Abstract
The high elevations of the Himalaya and Tibet result from the continuing collision between India and Asia, which started more than 60 million years ago1â4. From geological and seismic studies of the slip rate of faults in Asia5, it is believed that approximately one-third of the present-day convergence rate between India and Asia (58 ± 4mmyrâ1) is responsible for the shortening, uplift and moderate seismicity of the Himalaya. Great earthquakes also occur infrequently in this region, releasing in minutes the elastic strain accumulated near the boundary zone over several centuries, and accounting for most of the advance of the Himalaya over the plains of India. The recurrence time for these great earthquakes is determined by the rate of slip of India beneath Tibet, which has hitherto been estimated indirectly from global plate motions6, from the slip rates of faults in Asia7,8, from seismic productivity9, and from the advance of sediments on the northern Ganges plain10. Here we report geodetic measurements, using the Global Positioning System (GPS), of the rate of contraction across the Himalaya, which we find to be 17.52 ± 2 mm yr â1. From the form of the deformation field, we estimate the rate of slip of India beneath Tibet to be 20.5 ± 2 mmyrâ1. Strain sufficient to drive one or more great Himalayan earthquakes, with slip similar to that accompanying the magnitude 8.1 Bihar/Nepal 1934 earthquake, may currently be available in western Nepal.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Molnar, P. Annu. Rev. Earth Planet. Sci. 12, 489â518 (1984).
Molnar, P. J. Himalayan Geol. 1, 131â154 (1990).
Harrison, M. T., Copeland, P., Kidd, W. S. F. & Yin, A. Science 255, 1663â1670 (1992).
Ni, J. F. Proc. Ind. Acad. Sci. (Earth Planet. Sci.) 98, 71â89 (1989).
Molnar, P. & Tapponier, P. Science 189, 149â426 (1975).
DeMets, C., Gordon, R., Argus, D. & Stein, S. Geophys. J. Int. 101, 425â478 (1990).
Molnar, P. & Tapponier, P. J. Geophys. Res. 83, 5361â5375 (1978).
Avouac, J.-P. & Tapponier, P. Geophys. Res. Lett. 20, 895â898 (1993).
Molnar, P. & Deng, Q. J. Geophys. Res. 89, 6203â6228 (1984).
Lyon Caen, H. & Molnar, P. Tectonics 4, 513â518 (1985).
Jackson, M. & Bilham, R. Geophys. Res. Lett. 21, 1169â1172 (1994).
Lichten, S. M. & Border, J. S. J. Geophys. Res. 92, 12751â12762 (1987).
Larson, K. M. & Freymueller, J. Geophys. Res. Lett. 22, 37â40 (1995).
Boucher, C., Altamimi, Z., Feissel, M. & Sillard, P. Results and Analysis of the ITRF94 (IERS Tech. Note 20 IERS Central Bureau, Observatoire de Paris, 1996).
Anzidei, M. Terra Nova 6, 82â89 (1994).
Molnar, P. & Lyon Caen, H. Geophys. J. Int. 99, 123â153 (1989).
Armijo, R., Tapponier, P., Mercier, J. L. & Tonglin, H. J. Geophys. Res. 91, 13803â13872 (1986).
England, P. C. & Houseman, G. A. J. Geophys. Res. 91, 3664â3676 (1986).
Molnar, P. & Tapponier, P. Geology 5, 212 (1977).
Freymueller, J. et al. Geophys. Res. Lett. 23, 3107â3110 (1996).
Jackson, M. & Bilham, R. J. Geophys. Res. 99, 13897â13912 (1994).
Savage, J. C. J. Geophys. Res. 88, 4984â4996 (1983).
Okada, Y. Bull. Seism. Soc. Am. 75, 1135â1154 (1985).
Seeber, L. & Gornitz, V. Tectonophysics 92, 335â367 (1983).
Schelling, D. Tectonics 11, 925â943 (1992).
Makovsky, Y., Klemperer, S. L., Liyan, H., Deyuan, L. & Project INDEPTH team Tectonics 15, 997â1005 (1996).
Johnson, M. R. W. Tectonophysics 239, 139â147 (1994).
Pandey, M. R. et al. Geophys. Res. Lett. 22, 751â754 (1995).
Pandey, M. R. & Nicolas, M. (Rep. 2, Dept. Mines and Geology, HMG Nepal, Kathmandu, 1988).
Banerjee, S. N. & Chakravarti, P. (eds) >Bihar-Nepal Earthquake 20 August 1988 (Spec. Publ. 31, Geol. Surv. India, Calcutta, 1993).
Yu, Tingto thesis, Univ. Colorado (1995).
Bilham, R., Bodin, P. & Jackson, M. J. Nepal. Geol. Soc. 11, 73â88 (1995).
Khatri, K. N. Tectonophysics 138, 79â92 (1987).
Molnar, P. Ann. Geophys. 5, 663â670 (1987).
Author information
Authors and Affiliations
Author notes
F. Jouanne (Univ. Savoie, Chambiry, France), P. Le Fort, P. Leturmy & J. L. Mugnier (LGCA-CNRS, UJF, Grenoble, France), J. F. Gamond, J. P. Glot & J. Martinod, (LGIT-CNRS, UJF, Grenoble, France), N. L. Chaudury, G. R. Chitrakar, U. P. Gautam, B. P. Koirala, M. R. Pandey, R. Ranabhat, S. N. Sapkota, P. L. Shrestha, M. C. Thakuri, U. R. Timilsina & D. R. Tiwari (Dept Mines and Geology, Kathmandu, Nepal), G. Vidal (ENS Lyon, France), C. Vigny (ENS Paris, France), A. Galy (CRPG-CNRS, Nancy, France), B. de Voogd (Univ. Pau, France).
- Jeffrey Freymueller
Rights and permissions
About this article
Cite this article
Bilham, R., Larson, K. & Freymueller, J. GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386, 61â64 (1997). https://doi.org/10.1038/386061a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/386061a0
This article is cited by
-
Seismotectonics and seismogenesis of Kashmir Valley, NW Himalaya, India from a local seismic network
Journal of Earth System Science (2024)
-
Arc-Parallel Shear and Orogenic Deformation Along the Oblique Himalayan Convergent Plate Margin: Implications from Topographic- and Gradient-Anomaly Profiling in the Himalaya
Pure and Applied Geophysics (2023)
-
Structural evidences of active tectonics along Himalayan Frontal Thrust of northwest Himalaya: A case study along Kumia river section, Nainital, India
Journal of Earth System Science (2023)
-
Dynamic rupture forewarned by a displacement field criterion
International Journal of Fracture (2023)
-
Kinematics of crustal deformation along the central Himalaya
Acta Geophysica (2023)