Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GPS measurements of present-day convergence across the Nepal Himalaya

Abstract

The high elevations of the Himalaya and Tibet result from the continuing collision between India and Asia, which started more than 60 million years ago1–4. From geological and seismic studies of the slip rate of faults in Asia5, it is believed that approximately one-third of the present-day convergence rate between India and Asia (58 ± 4mmyr−1) is responsible for the shortening, uplift and moderate seismicity of the Himalaya. Great earthquakes also occur infrequently in this region, releasing in minutes the elastic strain accumulated near the boundary zone over several centuries, and accounting for most of the advance of the Himalaya over the plains of India. The recurrence time for these great earthquakes is determined by the rate of slip of India beneath Tibet, which has hitherto been estimated indirectly from global plate motions6, from the slip rates of faults in Asia7,8, from seismic productivity9, and from the advance of sediments on the northern Ganges plain10. Here we report geodetic measurements, using the Global Positioning System (GPS), of the rate of contraction across the Himalaya, which we find to be 17.52 ± 2 mm yr −1. From the form of the deformation field, we estimate the rate of slip of India beneath Tibet to be 20.5 ± 2 mmyr–1. Strain sufficient to drive one or more great Himalayan earthquakes, with slip similar to that accompanying the magnitude 8.1 Bihar/Nepal 1934 earthquake, may currently be available in western Nepal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Molnar, P. Annu. Rev. Earth Planet. Sci. 12, 489–518 (1984).

    Article  ADS  Google Scholar 

  2. Molnar, P. J. Himalayan Geol. 1, 131–154 (1990).

    Google Scholar 

  3. Harrison, M. T., Copeland, P., Kidd, W. S. F. & Yin, A. Science 255, 1663–1670 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Ni, J. F. Proc. Ind. Acad. Sci. (Earth Planet. Sci.) 98, 71–89 (1989).

    Google Scholar 

  5. Molnar, P. & Tapponier, P. Science 189, 149–426 (1975).

    Article  Google Scholar 

  6. DeMets, C., Gordon, R., Argus, D. & Stein, S. Geophys. J. Int. 101, 425–478 (1990).

    Article  ADS  Google Scholar 

  7. Molnar, P. & Tapponier, P. J. Geophys. Res. 83, 5361–5375 (1978).

    Article  ADS  Google Scholar 

  8. Avouac, J.-P. & Tapponier, P. Geophys. Res. Lett. 20, 895–898 (1993).

    Article  ADS  Google Scholar 

  9. Molnar, P. & Deng, Q. J. Geophys. Res. 89, 6203–6228 (1984).

    Article  ADS  Google Scholar 

  10. Lyon Caen, H. & Molnar, P. Tectonics 4, 513–518 (1985).

    Article  ADS  Google Scholar 

  11. Jackson, M. & Bilham, R. Geophys. Res. Lett. 21, 1169–1172 (1994).

    Article  ADS  Google Scholar 

  12. Lichten, S. M. & Border, J. S. J. Geophys. Res. 92, 12751–12762 (1987).

    Article  ADS  Google Scholar 

  13. Larson, K. M. & Freymueller, J. Geophys. Res. Lett. 22, 37–40 (1995).

    Article  ADS  Google Scholar 

  14. Boucher, C., Altamimi, Z., Feissel, M. & Sillard, P. Results and Analysis of the ITRF94 (IERS Tech. Note 20 IERS Central Bureau, Observatoire de Paris, 1996).

    Google Scholar 

  15. Anzidei, M. Terra Nova 6, 82–89 (1994).

    Article  ADS  Google Scholar 

  16. Molnar, P. & Lyon Caen, H. Geophys. J. Int. 99, 123–153 (1989).

    Article  ADS  Google Scholar 

  17. Armijo, R., Tapponier, P., Mercier, J. L. & Tonglin, H. J. Geophys. Res. 91, 13803–13872 (1986).

    Article  ADS  Google Scholar 

  18. England, P. C. & Houseman, G. A. J. Geophys. Res. 91, 3664–3676 (1986).

    Article  ADS  Google Scholar 

  19. Molnar, P. & Tapponier, P. Geology 5, 212 (1977).

    Article  ADS  Google Scholar 

  20. Freymueller, J. et al. Geophys. Res. Lett. 23, 3107–3110 (1996).

    Article  ADS  Google Scholar 

  21. Jackson, M. & Bilham, R. J. Geophys. Res. 99, 13897–13912 (1994).

    Article  ADS  Google Scholar 

  22. Savage, J. C. J. Geophys. Res. 88, 4984–4996 (1983).

    Article  ADS  Google Scholar 

  23. Okada, Y. Bull. Seism. Soc. Am. 75, 1135–1154 (1985).

    Google Scholar 

  24. Seeber, L. & Gornitz, V. Tectonophysics 92, 335–367 (1983).

    Article  ADS  Google Scholar 

  25. Schelling, D. Tectonics 11, 925–943 (1992).

    Article  ADS  Google Scholar 

  26. Makovsky, Y., Klemperer, S. L., Liyan, H., Deyuan, L. & Project INDEPTH team Tectonics 15, 997–1005 (1996).

    Article  ADS  Google Scholar 

  27. Johnson, M. R. W. Tectonophysics 239, 139–147 (1994).

    Article  ADS  Google Scholar 

  28. Pandey, M. R. et al. Geophys. Res. Lett. 22, 751–754 (1995).

    Article  ADS  Google Scholar 

  29. Pandey, M. R. & Nicolas, M. (Rep. 2, Dept. Mines and Geology, HMG Nepal, Kathmandu, 1988).

  30. Banerjee, S. N. & Chakravarti, P. (eds) >Bihar-Nepal Earthquake 20 August 1988 (Spec. Publ. 31, Geol. Surv. India, Calcutta, 1993).

  31. Yu, Tingto thesis, Univ. Colorado (1995).

  32. Bilham, R., Bodin, P. & Jackson, M. J. Nepal. Geol. Soc. 11, 73–88 (1995).

    Google Scholar 

  33. Khatri, K. N. Tectonophysics 138, 79–92 (1987).

    Article  ADS  Google Scholar 

  34. Molnar, P. Ann. Geophys. 5, 663–670 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Author notes

  1. F. Jouanne (Univ. Savoie, Chambiry, France), P. Le Fort, P. Leturmy & J. L. Mugnier (LGCA-CNRS, UJF, Grenoble, France), J. F. Gamond, J. P. Glot & J. Martinod, (LGIT-CNRS, UJF, Grenoble, France), N. L. Chaudury, G. R. Chitrakar, U. P. Gautam, B. P. Koirala, M. R. Pandey, R. Ranabhat, S. N. Sapkota, P. L. Shrestha, M. C. Thakuri, U. R. Timilsina & D. R. Tiwari (Dept Mines and Geology, Kathmandu, Nepal), G. Vidal (ENS Lyon, France), C. Vigny (ENS Paris, France), A. Galy (CRPG-CNRS, Nancy, France), B. de Voogd (Univ. Pau, France).

    • Jeffrey Freymueller
Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilham, R., Larson, K. & Freymueller, J. GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386, 61–64 (1997). https://doi.org/10.1038/386061a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386061a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing