒半径的关系[55]; (c)金核-银壳纳米颗粒示意图[56]; (d)光学力与波长、核半径的关系[56]
Fig. 3. (a) Energy flow of a Si-Au core-shell sphere under Gaussian beam excitation. The particle is positioned at x = w0/2. The beam waist w0 = 0.5 μm. The white curve and color scale are the direction and logarithmic modulus of the energy flow, respectively[55]. (b) Potential well as a function of the radius under the excitation of λ = 410 nm (black) and 830 nm (red)[55]. (c) Schematic of an Au-Ag core-shell sphere[56]. (d) Phase diagrams of longitudinal optical force Fz acting on the sphere[56].
图 4 金属纳米颗粒形成的等离激元镊 (a)单颗粒阵列[68]; (b)纳米颗粒二聚体阵列[79]; (c)纳米棒二聚体[80]; (d)领结型二聚体[82]; (e)领结型纳米孔[84]; (f)同轴纳米孔[85]
Fig. 4. Plasmonic tweezer: (a) Schematic of the gold particle pattern[68]; (b) schematics of a nanodots substrate[79]; (c) schematic of the individual dimer with a 10 nm gap[80]; (d) Au bowtie nano antenna arrays for highly efficient manipulation[82]; (e) SIBA trapping of a holey fiber, the incident polarization is parallel along the gap axis to excite its transverse mode[84]; (f) optical trapping with a gold coaxial nano-aperture (10 nm gap)[85].
图 5 入射偏振变化引起的金属纳米颗粒转动和纳米马达 (a)银纳米线自转[94]; (b)金纳米颗粒自转[95]; (c)金纳米棒自转[96]; (d)纳米颗粒绕金纳米柱公转[99]; (e)二聚体转向[100]
Fig. 5. Rotation and plasmonic nanomotor. (a) The dark-field images show a silver nanowire is rotated by turning the incident polarization (red arrows)[94]. (b) Schematic of the gold nanoparticle trapped between two glass planes rotates by absorbing spin angular momentum from the circularly polarized beam[95]. (c) Schematic of the gold nanorod rotates in solutions through plasmonic torques of circularly polarized beam[96]. (d) Schematic of trapping and rotation of a nanosphere by the gold nanopillar with linearly polarized light[99]. (e) Schematic of the silver nanoparticle dimer orient along the incident polarization. Two orthogonal polarizations can determine the dimer angle by the difference in the spectral intensity peak[100].
图 6 (a)方解石晶体自转[108]; (b)拉盖尔-高斯光入射下的单个金纳米颗粒运动情况的空间分布[110]; (c)光涡旋引起银纳米线自转[111]; (d) PSPs捕获金颗粒[114]; (e)万字形金纳米马达[118]
Fig. 6. (a) A calcite crystal is parallel with the polarization of the laser beam[108]; (b) spatial points of the movement of a gold nanoparticle with Laguerre-Gaussian beam of L = 2 at λ = 488 nm with 120 mW laser power[110]; (c) schematic of the rotation of a Ag nanowire on a glass substrate induced by an optical vortex[111]; (d) schematic of the metal particles trapped by a PSPs virtual probe[114]; (e) schematic of the gold nano-motor, sandwiched between two silica disks (300 nm thick, 2.2 mm × 2.2 mm). The large silica disk reduces the Brownian motion of the nanoparticles[118].
[1] |
Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar |
[2] |
Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar |
[3] |
Dholakia K, Reece P, Gu M 2008 Chem. Soc. Rev. 37 42Google Scholar |
[4] |
Spesyvtseva S E S, Dholakia K 2016 ACS Photon. 3 719Google Scholar |
[5] |
Bendix P M, Jauffred L, Norregaard K, Oddershede L B 2014 IEEE J. Sel. Top. Quantum Electron. 20 15 |
[6] |
Daly M, Sergides M, Nic Chormaic S 2015 Laser Photon. Rev. 9 309Google Scholar |
[7] |
Bradac C 2018 Adv. Opt. Mater. 6 1800005Google Scholar |
[8] |
Svoboda K, Block S M 1994 Opt. Lett. 19 930Google Scholar |
[9] |
Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar |
[10] |
Li Z, Xu H 2016 Adv. Phys. X 1 492 |
[11] |
Shegai T, Li Z, Dadosh T, Zhang Z, Xu H, Haran G 2008 Proc. Natl. Acad. Sci. USA 105 16448Google Scholar |
[12] |
Li Z, Shegai T, Haran G, Xu H 2009 ACS Nano 3 637Google Scholar |
[13] |
Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar |
[14] |
Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801Google Scholar |
[15] |
Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong L, Käll M 2015 ACS Nano 9 3453Google Scholar |
[16] |
Yang C, Wei S, Tong L 2014 Sci. Sin.: Phys. Mech. Astron. 44 1127Google Scholar |
[17] |
Juan M L, Righini M, Quidant R 2011 Nat. Photon. 5 349Google Scholar |
[18] |
Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, Lim C, Qiu C W 2017 Light-Sci. Appl. 6 e17039Google Scholar |
[19] |
Raziman T V, Wolke R J, Martin O J F 2015 Faraday Discuss. 178 421Google Scholar |
[20] |
Polimeno P, Magazzù A, Iatì M A, Patti F, Saija R, Esposti Boschi C D, Donato M G, Gucciardi P G, Jones P H, Volpe G, Maragò O M 2018 J. Quant. Spectrosc. RA 218 131Google Scholar |
[21] |
Shoji T, Tsuboi Y 2014 J. Phys. Chem. Lett. 5 2957Google Scholar |
[22] |
Richards D, Zayats A, Nieto-Vesperinas M, Chaumet P C, Rahmani A 2004 Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 362 719Google Scholar |
[23] |
Urban A S, Carretero-Palacios S, Lutich A A, Lohmuller T, Feldmann J, Jackel F 2014 Nanoscale 6 4458Google Scholar |
[24] |
Yuan Y, Lin Y, Gu B, Panwar N, Tjin S C, Song J, Qu J, Yong K T 2017 Coordin. Chem. Rev. 339 138Google Scholar |
[25] |
Liu J, Li Z 2018 Micromachines 9 232Google Scholar |
[26] |
Gwo S, Chen H Y, Lin M H, Sun L, Li X 2016 Chem. Soc. Rev. 45 5672Google Scholar |
[27] |
Marago O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807Google Scholar |
[28] |
Arias-González J R, Nieto-Vesperinas M 2003 J. Opt. Soc. Am. A 20 1201Google Scholar |
[29] |
Phillips W D 1998 Rev. Mod. Phys. 70 721Google Scholar |
[30] |
Ashkin A 1992 Biophys. J. 61 569Google Scholar |
[31] |
Xu H, Käll M 2002 Phys. Rev. Lett. 89 246802Google Scholar |
[32] |
Hallock A J, Redmond P L, Brus L E 2005 Proc. Natl. Acad. Sci. USA 102 1280Google Scholar |
[33] |
Miljković V D, Pakizeh T, Sepulveda B, Johansson P, Käll M 2010 J. Phys. Chem. C 114 7472Google Scholar |
[34] |
Chu P, Mills D L 2007 Phys. Rev. Lett. 99 127401Google Scholar |
[35] |
Li Z, Käll M, Xu H 2008 Phys. Rev. B 77 085412Google Scholar |
[36] |
Zelenina A S, Quidant R, Nieto-Vesperinas M 2007 Opt. Lett. 32 1156Google Scholar |
[37] |
Kohoutek J, Dey D, Bonakdar A, Gelfand R, Sklar A, Memis O G, Mohseni H 2011 Nano Lett. 11 3378Google Scholar |
[38] |
Nome R A, Guffey M J, Scherer N F, Gray S K 2009 J. Phys. Chem. A 113 4408Google Scholar |
[39] |
Prikulis J, Svedberg F, Käll M, Enger J, Ramser K, Goksör M, Hanstorp D 2004 Nano Lett. 4 115Google Scholar |
[40] |
Svedberg F, Li Z, Xu H, Käll M 2006 Nano Lett. 6 2639Google Scholar |
[41] |
Fazio B, D’Andrea C, Foti A, Messina E, Irrera A, Donato M G, Villari V, Micali N, Maragò O M, Gucciardi P G 2016 Sci. Rep. 6 26952Google Scholar |
[42] |
Xu H, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar |
[43] |
Tong L, Miljkovic V D, Johansson P, Käll M 2011 Nano Lett. 11 4505Google Scholar |
[44] |
Herrmann L O, Valev V K, Tserkezis C, Barnard J S, Kasera S, Scherman O A, Aizpurua J, Baumberg J J 2014 Nat. Commun. 5 4568Google Scholar |
[45] |
Toussaint K C, Liu M, Pelton M, Pesic J, Guffey M J, Guyot-Sionnest P, Scherer N F 2007 Opt. Express 15 12017Google Scholar |
[46] |
Liu H, Ng J, Wang S B, Lin Z F, Hang Z H, Chan C T, Zhu S N 2011 Phys. Rev. Lett. 106 087401Google Scholar |
[47] |
Tumkur T U, Yang X, Cerjan B, Halas N J, Nordlander P, Thomann I 2016 Nano Lett. 16 7942Google Scholar |
[48] |
Tumkur T, Yang X, Zhang C, Yang J, Zhang Y, Naik G V, Nordlander P, Halas N J 2018 Nano Lett. 18 2040Google Scholar |
[49] |
Zhang C, Tumkur T, Yang J, Lou M, Dong L, Zhou L, Nordlander P, Halas N J 2018 Nano Lett. 18 6509Google Scholar |
[50] |
Merlein J, Kahl M, Zuschlag A, Sell A, Halm A, Boneberg J, Leiderer P, Leitenstorfer A, Bratschitsch R 2008 Nat. Photon. 2 230Google Scholar |
[51] |
Hansen P M, Bhatia V K, Harrit N, Oddershede L 2005 Nano Lett. 5 1937Google Scholar |
[52] |
Zelenina A S, Quidant R, Badenes G, Nieto-Vesperinas M 2006 Opt. Lett. 31 2054Google Scholar |
[53] |
Gargiulo J, Violi I L, Cerrota S, Chvátal L, Cortés E, Perassi E M, Diaz F, Zemánek P, Stefani F D 2017 ACS Nano 11 9678Google Scholar |
[54] |
Huergo M A, Maier C M, Castez M F, Vericat C, Nedev S, Salvarezza R C, Urban A S, Feldmann J 2016 ACS Nano 10 3614Google Scholar |
[55] |
Li Z, Zhang S, Tong L, Wang P, Dong B, Xu H 2013 ACS Nano 8 701 |
[56] |
Chen H, Liu S, Zi J, Lin Z 2015 ACS Nano 9 1926Google Scholar |
[57] |
Chen H, Ye Q, Zhang Y, Shi L, Liu S, Jian Z, Lin Z 2017 Phys. Rev. A 96 023809Google Scholar |
[58] |
Cao T, Mao L, Gao D, Ding W, Qiu C W 2016 Nanoscale 8 5657Google Scholar |
[59] |
Gao D, Shi R, Huang Y, Gao L 2017 Phys. Rev. A 96 043826Google Scholar |
[60] |
Bian X, Gao D L, Gao L 2017 Opt. Express 25 24566Google Scholar |
[61] |
Yang Y, Shi Z, Li J, Li Z Y 2016 Photon. Res. 4 65Google Scholar |
[62] |
Yang Y, Jiang X, Ruan B, Dai X, Xiang Y 2018 Opt. Mater. Express 8 211 |
