Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                



Dates are inconsistent

Dates are inconsistent

223 results sorted by ID

Possible spell-corrected query: transition
2024/2083 (PDF) Last updated: 2024-12-27
Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4
Mila Anastasova, Reza Azarderakhsh, Mehran Mozaffari Kermani
Cryptographic protocols

To provide safe communication across an unprotected medium such as the internet, network protocols are being established. These protocols employ public key techniques to perform key exchange and authentication. Transport Layer Security (TLS) is a widely used network protocol that enables secure communication between a server and a client. TLS is employed in billions of transactions per second. Contemporary protocols depend on traditional methods that utilize the computational complexity of...

2024/2005 (PDF) Last updated: 2024-12-12
Post-Quantum Secure Channel Protocols for eSIMs
Luk Bettale, Emmanuelle Dottax, Laurent Grémy
Cryptographic protocols

The transition to Post-Quantum (PQ) cryptography is increasingly mandated by national agencies and organizations, often involving a phase where classical and PQ primitives are combined into hybrid solutions. In this context, existing protocols must be adapted to ensure quantum resistance while maintaining their security goals. These adaptations can significantly impact performance, particularly on embedded devices. In this article, we focus on standardized protocols which support...

2024/1925 (PDF) Last updated: 2024-11-29
EndGame: Field-Agnostic Succinct Blockchain with Arc
Simon Judd, GPT
Cryptographic protocols

We present EndGame, a novel blockchain architecture that achieves succinctness through Reed-Solomon accumulation schemes. Our construction enables constant-time verification of blockchain state while maintaining strong security properties. We demonstrate how to efficiently encode blockchain state transitions using Reed-Solomon codes and accumulate proofs of state validity using the ARC framework. Our protocol achieves optimal light client verification costs and supports efficient state...

2024/1633 (PDF) Last updated: 2024-10-11
Efficient Boolean-to-Arithmetic Mask Conversion in Hardware
Aein Rezaei Shahmirzadi, Michael Hutter
Implementation

Masking schemes are key in thwarting side-channel attacks due to their robust theoretical foundation. Transitioning from Boolean to arithmetic (B2A) masking is a necessary step in various cryptography schemes, including hash functions, ARX-based ciphers, and lattice-based cryptography. While there exists a significant body of research focusing on B2A software implementations, studies pertaining to hardware implementations are quite limited, with the majority dedicated solely to creating...

2024/1585 (PDF) Last updated: 2024-10-07
Quantum Money from Class Group Actions on Elliptic Curves
Hart Montgomery, Shahed Sharif
Public-key cryptography

We construct a quantum money/quantum lightning scheme from class group actions on elliptic curves over $F_{p}$. Our scheme, which is based on the invariant money construction of Liu-Montgomery-Zhandry (Eurocrypt '23), is simple to describe. We believe it to be the most instantiable and well-defined quantum money construction known so far. The security of our quantum lightning construction is exactly equivalent to the (conjectured) hardness of constructing two uniform superpositions over...

2024/1550 (PDF) Last updated: 2024-10-03
MAYO Key Recovery by Fixing Vinegar Seeds
Sönke Jendral, Elena Dubrova
Attacks and cryptanalysis

As the industry prepares for the transition to post-quantum secure public key cryptographic algorithms, vulnerability analysis of their implementations is gaining importance. A theoretically secure cryptographic algorithm should also be able to withstand the challenges of physical attacks in real-world environments. MAYO is a candidate in the ongoing first round of the NIST post-quantum standardization process for selecting additional digital signature schemes. This paper demonstrates three...

2024/1487 (PDF) Last updated: 2024-09-24
The transition to post-quantum cryptography, metaphorically
Stefan-Lukas Gazdag, Sophia Grundner-Culemann
Cryptographic protocols

Are we there yet? Are we there yet? No, kids, the road to quantum-safety is long and sturdy. But let me tell you a story: Once upon a time, science discovered a great threat to Cryptography World: The scalable quantum computer! Nobody had ever seen one, but everyone understood it would break the mechanisms used to secure Internet communication since times of yore (or the late 20th century, anyway). The greatest minds from all corners of the land were gathered to invent, implement, and...

2024/1367 (PDF) Last updated: 2024-08-30
A Better Kyber Butterfly for FPGAs
Jonas Bertels, Quinten Norga, Ingrid Verbauwhede
Implementation

Kyber was selected by NIST as a Post-Quantum Cryptography Key Encapsulation Mechanism standard. This means that the industry now needs to transition and adopt these new standards. One of the most demanding operations in Kyber is the modular arithmetic, making it a suitable target for optimization. This work offers a novel modular reduction design with the lowest area on Xilinx FPGA platforms. This novel design, through K-reduction and LUT-based reduction, utilizes 49 LUTs and 1 DSP...

2024/1359 (PDF) Last updated: 2024-09-20
Finding Complete Impossible Differential Attacks on AndRX Ciphers and Efficient Distinguishers for ARX Designs
Debasmita Chakraborty, Hosein Hadipour, Phuong Hoa Nguyen, Maria Eichlseder
Attacks and cryptanalysis

The impossible differential (ID) attack is one of the most important cryptanalytic techniques for block ciphers. There are two phases to finding an ID attack: searching for the distinguisher and building a key recovery upon it. Previous works only focused on automated distinguisher discovery, leaving key recovery as a manual post-processing task, which may lead to a suboptimal final complexity. At EUROCRYPT~2023, Hadipour et al. introduced a unified constraint programming (CP) approach based...

2024/1335 (PDF) Last updated: 2024-08-26
Perfect Monomial Prediction for Modular Addition
Kai Hu, Trevor Yap
Attacks and cryptanalysis

Modular addition is often the most complex component of typical Addition-Rotation-XOR (ARX) ciphers, and the division property is the most effective tool for detecting integral distinguishers. Thus, having a precise division property model for modular addition is crucial in the search for integral distinguishers in ARX ciphers. Current division property models for modular addition either (a) express the operation as a Boolean circuit and apply standard propagation rules for basic...

2024/1281 (PDF) Last updated: 2024-08-29
Stackproofs: Private proofs of stack and contract execution using Protogalaxy
Liam Eagen, Ariel Gabizon, Marek Sefranek, Patrick Towa, Zachary J. Williamson

The goal of this note is to describe and analyze a simplified variant of the zk-SNARK construction used in the Aztec protocol. Taking inspiration from the popular notion of Incrementally Verifiable Computation[Val09] (IVC) we define a related notion of $\textrm{Repeated Computation with Global state}$ (RCG). As opposed to IVC, in RCG we assume the computation terminates before proving starts, and in addition to the local transitions some global consistency checks of the whole computation...

2024/1223 (PDF) Last updated: 2024-10-03
A short-list of pairing-friendly curves resistant to the Special TNFS algorithm at the 192-bit security level
Diego F. Aranha, Georgios Fotiadis, Aurore Guillevic
Implementation

For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the...

2024/1172 (PDF) Last updated: 2024-07-19
Generalized class group actions on oriented elliptic curves with level structure
Sarah Arpin, Wouter Castryck, Jonathan Komada Eriksen, Gioella Lorenzon, Frederik Vercauteren
Public-key cryptography

We study a large family of generalized class groups of imaginary quadratic orders $O$ and prove that they act freely and (essentially) transitively on the set of primitively $O$-oriented elliptic curves over a field $k$ (assuming this set is non-empty) equipped with appropriate level structure. This extends, in several ways, a recent observation due to Galbraith, Perrin and Voloch for the ray class group. We show that this leads to a reinterpretation of the action of the class group of a...

2024/1162 (PDF) Last updated: 2024-07-17
Practical Traceable Receipt-Free Encryption
Henri Devillez, Olivier Pereira, Thomas Peters
Public-key cryptography

Traceable Receipt-free Encryption (TREnc) is a verifiable public-key encryption primitive introduced at Asiacrypt 2022. A TREnc allows randomizing ciphertexts in transit in order to remove any subliminal information up to a public trace that ensures the non-malleability of the underlying plaintext. A remarkable property of TREnc is the indistinguishability of the randomization of chosen ciphertexts against traceable chosen-ciphertext attacks (TCCA). This property can support applications...

2024/1139 (PDF) Last updated: 2024-07-12
Anonymous Outsourced Statekeeping with Reduced Server Storage
Dana Dachman-Soled, Esha Ghosh, Mingyu Liang, Ian Miers, Michael Rosenberg
Cryptographic protocols

Strike-lists are a common technique for rollback and replay prevention in protocols that require that clients remain anonymous or that their current position in a state machine remain confidential. Strike-lists are heavily used in anonymous credentials, e-cash schemes, and trusted execution environments, and are widely deployed on the web in the form of Privacy Pass (PoPETS '18) and Google Private State Tokens. In such protocols, clients submit pseudorandom tokens associated with each...

2024/1131 (PDF) Last updated: 2024-07-11
Jolt-b: recursion friendly Jolt with basefold commitment
Hang Su, Qi Yang, Zhenfei Zhang
Implementation

The authors of Jolt [AST24] pioneered a unique method for creating zero-knowledge virtual machines, known as the lookup singularity. This technique extensively uses lookup tables to create virtual machine circuits. Despite Jolt’s performance being twice as efficient as the previous state-of-the-art1 , there is potential for further enhancement. The initial release of Jolt uses Spartan [Set20] and Hyrax [WTs+ 18] as their backend, leading to two constraints. First, Hyrax employs Pedersen...

2024/1096 (PDF) Last updated: 2024-07-05
Post-Quantum Ready Key Agreement for Aviation
Marcel Tiepelt, Christian Martin, Nils Maeurer
Cryptographic protocols

Transitioning from classically to quantum secure key agreement protocols may require to exchange fundamental components, for example, exchanging Diffie-Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly, the corresponding security proof can no longer rely on the Diffie-Hellman assumption, thus invalidating the security guarantees. As a consequence, the security properties have to be re-proven under a KEM-based security notion. We initiate the study of the...

2024/1084 (PDF) Last updated: 2024-07-03
Enabling Complete Atomicity for Cross-chain Applications Through Layered State Commitments
Yuandi Cai, Ru Cheng, Yifan Zhou, Shijie Zhang, Jiang Xiao, Hai Jin
Applications

Cross-chain Decentralized Applications (dApps) are increasingly popular for their ability to handle complex tasks across various blockchains, extending beyond simple asset transfers or swaps. However, ensuring all dependent transactions execute correctly together, known as complete atomicity, remains a challenge. Existing works provide financial atomicity, protecting against monetary loss, but lack the ability to ensure correctness for complex tasks. In this paper, we introduce Avalon, a...

2024/900 (PDF) Last updated: 2024-12-06
Breaktooth: Breaking Security and Privacy in Bluetooth Power-Saving Mode
Keiichiro Kimura, Hiroki Kuzuno, Yoshiaki Shiraishi, Masakatu Morii
Attacks and cryptanalysis

With the increasing demand for Bluetooth devices, various Bluetooth devices support a power-saving mode to reduce power consumption. One of the features of the power-saving mode is that the Bluetooth sessions among devices are temporarily disconnected or are close to being disconnected. Prior works have analyzed that the power-saving mode is vulnerable to denial of sleep (DoSL) attacks that interfere with the transition to the power-saving mode of Bluetooth devices, thereby increasing its...

2024/885 (PDF) Last updated: 2024-06-03
Bruisable Onions: Anonymous Communication in the Asynchronous Model
Megumi Ando, Anna Lysyanskaya, Eli Upfal
Cryptographic protocols

In onion routing, a message travels through the network via a series of intermediaries, wrapped in layers of encryption to make it difficult to trace. Onion routing is an attractive approach to realizing anonymous channels because it is simple and fault tolerant. Onion routing protocols provably achieving anonymity in realistic adversary models are known for the synchronous model of communication so far. In this paper, we give the first onion routing protocol that achieves anonymity in...

2024/684 (PDF) Last updated: 2024-05-04
A Plug-and-Play Long-Range Defense System for Proof-of-Stake Blockchains
Lucien K. L. Ng, Panagiotis Chatzigiannis, Duc V. Le, Mohsen Minaei, Ranjit Kumaresan, Mahdi Zamani
Cryptographic protocols

In recent years, many blockchain systems have progressively transitioned to proof-of-stake (PoS) con- sensus algorithms. These algorithms are not only more energy efficient than proof-of-work but are also well-studied and widely accepted within the community. However, PoS systems are susceptible to a particularly powerful "long-range" attack, where an adversary can corrupt the validator set retroactively and present forked versions of the blockchain. These versions would still be acceptable...

2024/638 (PDF) Last updated: 2024-04-26
A note on ``a lightweight mutual and transitive authentication mechanism for IoT network''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show the authentication mechanism [Ad Hoc Networks, 2023, 103003] fails to keep user anonymity, not as claimed.

2024/464 (PDF) Last updated: 2024-03-19
ON THE IMPLEMENTATION OF A LATTICE-BASED DAA FOR VANET SYSTEM
Doryan Lesaignoux, Mikael Carmona
Implementation

Direct Anonymous Attestation (DAA) is a cryptographic protocol that enables users with a Trusted Platform Module (TPM) to authenticate without revealing their identity. Thus, DAA emerged as a good privacy-enhancing solution. Current standards have security based on factorization and discrete logarithm problem making them vulnerable to quantum computer attacks. Recently, a number of lattice-based DAA has been propose in the literature to start transition to quantum-resistant cryptography. In...

2024/408 (PDF) Last updated: 2024-07-02
Stateless and Verifiable Execution Layer for Meta-Protocols on Bitcoin
Hongbo Wen, Hanzhi Liu, Shuyang Tang, Tianyue Li, Shuhan Cao, Domo, Yanju Chen, Yu Feng
Applications

The Bitcoin ecosystem has continued to evolve beyond its initial promises of decentralization, transparency, and security. Recent advancements have notably been made with the integration of Layer-2 solutions, which address scalability issues by offloading transactions from the main blockchain. This facilitates faster and more cost-effective transactions while maintaining integrity. The advent of inscriptions and ordinal protocols has further broadened the spectrum of capabilities, enabling...

2024/131 (PDF) Last updated: 2024-09-06
Practical Post-Quantum Signatures for Privacy
Sven Argo, Tim Güneysu, Corentin Jeudy, Georg Land, Adeline Roux-Langlois, Olivier Sanders
Public-key cryptography

The transition to post-quantum cryptography has been an enormous challenge and effort for cryptographers over the last decade, with impressive results such as the future NIST standards. However, the latter has so far only considered central cryptographic mechanisms (signatures or KEM) and not more advanced ones, e.g., targeting privacy-preserving applications. Of particular interest is the family of solutions called blind signatures, group signatures and anonymous credentials, for which...

2024/126 (PDF) Last updated: 2024-01-29
Monte Carlo Tree Search for automatic differential characteristics search: application to SPECK
Emanuele Bellini, David Gerault, Matteo Protopapa, Matteo Rossi
Secret-key cryptography

The search for differential characteristics on block ciphers is a difficult combinatorial problem. In this paper, we investigate the performances of an AI-originated technique, Single Player Monte-Carlo Tree Search (SP-MCTS), in finding good differential characteristics on ARX ciphers, with an application to the block cipher SPECK. In order to make this approach competitive, we include several heuristics, such as the combination of forward and backward searches, and achieve significantly...

2023/1960 (PDF) Last updated: 2023-12-31
Post Quantum Sphinx
David Anthony Stainton
Cryptographic protocols

This paper introduces two designs of Sphinx variants with corresponding im- plementations for use in post-quantum threat models with a specific focus on Mix networks. We introduce an obvious variant of Sphinx with CSIDH/CTIDH and we additionally introduce ’KEM Sphinx’, an enhanced version of the Sphinx packet format, designed to improve performance through modifications that increase packet header size. Unlike its predecessor, KEM Sphinx addresses performance limitations inherent in...

2023/1921 (PDF) Last updated: 2023-12-15
Automated Issuance of Post-Quantum Certificates: a New Challenge
Alexandre Augusto Giron, Frederico Schardong, Lucas Pandolfo Perin, Ricardo Custódio, Victor Valle, Víctor Mateu

The Automatic Certificate Management Environment protocol (ACME) has significantly contributed to the widespread use of digital certificates in safeguarding the authenticity and privacy of Internet data. These certificates are required for implementing the Transport Layer Security (TLS) protocol. However, it is well known that the cryptographic algorithms employed in these certificates will become insecure with the emergence of quantum computers. This study assesses the challenges in...

2023/1907 (PDF) Last updated: 2023-12-12
Integral Cryptanalysis Using Algebraic Transition Matrices
Tim Beyne, Michiel Verbauwhede
Secret-key cryptography

In this work we introduce algebraic transition matrices as the basis for a new approach to integral cryptanalysis that unifies monomial trails (Hu et al., Asiacrypt 2020) and parity sets (Boura and Canteaut, Crypto 2016). Algebraic transition matrices allow for the computation of the algebraic normal form of a primitive based on the algebraic normal forms of its components by means of well-understood operations from linear algebra. The theory of algebraic transition matrices leads to better...

2023/1847 (PDF) Last updated: 2023-11-30
Cycle Structure and Observability of Two Types of Galois NFSRs
Xianghan Wang, Jianghua Zhong, Dongdai Lin
Foundations

Nonlinear feedback shift registers (NFSRs) are used in many stream ciphers as their main building blocks. One security criterion for the design of a stream cipher is to assure its keystream has a long period. To meet this criterion, the NFSR used in a stream cipher must have a long state cycle. Further, to simultaneously avoid equivalent keys, the keystream's period is not compressed compared to the NFSR's state cycle length, which can be guaranteed if the NFSR is observable in the sense...

2023/1792 (PDF) Last updated: 2024-07-23
Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones
Daniel Hugenroth, Alberto Sonnino, Sam Cutler, Alastair R. Beresford
Cryptographic protocols

Privacy enhancing technologies must not only protect sensitive data in-transit, but also locally at-rest. For example, anonymity networks hide the sender and/or recipient of a message from network adversaries. However, if a participating device is physically captured, its owner can be pressured to give access to the stored conversations. Therefore, client software should allow the user to plausibly deny the existence of meaningful data. Since biometrics can be collected without consent and...

2023/1754 (PDF) Last updated: 2024-06-05
That’s not my Signature! Fail-Stop Signatures for a Post-Quantum World
Cecilia Boschini, Hila Dahari, Moni Naor, Eyal Ronen
Public-key cryptography

The Snowden's revelations kick-started a community-wide effort to develop cryptographic tools against mass surveillance. In this work, we propose to add another primitive to that toolbox: Fail-Stop Signatures (FSS) [EC'89]. FSS are digital signatures enhanced with a forgery-detection mechanism that can protect a PPT signer from more powerful attackers. Despite the fascinating concept, research in this area stalled after the '90s. However, the ongoing transition to post-quantum...

2023/1704 (PDF) Last updated: 2024-03-02
On Overidealizing Ideal Worlds: Xor of Two Permutations and its Applications
Wonseok Choi, Minki Hhan, Yu Wei, Vassilis Zikas
Secret-key cryptography

Security proofs of symmetric-key primitives typically consider an idealized world with access to a (uniformly) random function. The starting point of our work is the observation that such an ideal world can lead to underestimating the actual security of certain primitives. As a demonstrating example, $\mathsf{XoP2}$, which relies on two independent random permutations, has been proven to exhibit superior concrete security compared to $\mathsf{XoP}$, which employs a single permutation with...

2023/1689 (PDF) Last updated: 2023-11-01
Revisiting the Boomerang Attack from a Perspective of 3-differential
Libo Wang, Ling Song, Baofeng Wu, Mostafizar Rahman, Takanori Isobe
Secret-key cryptography

In this paper, inspired by the work of Beyne and Rijmen at CRYPTO 2022, we explore the accurate probability of $d$-differential in the fixed-key model. The theoretical foundations of our method are based on a special matrix $-$ quasi-$d$-differential transition matrix, which is a natural extension of the quasidifferential transition matrix. The role of quasi-$d$-differential transition matrices in polytopic cryptananlysis is analogous to that of correlation matrices in linear cryptanalysis....

2023/1550 (PDF) Last updated: 2023-10-09
A Thorough Evaluation of RAMBAM
Daniel Lammers, Amir Moradi, Nicolai Müller, Aein Rezaei Shahmirzadi
Implementation

The application of masking, widely regarded as the most robust and reliable countermeasure against Side-Channel Analysis (SCA) attacks, has been the subject of extensive research across a range of cryptographic algorithms, especially AES. However, the implementation cost associated with applying such a countermeasure can be significant and even in some scenarios infeasible due to considerations such as area and latency overheads, as well as the need for fresh randomness to ensure the...

2023/1539 (PDF) Last updated: 2023-10-07
ELCA: Introducing Enterprise-level Cryptographic Agility for a Post-Quantum Era
Dimitrios Sikeridis, David Ott, Sean Huntley, Shivali Sharma, Vasantha Kumar Dhanasekar, Megha Bansal, Akhilesh Kumar, Anwitha U N, Daniel Beveridge, Sairam Veeraswamy
Implementation

Given the importance of cryptography to modern security and privacy solutions, it is surprising how little attention has been given to the problem of \textit{cryptographic agility}, or frameworks enabling the transition from one cryptographic algorithm or implementation to another. In this paper, we argue that traditional notions of cryptographic agility fail to capture the challenges facing modern enterprises that will soon be forced to implement a disruptive migration from today’s public...

2023/1394 (PDF) Last updated: 2023-09-18
Incrementally Verifiable Computation via Rate-1 Batch Arguments
Omer Paneth, Rafael Pass
Cryptographic protocols

Non-interactive delegation schemes enable producing succinct proofs (that can be efficiently verified) that a machine $M$ transitions from $c_1$ to $c_2$ in a certain number of deterministic steps. We here consider the problem of efficiently \emph{merging} such proofs: given a proof $\Pi_1$ that $M$ transitions from $c_1$ to $c_2$, and a proof $\Pi_2$ that $M$ transitions from $c_2$ to $c_3$, can these proofs be efficiently merged into a single short proof (of roughly the same size as the...

2023/1382 (PDF) Last updated: 2023-09-15
HELM: Navigating Homomorphic Encryption through Gates and Lookup Tables
Charles Gouert, Dimitris Mouris, Nektarios Georgios Tsoutsos
Applications

As cloud computing continues to gain widespread adoption, safeguarding the confidentiality of data entrusted to third-party cloud service providers becomes a critical concern. While traditional encryption methods offer protection for data at rest and in transit, they fall short when it comes to where it matters the most, i.e., during data processing. To address this limitation, we present HELM, a framework for privacy-preserving data processing using homomorphic encryption. HELM...

2023/1324 (PDF) Last updated: 2023-09-05
Fine-Grained Proxy Re-Encryption: Definitions & Constructions from LWE
Yunxiao Zhou, Shengli Liu, Shuai Han, Haibin Zhang
Public-key cryptography

Proxy re-encryption (PRE) allows a proxy with a re-encryption key to translate a ciphertext intended for Alice (delegator) to another ciphertext intended for Bob (delegatee) without revealing the underlying message. However, with PRE, Bob can obtain the whole message from the re-encrypted ciphertext, and Alice cannot take flexible control of the extent of the message transmitted to Bob. In this paper, we propose a new variant of PRE, called Fine-Grained PRE (FPRE), to support...

2023/1281 (PDF) Last updated: 2023-08-25
Leveraging Machine Learning for Bidding Strategies in Miner Extractable Value (MEV) Auctions
Christoffer Raun, Benjamin Estermann, Liyi Zhou, Kaihua Qin, Roger Wattenhofer, Arthur Gervais, Ye Wang
Applications

The emergence of blockchain technologies as central components of financial frameworks has amplified the extraction of market inefficiencies, such as arbitrage, through Miner Extractable Value (MEV) from Decentralized Finance smart contracts. Exploiting these opportunities often requires fee payment to miners and validators, colloquially termed as bribes. The recent development of centralized MEV relayers has led to these payments shifting from the public transaction pool to private...

2023/1216 (PDF) Last updated: 2023-08-10
Unlocking the lookup singularity with Lasso
Srinath Setty, Justin Thaler, Riad Wahby
Foundations

This paper introduces Lasso, a new family of lookup arguments, which allow an untrusted prover to commit to a vector $a \in \mathbb{F}^m$ and prove that all entries of a reside in some predetermined table $t \in \mathbb{F}^n$. Lasso’s performance characteristics unlock the so-called "lookup singularity". Lasso works with any multilinear polynomial commitment scheme, and provides the following efficiency properties. For $m$ lookups into a table of size $n$, Lasso’s prover commits to just...

2023/1105 (PDF) Last updated: 2023-07-15
MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust
Tung Le, Thang Hoang
Cryptographic protocols

Commodity encrypted storage platforms (e.g., IceDrive, pCloud) permit data store and sharing across multiple users while preserving data confidentiality. However, end-to-end encryption may not be sufficient since it only offers confidentiality when the data is at rest or in transit. Meanwhile, sensitive information can be leaked from metadata representing activities during data operations (e.g., query, processing). Recent encrypted search platforms such as DORY (OSDI’20) or DURASIFT...

2023/1038 (PDF) Last updated: 2023-07-05
PQC Cloudization: Rapid Prototyping of Scalable NTT/INTT Architecture to Accelerate Kyber
Mojtaba Bisheh-Niasar, Daniel Lo, Anjana Parthasarathy, Blake Pelton, Bharat Pillilli, Bryan Kelly
Public-key cryptography

The advent of quantum computers poses a serious challenge to the security of cloud infrastructures and services, as they can potentially break the existing public-key cryptosystems, such as Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC). Even though the gap between today’s quantum computers and the threats they pose to current public-key cryptography is large, the cloud landscape should act proactively and initiate the transition to the post-quantum era as early as...

2023/948 (PDF) Last updated: 2024-01-12
Compact Circuits for Efficient Mobius Transform
Subhadeep Banik, Francesco Regazzoni
Implementation

The Mobius transform is a linear circuit used to compute the evaluations of a Boolean function over all points on its input domain. The operation is very useful in finding the solution of a system of polynomial equations over GF(2) for obvious reasons. However the operation, although linear, needs exponential number of logic operations (around $n\cdot 2^{n-1}$ bit xors) for an $n$-variable Boolean function. As such, the only known hardware circuit to efficiently compute the Mobius transform...

2023/760 (PDF) Last updated: 2023-05-25
Time to Bribe: Measuring Block Construction Market
Anton Wahrstätter, Liyi Zhou, Kaihua Qin, Davor Svetinovic, Arthur Gervais
Applications

With the emergence of Miner Extractable Value (MEV), block construction markets on blockchains have evolved into a competitive arena. Following Ethereum's transition from Proof of Work (PoW) to Proof of Stake (PoS), the Proposer Builder Separation (PBS) mechanism has emerged as the dominant force in the Ethereum block construction market. This paper presents an in-depth longitudinal study of the Ethereum block construction market, spanning from the introduction of PoS and PBS in September...

2023/734 (PDF) Last updated: 2023-05-22
TLS → Post-Quantum TLS: Inspecting the TLS landscape for PQC adoption on Android
Dimitri Mankowski, Thom Wiggers, Veelasha Moonsamy
Cryptographic protocols

The ubiquitous use of smartphones has contributed to more and more users conducting their online browsing activities through apps, rather than web browsers. In order to provide a seamless browsing experience to the users, apps rely on a variety of HTTP-based APIs and third-party libraries, and make use of the TLS protocol to secure the underlying communication. With NIST's recent announcement of the first standards for post-quantum algorithms, there is a need to better understand the...

2023/723 (PDF) Last updated: 2023-10-03
Non-Interactive Commitment from Non-Transitive Group Actions
Giuseppe D'Alconzo, Andrea Flamini, Andrea Gangemi
Foundations

Group actions are becoming a viable option for post-quantum cryptography assumptions. Indeed, in recent years some works have shown how to construct primitives from assumptions based on isogenies of elliptic curves, such as CSIDH, on tensors or on code equivalence problems. This paper presents a bit commitment scheme, built on non-transitive group actions, which is shown to be secure in the standard model, under the decisional Group Action Inversion Problem. In particular, the commitment is...

2023/709 (PDF) Last updated: 2023-05-17
Migrating Applications to Post-Quantum Cryptography: Beyond Algorithm Replacement
Alexandre Augusto Giron
Applications

Post-Quantum Cryptography (PQC) defines cryptographic algorithms designed to resist the advent of the quantum computer. Most public-key cryptosystems today are vulnerable to quantum attackers, so a global-scale transition to PQC is expected. As a result, several entities foment efforts in PQC standardization, research, development, creation of Work Groups (WGs), and issuing adoption recommendations. However, there is a long road to broad PQC adoption in practice. This position paper...

2023/599 (PDF) Last updated: 2023-04-27
A Note on a CBC-Type Mode of Operation
George Teseleanu
Secret-key cryptography

In this paper we formally introduce a novel mode of operation based on the cipher block chaining mode. The main idea of this mode is to use a stateful block cipher instead of a stateless one. Afterwards, we show how to implement our proposal and present a performance analysis of our mode. Next, we provide a concrete security analysis by computing a tight bound on the success of adversaries based on their resources. The results of our performance and security analyses are that this novel mode...

2023/506 (PDF) Last updated: 2023-04-13
Energy Consumption Evaluation of Post-Quantum TLS 1.3 for Resource-Constrained Embedded Devices
George Tasopoulos, Charis Dimopoulos, Apostolos P. Fournaris, Raymond K. Zhao, Amin Sakzad, Ron Steinfeld
Cryptographic protocols

Post-Quantum cryptography (PQC), in the past few years, constitutes the main driving force of the quantum resistance transition for security primitives, protocols and tools. TLS is one of the widely used security protocols that needs to be made quantum safe. However, PQC algorithms integration into TLS introduce various implementation overheads compared to traditional TLS that in battery powered embedded devices with constrained resources, cannot be overlooked. While there exist several...

2023/277 (PDF) Last updated: 2023-02-24
Analysis of RIPEMD-160: New Collision Attacks and Finding Characteristics with MILP
Fukang Liu, Gaoli Wang, Santanu Sarkar, Ravi Anand, Willi Meier, Yingxin Li, Takanori Isobe
Attacks and cryptanalysis

The hash function RIPEMD-160 is an ISO/IEC standard and is being used to generate the bitcoin address together with SHA-256. Despite the fact that many hash functions in the MD-SHA hash family have been broken, RIPEMD-160 remains secure and the best collision attack could only reach up to 34 out of 80 rounds, which was published at CRYPTO 2019. In this paper, we propose a new collision attack on RIPEMD-160 that can reach up to 36 rounds with time complexity $2^{64.5}$. This new attack is...

2022/1668 (PDF) Last updated: 2022-12-30
On the families of algebraic graphs with the fastest growth of cycle indicator and their applications
Vasyl Ustimenko
Foundations

Symbolic computations with the usage of bipartite algebraic graphs A(n, F_q) and A(n, F_q[x_1, x_2, ..., x_n]) were used for the development of various cryptographic algorithms because the length of their minimal cycle (the girth) tends to infinity when n is growing. It motivates studies of graphs A(n, K) defined over arbitrary integrity ring K. We show that the cycle indicator of A(n, K), i. e. maximal value of minimal cycles through the given vertex is >2n. We justify that the girth...

2022/1646 (PDF) Last updated: 2022-11-27
Blockin: Multi-Chain Sign-In Standard with Micro-Authorizations
Matt Davison, Ken King, Trevor Miller
Applications

The tech industry is currently making the transition from Web 2.0 to Web 3.0, and with this transition, authentication and authorization have been reimag- ined. Users can now sign in to websites with their unique public/private key pair rather than generating a username and password for every site. How- ever, many useful features, like role-based access control, dynamic resource owner privileges, and expiration tokens, currently don’t have efficient Web 3.0 solutions. Our solution aims...

2022/1633 (PDF) Last updated: 2024-07-22
Linea Prover Documentation
Linea Prover
Cryptographic protocols

Rollup technology today promises long-term solutions to the scalability of the blockchain. Among a thriving ecosystem, Consensys has launched the Linea zkEVM Rollup network for Ethereum. At a high level, the Ethereum blockchain can be seen as a state machine and its state transition can be arithmetized carefully. Linea's prover protocol uses this arithmetization, along with transactions on layer two in order to compute a cryptographic proof that the state transition is performed...

2022/1582 Last updated: 2023-04-12
FSMx-Ultra: Finite State Machine Extraction from Gate-Level Netlist for Security Assessment
Rasheed Kibria, Farimah Farahmandi, Mark Tehranipoor
Applications

Numerous security vulnerability assessment techniques urge precise and fast finite state machines (FSMs) extraction from the design under evaluation. Sequential logic locking, watermark insertion, fault-injection assessment of a System-ona- Chip (SoC) control flow, information leakage assessment, and reverse engineering at gate-level abstraction, to name a few, require precise FSM extraction from the synthesized netlist of the design. Unfortunately, no reliable solutions are currently...

2022/1554 (PDF) Last updated: 2022-11-08
Executing and Proving over Dirty Ledgers
Christos Stefo, Zhuolun Xiang, Lefteris Kokoris-Kogias
Cryptographic protocols

Scaling blockchain protocols to perform on par with the expected needs of Web3.0 has been proven to be a challenging task with almost a decade of research. In the forefront of the current solution is the idea of separating the execution of the updates encoded in a block from the ordering of blocks. In order to achieve this, a new class of protocols called rollups has emerged. Rollups have as input a total ordering of valid and invalid transactions and as output a new valid...

2022/1546 (PDF) Last updated: 2022-11-07
Threshold Implementations in Software: Micro-architectural Leakages in Algorithms
John Gaspoz, Siemen Dhooghe
Implementation

This paper provides necessary properties to algorithmically secure first-order maskings in scalar micro-architectures. The security notions of threshold implementations are adapted following micro-processor leakage effects which are known to the literature. The resulting notions, which are based on the placement of shares, are applied to a two-share randomness-free PRESENT cipher and Keccak-f. The assembly implementations are put on a RISC-V and an ARM Cortex-M4 core. All designs are...

2022/1513 (PDF) Last updated: 2022-11-02
Player-Replaceability and Forensic Support are Two Sides of the Same (Crypto) Coin
Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, Pramod Viswanath
Cryptographic protocols

Player-replaceability is a property of a blockchain protocol that ensures every step of the protocol is executed by an unpredictably random (small) set of players; this guarantees security against a fully adaptive adversary and is a crucial property in building permissionless blockchains. Forensic Support is a property of a blockchain protocol that provides the ability, with cryptographic integrity, to identify malicious parties when there is a safety violation; this provides the ability...

2022/1499 (PDF) Last updated: 2023-06-15
WrapQ: Side-Channel Secure Key Management for Post-Quantum Cryptography
Markku-Juhani O. Saarinen
Implementation

Transition to PQC brings complex challenges to builders of secure cryptographic hardware. PQC keys usually need to be stored off-module and protected via symmetric encryption and message authentication codes. Only a short, symmetric Key-Encrypting Key (KEK) can be managed on-chip with trusted non-volatile key storage. For secure use, PQC key material is handled in masked format; as randomized shares. Due to the masked encoding of the key material, algorithm-specific techniques are needed to...

2022/1487 (PDF) Last updated: 2023-10-07
An efficient verifiable state for zk-EVM and beyond from the Anemoi hash function
Jianwei Liu, Harshad Patil, Akhil Sai Peddireddy, Kevin Singh, Haifeng Sun, Huachuang Sun, Weikeng Chen
Applications

In our survey of the various zk-EVM constructions, it becomes apparent that verifiable storage of the EVM state starts to be one of the dominating costs. This is not surprising because a big differentiator of EVM from UTXO is exactly the ability to carry states and, most importantly, their transitions; i.e., EVM is a **state** machine. In other words, to build an efficient zk-EVM, one must first build an efficient verifiable state. The common approach, which has been used in...

2022/1462 Last updated: 2022-12-29
RTL-FSMx: Fast and Accurate Finite State Machine Extraction at the RTL for Security Applications
Rasheed Kibria, M. Sazadur Rahman, Farimah Farahmandi, Mark Tehranipoor
Applications

At the early stage of the design process, many security vulnerability assessment solutions require fast and precise extraction of the finite state machines (FSMs) present in the register-transfer level (RTL) description of the design. FSMs should be accurately extracted for watermark insertion, fault injection assessment of control paths in a system-on-chip (SoC), information leakage assessment, control-flow reverse engineering in RTL abstraction, logic obfuscation, etc. However, it is quite...

2022/1335 (PDF) Last updated: 2023-09-20
Revisiting Higher-Order Differential-Linear Attacks from an Algebraic Perspective
Kai Hu, Thomas Peyrin, Quan Quan Tan, Trevor Yap
Secret-key cryptography

The Higher-order Differential-Linear (HDL) attack was introduced by Biham \textit{et al.} at FSE 2005, where a linear approximation was appended to a Higher-order Differential (HD) transition. It is a natural generalization of the Differential-Linear (DL) attack. Due to some practical restrictions, however, HDL cryptanalysis has unfortunately attracted much less attention compared to its DL counterpart since its proposal. In this paper, we revisit HD/HDL cryptanalysis from an algebraic...

2022/1225 (PDF) Last updated: 2023-08-22
Hybrid Post-Quantum Signatures in Hardware Security Keys
Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl, Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein
Implementation

Recent advances in quantum computing are increasingly jeopardizing the security of cryptosystems currently in widespread use, such as RSA or elliptic-curve signatures. To address this threat, researchers and standardization institutes have accelerated the transition to quantum-resistant cryptosystems, collectively known as Post-Quantum Cryptography (PQC). These PQC schemes present new challenges due to their larger memory and computational footprints and their higher chance of latent...

2022/1059 (PDF) Last updated: 2022-08-15
Classification of all DO planar polynomials with prime field coefficients over GF(3^n) for n up to 7
Diana Davidova, Nikolay Kaleyski
Foundations

We describe how any function over a finite field $\mathbb{F}_{p^n}$ can be represented in terms of the values of its derivatives. In particular, we observe that a function of algebraic degree $d$ can be represented uniquely through the values of its derivatives of order $(d-1)$ up to the addition of terms of algebraic degree strictly less than $d$. We identify a set of elements of the finite field, which we call the degree $d$ extension of the basis, which has the property that for any...

2022/1049 (PDF) Last updated: 2022-10-04
Post Quantum Design in SPDM for Device Authentication and Key Establishment
Jiewen Yao, Krystian Matusiewicz, Vincent Zimmer
Applications

The Security Protocol and Data Model (SPDM) defines flows to authenticate hardware identity of a computing device. It also allows for establishing a secure session for confidential and integrity protected data communication between two devices. The present version of SPDM, namely version 1.2, relies on traditional asymmetric cryptographic algorithms that are known to be vulnerable to quantum attacks. This paper describes the means by which support for post-quantum (PQ) cryptography can be...

2022/1034 (PDF) Last updated: 2023-10-15
Finding All Impossible Differentials When Considering the DDT
Kai Hu, Thomas Peyrin, Meiqin Wang
Secret-key cryptography

Impossible differential (ID) cryptanalysis is one of the most important attacks on block ciphers. The Mixed Integer Linear Programming (MILP) model is a popular method to determine whether a specific difference pair is an ID. Unfortunately, due to the huge search space (approximately $2^{2n}$ for a cipher with a block size $n$ bits), we cannot leverage this technique to exhaust all difference pairs, which is a well-known long-standing problem. In this paper, we propose a systematic...

2022/965 (PDF) Last updated: 2022-07-27
PROLEAD - A Probing-Based Hardware Leakage Detection Tool
Nicolai Müller, Amir Moradi
Applications

Even today, SCA attacks pose a serious threat to the security of cryptographic implementations fabricated with low-power and nano-scale feature technologies. Fortunately, the masking countermeasures offer reliable protection against such attacks based on simple security assumptions. However, the practical application of masking to a cryptographic algorithm is not trivial, and the designer may overlook possible security flaws, especially when masking a complex circuit. Moreover, abstract...

2022/929 (PDF) Last updated: 2022-11-02
PH = PSPACE
Valerii Sopin
Foundations

In this paper it is shown that PSPACE is equal to 4th level in the polynomial hierarchy. A lot of important consequences are also deduced. True quantified Boolean formula is indeed a generalisation of the Boolean Satisfiability Problem, where determining of interpretation that satisfies a given Boolean formula is replaced by existence of Boolean functions that makes a given QBF to be tautology. Such functions are called the Skolem functions. The essential idea is to skolemize, and...

2022/883 (PDF) Last updated: 2022-07-06
Differentially Oblivious Turing Machines
Ilan Komargodski, Elaine Shi
Foundations

Oblivious RAM (ORAM) is a machinery that protects any RAM from leaking information about its secret input by observing only the access pattern. It is known that every ORAM must incur a logarithmic overhead compared to the non-oblivious RAM. In fact, even the seemingly weaker notion of differential obliviousness, which intuitively ``protects'' a single access by guaranteeing that the observed access pattern for every two ``neighboring'' logical access sequences satisfy...

2022/849 (PDF) Last updated: 2023-04-21
Formal Verification of Arithmetic Masking in Hardware and Software
Barbara Gigerl, Robert Primas, Stefan Mangard
Applications

Masking is a popular secret-sharing technique that is used to protect cryptographic implementations against physical attacks like differential power analysis. So far, most research in this direction has focused on finding efficient Boolean masking schemes for well-known symmetric cryptographic algorithms like AES and Keccak. However, especially with the advent of post-quantum cryptography (PQC), arithmetic masking has received increasing attention from the research community. In practice,...

2022/837 (PDF) Last updated: 2024-01-26
Differential Cryptanalysis in the Fixed-Key Model
Tim Beyne, Vincent Rijmen
Secret-key cryptography

A systematic approach to the fixed-key analysis of differential probabilities is proposed. It is based on the propagation of 'quasidifferential trails', which keep track of probabilistic linear relations on the values satisfying a differential characteristic in a theoretically sound way. It is shown that the fixed-key probability of a differential can be expressed as the sum of the correlations of its quasidifferential trails. The theoretical foundations of the method are based on an...

2022/825 (PDF) Last updated: 2022-06-23
Romeo: Conversion and Evaluation of HDL Designs in the Encrypted Domain
Charles Gouert, Nektarios Georgios Tsoutsos
Applications

As cloud computing becomes increasingly ubiquitous, protecting the confidentiality of data outsourced to third parties becomes a priority. While encryption is a natural solution to this problem, traditional algorithms may only protect data at rest and in transit, but do not support encrypted processing. In this work we introduce Romeo, which enables easy-to-use privacy-preserving processing of data in the cloud using homomorphic encryption. Romeo automatically converts arbitrary programs...

2022/802 (PDF) Last updated: 2022-11-24
VERI-ZEXE: Decentralized Private Computation with Universal Setup
Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fernando Krell, Philippe Camacho
Implementation

Traditional blockchain systems execute program state transitions on-chain, requiring each network node participating in state-machine replication to re-compute every step of the program when validating transactions. This limits both scalability and privacy. Recently, Bowe et al. introduced a primitive called decentralized private computation (DPC) and provided an instantiation called ZEXE, which allows users to execute arbitrary computations off-chain without revealing the program logic to...

2022/753 (PDF) Last updated: 2022-06-12
Fast MILP Models for Division Property
Patrick Derbez, Baptiste Lambin
Secret-key cryptography

Nowadays, MILP is a very popular tool to help cryptographers search for various distinguishers, in particular for integral distinguishers based on the division property. However, cryptographers tend to use MILP in a rather naive way, modeling problems in an exact manner and feeding them to a MILP solver. In this paper, we show that a proper use of some features of MILP solvers such as lazy constraints, along with using simpler but less accurate base models, can achieve much better solving...

2022/519 (PDF) Last updated: 2022-05-02
HARPOCRATES: An Approach Towards Efficient Encryption of Data-at-rest
Md Rasid Ali, Debranjan Pal, Abhijit Das, Dipanwita Roychowdhury
Secret-key cryptography

This paper proposes a new block cipher called HARPOCRATES, which is different from traditional SPN, Feistel, or ARX designs. The new design structure that we use is called the substitution convolution network. The novelty of the approach lies in that the substitution function does not use fixed S-boxes. Instead, it uses a key-driven lookup table storing a permutation of all 8-bit values. If the lookup table is sufficiently randomly shuffled, the round sub-operations achieve good confusion...

2022/507 (PDF) Last updated: 2022-05-13
Low-Latency Hardware Private Circuits
David Knichel, Amir Moradi
Implementation

Over the last years, the rise of the IoT, and the connection of mobile - and hence physically accessible - devices, immensely enhanced the demand for fast and secure hardware implementations of cryptographic algorithms which offer thorough protection against SCA attacks. Among a variety of proposed countermeasures against SCA, masking has transpired to be a promising candidate, attracting significant attention in both, academia and industry. Here, abstract adversary models have been derived,...

2022/483 (PDF) Last updated: 2023-12-07
When Cryptography Needs a Hand: Practical Post-Quantum Authentication for V2V Communications
Geoff Twardokus, Nina Bindel, Hanif Rahbari, Sarah McCarthy
Public-key cryptography

We tackle the atypical challenge of supporting post-quantum cryptography (PQC) and its significant overhead in safety-critical vehicle-to-vehicle (V2V) communications, dealing with strict overhead and latency restrictions within the limited radio spectrum for V2V. For example, we show that the current use of spectrum to support signature verification in V2V makes it nearly impossible to adopt PQC. Accordingly, we propose a scheduling technique for message signing certificate transmissions...

2022/402 (PDF) Last updated: 2022-03-31
Improved Rotational-XOR Cryptanalysis of Simon-like Block Ciphers
Jinyu Lu, Yunwen Liu, Tomer Ashur, Bing Sun, Chao Li

Rotational-XOR (RX) cryptanalysis is a cryptanalytic method aimed at finding distinguishable statistical properties in ARX-C ciphers, i.e., ciphers that can be described only by using modular addition, cyclic rotation, XOR, and the injection of constants. In this paper we extend RX-cryptanalysis to AND-RX ciphers, a similar design paradigm where the modular addition is replaced by vectorial bitwise AND; such ciphers include the block cipher families Simon and Simeck. We analyze the...

2022/349 (PDF) Last updated: 2022-04-07
Hard Homogeneous Spaces from the Class Field Theory of Imaginary Hyperelliptic Function Fields
Antoine Leudière, Pierre-Jean Spaenlehauer
Public-key cryptography

We explore algorithmic aspects of a free and transitive commutative group action coming from the class field theory of imaginary hyperelliptic function fields. Namely, the Jacobian of an imaginary hyperelliptic curve defined over $\mathbb{F}_q$ acts on a subset of isomorphism classes of Drinfeld modules. We describe an algorithm to compute the group action efficiently. This is a function field analog of the Couveignes-Rostovtsev-Stolbunov group action. Our proof-of-concept C++/NTL...

2022/252 (PDF) Last updated: 2022-03-02
Handcrafting: Improving Automated Masking in Hardware with Manual Optimizations
Charles Momin, Gaëtan Cassiers, François-Xavier Standaert
Implementation

Masking is an important countermeasure against side-channel attacks, but its secure implementation is known to be error-prone. The automated verification and generation of masked designs is therefore an important theoretical and practical challenge. In a recent work, Knichel et al. proposed a tool for the automated generation of masked hardware implementations satisfying strong security properties (e.g., glitch-freeness and composability). In this paper, we study the possibility to improve...

2022/175 (PDF) Last updated: 2022-07-27
WeRLman: To Tackle Whale (Transactions), Go Deep (RL)
Roi Bar-Zur, Ameer Abu-Hanna, Ittay Eyal, Aviv Tamar
Applications

The security of proof-of-work blockchain protocols critically relies on incentives. Their operators, called miners, receive rewards for creating blocks containing user-generated transactions. Each block rewards its creator with newly minted tokens and with transaction fees paid by the users. The protocol stability is violated if any of the miners surpasses a threshold ratio of the computational power; she is then motivated to deviate with selfish mining and increase her rewards. Previous...

2022/103 Last updated: 2022-03-31
E-Tenon: An Efficient Privacy-Preserving Secure Open Data Sharing Scheme for EHR System
Zhihui Lin, Prosanta Gope, Jianting Ning, Biplab Sikdar
Applications

The transition from paper-based information to Electronic Health Records (EHRs) has driven various advancements in the modern healthcare industry. In many cases, patients need to share their EHR with healthcare professionals. Given the sensitive and security-critical nature of EHRs, it is essential to consider the security and privacy issues of storing and sharing EHR. However, existing security solutions excessively encrypt the whole database, where the entire database is required to be...

2022/068 (PDF) Last updated: 2022-01-18
Updatable Public Key Encryption in the Standard Model
Yevgeniy Dodis, Harish Karthikeyan, Daniel Wichs
Public-key cryptography

Forward security (FS) ensures that corrupting the current secret key in the system preserves the privacy or integrity of the prior usages of the system. Achieving forward security is especially hard in the setting of public-key encryption (PKE), where time is divided into periods, and in each period the receiver derives the next-period secret key from their current secret key, while the public key stays constant. Indeed, all current constructions of FS-PKE are built from hierarchical...

2022/023 (PDF) Last updated: 2022-01-08
Transitional Leakage in Theory and Practice - Unveiling Security Flaws in Masked Circuits
Nicolai Müller, David Knichel, Pascal Sasdrich, Amir Moradi
Applications

Accelerated by the increased interconnection of highly accessible devices, the demand for effective and efficient protection of hardware designs against SCA is ever rising, causing its topical relevance to remain immense in both, academia and industry. Among a wide range of proposed countermeasures against SCA, masking is a highly promising candidate due to its sound foundations and well-understood security requirements. In addition, formal adversary models have been introduced, aiming to...

2022/016 (PDF) Last updated: 2022-08-08
An algebraic attack to the Bluetooth stream cipher E0
Roberto La Scala, Sergio Polese, Sharwan K. Tiwari, Andrea Visconti
Secret-key cryptography

In this paper we study the security of the Bluetooth stream cipher E0 from the viewpoint it is a “difference stream cipher”, that is, it is defined by a system of explicit difference equations over the finite field GF(2). This approach highlights some issues of the Bluetooth encryption such as the invertibility of its state transition map, a special set of 14 bits of its 132-bit state which when guessed implies linear equations among the other bits and finally a small number of spurious...

2021/1654 (PDF) Last updated: 2022-04-07
Quantifiable Assurance: From IPs to Platforms
Bulbul Ahmed, Md Kawser Bepary, Nitin Pundir, Mike Borza, Oleg Raikhman, Amit Garg, Dale Donchin, Adam Cron, Mohamed A Abdel-moneum, Farimah Farahmandi, Fahim Rahman, Mark Tehranipoor

Hardware vulnerabilities are generally considered more difficult to fix than software ones because of their persistent nature after fabrication. Thus, it is crucial to assess the security and fix the potential vulnerabilities in the earlier design phases, such as Register Transfer Level (RTL), gate-level or physical layout. The focus of the existing security assessment techniques is mainly twofold. First, they check the security of Intellectual Property (IP) blocks separately (they can be...