[63] |
Wenjie Y, Longkun Y, Jianing C, Yaqi W, Peijie W, Zhipeng L 2017 Adv. Mater. 29 1702893Google Scholar |
[64] |
Nan F, Yan Z 2018 Nano Lett. 18 4500Google Scholar |
[65] |
Wu W, Zhu X, Zuo Y, Liang L, Zhang S, Zhang X, Yang Y 2016 ACS Photon. 3 2497Google Scholar |
[66] |
Volpe G, Quidant R, Badenes G, Petrov D 2006 Phys. Rev. Lett. 96 238101Google Scholar |
[67] |
Ivinskaya A, Petrov M I, Bogdanov A A, Shishkin I, Ginzburg P, Shalin A S 2017 Light-Sci. Appl. 6 e16258Google Scholar |
[68] |
Righini M, Zelenina A S, Girard C, Quidant R 2007 Nat. Phys. 3 477Google Scholar |
[69] |
Righini M, Volpe G, Girard C, Petrov D, Quidant R 2008 Phys. Rev. Lett. 100 186804Google Scholar |
[70] |
Guo G, Feng T, Xu Y 2018 Opt. Lett. 43 4961Google Scholar |
[71] |
Chen J, Ng J, Lin Z, Chan C T 2011 Nat. Photon. 5 531Google Scholar |
[72] |
Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882Google Scholar |
[73] |
Yang L, Li P L, Wang H, Li Z 2018 Chin. Phys. B 27 94216Google Scholar |
[74] |
Li P, Pan D, Yang L, Wei H, He S, Xu H, Li Z 2019 Nanoscale 11 2153Google Scholar |
[75] |
Yang C, Pan D, Tong L, Xu H 2016 Nanoscale 8 19195Google Scholar |
[76] |
Lu J, Yang H, Zhou L, Yang Y, Luo S, Li Q, Qiu M 2017 Phys. Rev. Lett. 118 043601Google Scholar |
[77] |
Huang Q, Lee J, Arce F T, Yoon I, Angsantikul P, Liu J, Shi Y, Villanueva J, Thamphiwatana S, Ma X, Zhang L, Chen S, Lal R, Sirbuly D J 2017 Nat. Photon. 11 352Google Scholar |
[78] |
Righini M, Ghenuche P, Cherukulappurath S, Myroshnychenko V, García de Abajo F J, Quidant R 2009 Nano Lett. 9 3387Google Scholar |
[79] |
Grigorenko A N, Roberts N W, Dickinson M R, Zhang Y 2008 Nat. Photon. 2 365Google Scholar |
[80] |
Zhang W, Huang L, Santschi C, Martin O J 2010 Nano Lett. 10 1006Google Scholar |
[81] |
Tsuboi Y, Shoji T, Kitamura N, Takase M, Murakoshi K, Mizumoto Y, Ishihara H 2010 J. Phys. Chem. Lett. 1 2327Google Scholar |
[82] |
Roxworthy B J, Ko K D, Kumar A, Fung K H, Chow E K, Liu G L, Fang N X, Toussaint Jr K C 2012 Nano Lett. 12 796Google Scholar |
[83] |
Tanaka Y, Kaneda S, Sasaki K 2013 Nano Lett. 13 2146Google Scholar |
[84] |
Berthelot J, Acimovic S S, Juan M L, Kreuzer M P, Renger J, Quidant R 2014 Nat. Nanotechnol. 9 295Google Scholar |
[85] |
Yoo D, Gurunatha K L, Choi H K, Mohr D A, Ertsgaard C T, Gordon R, Oh S H 2018 Nano Lett. 18 3637Google Scholar |
[86] |
Juan M L, Gordon R, Pang Y, Eftekhari F, Quidant R 2009 Nat. Phys. 5 915Google Scholar |
[87] |
Chen C, Juan M L, Li Y, Maes G, Borghs G, van Dorpe P, Quidant R 2012 Nano Lett. 12 125Google Scholar |
[88] |
Mestres P, Berthelot J, Aćimović S S, Quidant R 2016 Light-Sci. Appl. 5 e16092Google Scholar |
[89] |
Jensen R A, Huang I C, Chen O, Choy J T, Bischof T S, Lončar M, Bawendi M G 2016 ACS Photon. 3 423Google Scholar |
[90] |
Yoon S J, Lee J, Han S, Kim C K, Ahn C W, Kim M K, Lee Y H 2018 Nat. Commun. 9 2218Google Scholar |
[91] |
Sainidou R, Garcia de Abajo F J 2008 Phys. Rev. Lett. 101 136802Google Scholar |
[92] |
Huang W H, Li S F, Xu H T, Xiang Z X, Long Y B, Deng H D 2018 Opt. Express 26 6202Google Scholar |
[93] |
Shao L, Käll M 2018 Adv. Funct. Mater. 28 1706272Google Scholar |
[94] |
Tong L, Miljkovic V D, Käll M 2010 Nano Lett. 10 268Google Scholar |
[95] |
Lehmuskero A, Ogier R, Gschneidtner T, Johansson P, Käll M 2013 Nano Lett. 13 3129Google Scholar |
[96] |
Shao L, Yang Z J, Andrén D, Johansson P, Käll M 2015 ACS Nano 9 12542Google Scholar |
[97] |
Andrén D, Shao L, Odebo Länk N, Aćimović S S, Johansson P, Käll M 2017 ACS Nano 11 10053Google Scholar |
[98] |
Pelton M, Liu M, Kim H Y, Smith G, Guyot-Sionnest P, Scherer N F 2006 Opt. Lett. 31 2075Google Scholar |
[99] |
Wang K, Schonbrun E, Steinvurzel P, Crozier K B 2011 Nat. Commun. 2 469Google Scholar |
[100] |
Kermani H, Rohrbach A 2018 ACS Photon. 5 4660Google Scholar |
[101] |
Zheng Y, Ryan J, Hansen P, Cheng Y T, Lu T J, Hesselink L 2014 Nano Lett. 14 2971Google Scholar |
[102] |
Pan D, Wei H, Gao L, Xu H 2016 Phys. Rev. Lett. 117 166803Google Scholar |
[103] |
Rodríguez-Fortuño F J, Engheta N, Martínez A, Zayats A V 2015 Nat. Commun. 6 8799Google Scholar |
[104] |
Petrov M I, Sukhov S V, Bogdanov A A, Shalin A S, Dogariu A 2016 Laser Photon. Rev. 10 116Google Scholar |
[105] |
Wang K, Schonbrun E, Crozier K B 2009 Nano Lett. 9 2623Google Scholar |
[106] |
Dholakia K, Čižmár T 2011 Nat. Photon. 5 335Google Scholar |
[107] |
Padgett M, Bowman R 2011 Nat. Photon. 5 343Google Scholar |
[108] |
Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H 1998 Nature 394 348Google Scholar |
[109] |
Albaladejo S, Marqués M I, Laroche M, Sáenz J J 2009 Phys. Rev. Lett. 102 113602Google Scholar |
[110] |
Dienerowitz M, Mazilu M, Reece P J, Krauss T F, Dholakia K 2008 Opt. Express 16 4991Google Scholar |
[111] |
Yan Z, Scherer N F 2013 J. Phys. Chem. Lett. 4 2937Google Scholar |
[112] |
Tsai W Y, Huang J S, Huang C B 2014 Nano Lett. 14 547Google Scholar |
[113] |
Zhan Q 2004 Opt. Express 12 3377Google Scholar |
[114] |
Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T, Yuan X 2013 Nat. Commun. 4 2891Google Scholar |
[115] |
Zhang Y, Shen J, Xie Z, Dou X, Min C, Lei T, Liu J, Zhu S, Yuan X 2017 Nanoscale 9 10694Google Scholar |
[116] |
Taylor M A, Waleed M, Stilgoe A B, Rubinsztein-Dunlop H, Bowen W P 2015 Nat. Photon. 9 669Google Scholar |
[117] |
Huft P R, Kolbow J D, Thweatt J T, Lindquist N C 2017 Nano Lett. 17 7920Google Scholar |
[118] |
Liu M, Zentgraf T, Liu Y, Bartal G, Zhang X 2010 Nat. Nanotechnol. 5 570Google Scholar |
[119] |
Wang S B, Chan C T 2014 Nat. Commun. 5 3307Google Scholar |
[120] |
Zhao Y, Saleh A A E, van de Haar M A, Baum B, Briggs J A, Lay A, Reyes-Becerra O A, Dionne J A 2017 Nat. Nanotechnol. 12 1055Google Scholar |
[121] |
Chen H, Jiang Y, Wang N, Lu W, Liu S, Lin Z 2015 Opt. Lett. 40 5530Google Scholar |
[122] |
Kamandi M, Albooyeh M, Veysi M, Rajaei M, Zeng J, Wickramasinghe H K, Capolino F 2018 ACS Photon. 5 4360Google Scholar |
[123] |
Phillips D B, Padgett M J, Hanna S, Ho Y L D, Carberry D M, Miles M J, Simpson S H 2014 Nat. Photon. 8 400Google Scholar |
[124] |
Toscano G, Straubel J, Kwiatkowski A, Rockstuhl C, Evers F, Xu H, Mortensen N A, Wubs M 2015 Nat. Commun. 6 7132Google Scholar |
[125] |
Yang L, Wang H, Fang Y, Li Z 2016 ACS Nano 10 1580Google Scholar |
[126] |
Wang H 2018 Sci. Rep. 8 9589Google Scholar |
[127] |
Wang H, Huang S, Xie W, Lin J, Yang L, Li Z 2018 Proc. SPIE 10824, Plasmonics III 10824 1082404 |
[128] |
Ni W, Ba H, Lutich A A, Jäckel F, Feldmann J 2012 Nano Lett. 12 4647Google Scholar |
[129] |
Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005Google Scholar |
[130] |
Hoshina M, Yokoshi N, Okamoto H, Ishihara H 2018 ACS Photon. 5 318Google Scholar |
[131] |
Zhang Y, Shen J, Min C, Jin Y, Jiang Y, Liu J, Zhu S, Sheng Y, Zayats A V, Yuan X 2018 Nano Lett. 18 5538Google Scholar |
[132] |
Ren Y X, Kelly T S, Zhang C, Xu H, Chen Z 2017 Opt. Lett. 42 627Google Scholar |
[133] |
Lin L, Wang M, Peng X, Lissek E N, Mao Z, Scarabelli L, Adkins E, Coskun S, Unalan H E, Korgel B A, Liz-Marzán L M, Florin E L, Zheng Y 2018 Nat. Photon. 12 195Google Scholar |
[1] | 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900 |
[2] | 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290 |
[3] | 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290 |
[4] | 韩迪仪, 顾阳, 胡涛政, 董雯, 倪亚贤. 双金属/TiO2纳米管复合结构中增强的光电流. 物理学报, 2021, 70(3): 038103. doi: 10.7498/aps.70.20201134 |
[5] | 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456 |
[6] | 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控. 物理学报, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214 |
[7] | 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664 |
[8] | 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062 |
[9] | 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564 |
[10] | 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650 |
[11] | 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085 |
[12] | 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201 |
[13] | 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202 |
[14] | 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402 |
[15] | 毛延哲, 刘延霞, 李健, 李晖, 潘孝军, 谢二庆. Ti/TiO2包覆ZnO:Tb纳米纤维的光学性质. 物理学报, 2014, 63(18): 186801. doi: 10.7498/aps.63.186801 |
[16] | 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501 |
[17] | 傅正平, 林峰, 朱星. 一维金属光栅的光学反射吸收. 物理学报, 2011, 60(11): 114213. doi: 10.7498/aps.60.114213 |
[18] | 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305 |
[19] | 朱宝华, 王芳芳, 张 琨, 马国宏, 顾玉宗, 郭立俊, 钱士雄. Au:TiO2和Au:Al2O3纳米颗粒复合膜的线性和非线性光学特性. 物理学报, 2008, 57(5): 3085-3092. doi: 10.7498/aps.57.3085 |
[20] | 朱宝华, 王芳芳, 张 琨, 马国宏, 郭立俊, 钱士雄. Ag:Bi2O3复合膜的线性和非线性光学性质. 物理学报, 2007, 56(7): 4024-4031. doi: 10.7498/aps.56.4024 |
计量
- 文章访问数: 13525
- PDF下载量: 488
- 被引次数: 0