2021/1636 (PDF) Last updated: 2021-12-17
Does Fully Homomorphic Encryption Need Compute Acceleration?
Leo de Castro, Rashmi Agrawal, Rabia Yazicigil, Anantha Chandrakasan, Vinod Vaikuntanathan, Chiraag Juvekar, Ajay Joshi

The emergence of cloud-computing has raised important privacy questions about the data that users share with remote servers. While data in transit is protected using standard techniques like Transport Layer Security (TLS), most cloud providers have unrestricted plaintext access to user data at the endpoint. Fully Homomorphic Encryption (FHE) offers one solution to this problem by allowing for arbitrarily complex computations on encrypted data without ever needing to decrypt it....

2021/1606 (PDF) Last updated: 2021-12-09
An Enhanced Long-term Blockchain Scheme Against Compromise of Cryptography
Long Meng, Liqun Chen
Cryptographic protocols

Blockchain is a decentralized ledger applying the peer-to-peer (P2P) network, cryptography and consensus mechanism over distributed network. Especially, the underlying cryptographic algorithms protect the blockchain integrity and data authenticity. However, it is well-known that every single algorithm is associated with a limited lifespan due to the increasing computational power of attackers. The compromise of algorithms directly leads to the compromise of blockchain validity. There are two...

2021/1485 (PDF) Last updated: 2022-03-10
Don't Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE
Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson, Robin Leander Schröder
Public-key cryptography

Well before large-scale quantum computers will be available, traditional cryptosystems must be transitioned to post-quantum (PQ) secure schemes. The NIST PQC competition aims to standardize suitable cryptographic schemes. Candidates are evaluated not only on their formal security strengths, but are also judged based on the security with regard to resistance against side-channel attacks. Although round 3 candidates have already been intensively vetted with regard to such attacks, one...

2021/1447 (PDF) Last updated: 2021-10-27
Mixed Certificate Chains for the Transition to Post-Quantum Authentication in TLS 1.3
Sebastian Paul, Yulia Kuzovkova, Norman Lahr, Ruben Niederhagen
Implementation

Large-scale quantum computers will be able to efficiently solve the underlying mathematical problems of widely deployed public key cryptosystems in the near future. This threat has sparked increased interest in the field of Post-Quantum Cryptography (PQC) and standardization bodies like NIST, IETF, and ETSI are in the process of standardizing PQC schemes as a new generation of cryptography. This raises the question of how to ensure a fast, reliable, and secure transition to upcoming PQC...

2021/1361 (PDF) Last updated: 2022-04-05
Plumo: An Ultralight Blockchain Client
Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic, Georgios Konstantopoulos, Asa Oines, Marek Olszewski, Eran Tromer
Applications

Syncing the latest state of a blockchain can be a resource-intensive task, driving (especially mobile) end users towards centralized services offering instant access. To expand full decentralized access to anyone with a mobile phone, we introduce a consensus-agnostic compiler for constructing {\em ultralight clients}, providing secure and highly efficient blockchain syncing via a sequence of SNARK-based state transition proofs, and prove its security formally. Instantiating this, we present...

2021/1288 (PDF) Last updated: 2021-09-24
FO-like Combiners and Hybrid Post-Quantum Cryptography
Loïs Huguenin-Dumittan, Serge Vaudenay
Public-key cryptography

Combining several primitives together to offer greater security is an old idea in cryptography. Recently, this concept has resurfaced as it could be used to improve trust in new Post-Quantum (PQ) schemes and smooth the transition to PQ cryptography. In particular, several ways to combine key exchange mechanisms (KEMs) into a secure hybrid KEM have been proposed. In this work, we observe that most PQ KEMs are built using a variant of the Fujisaki-Okamoto (FO) transform. Thus, we propose...

2021/1285 (PDF) Last updated: 2021-11-30
Convexity of division property transitions: theory, algorithms and compact models
Aleksei Udovenko
Secret-key cryptography

Integral cryptanalysis is a powerful tool for attacking symmetric primitives, and division property is a state-of-the-art framework for finding integral distinguishers. This work describes new theoretical and practical insights into traditional bit-based division property. We focus on analyzing and exploiting monotonicity/convexity of division property and its relation to the graph indicator. In particular, our investigation leads to a new compact representation of propagation, which allows...

2021/1187 (PDF) Last updated: 2022-03-03
Post-Quantum Signal Key Agreement with SIDH
Samuel Dobson, Steven D. Galbraith
Cryptographic protocols

In the effort to transition cryptographic primitives and protocols to quantum-resistant alternatives, an interesting and useful challenge is found in the Signal protocol. The initial key agreement component of this protocol, called X3DH, has so far proved more subtle to replace - in part due to the unclear security model and properties the original protocol is designed for. This paper defines a formal security model for the original signal protocol, in the context of the standard eCK and CK+...

2021/1186 (PDF) Last updated: 2021-09-14
A Privacy-Preserving Distributed Identity Offline-First PoCP Blockchain Paradigm
Andrew M. K. Nassief
Applications

BitBadges is a privacy preserving distributed identity platform that plans on utilizing CouchDB, the decentralized-internet SDK by Lonero, Blake3 hashing, and a PoCP or Proof of Computation consensus algorithm. It is privacy-preserving and offers a unique proposition for traditional blockchains centered around consensus algorithms. This paper introduces the conceptual design for BitBadges in its second version and as its own blockchain platform and cryptocurrency. The aim is to introduce...

2021/1095 (PDF) Last updated: 2021-09-02
Analyzing Masked Ciphers Against Transition and Coupling Effects
Siemen Dhooghe
Implementation

This paper discusses how to analyze the probing security of masked symmetric primitives against the leakage effects from CHES 2018; glitches, transitions, and coupling effects. This is illustrated on several architectures of ciphers like PRESENT, AES, and ASCON where we transform glitch-extended probing secure maskings into transition and/or coupling secure ones. The analysis uses linear cryptanalytic methods and the diffusion layers of the cipher to efficiently protect against the advanced...

2021/1067 (PDF) Last updated: 2021-12-25
A Tale of Twin Primitives: Single-chip Solution for PUFs and TRNGs
Kuheli Pratihar, Urbi Chatterjee, Manaar Alam, Debdeep Mukhopadhyay, Rajat Subhra Chakraborty
Implementation

Physically Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) are two highly useful hardware primitives to build up the root-of-trust for an embedded device. PUFs are designed to offer repetitive and instance-specific randomness, whereas TRNGs are expected to be invariably random. In this paper, we present a dual-mode PUF-TRNG design that utilises two different hardware-intrinsic properties, i.e. oscillation frequency of the Transition Effect Ring Oscillator (TERO) cell...

2021/978 (PDF) Last updated: 2021-07-22
Polymath: Low-Latency MPC via Secure Polynomial Evaluations and its Applications
Donghang Lu, Albert Yu, Aniket Kate, Hemanta Maji
Cryptographic protocols

While the practicality of secure multi-party computation (MPC) has been extensively analyzed and improved over the past decade, we are hitting the limits of efficiency with the traditional approaches of representing the computed functionalities as generic arithmetic or Boolean circuits. This work follows the design principle of identifying and constructing fast and provably-secure MPC protocols to evaluate useful high-level algebraic abstractions; thus, improving the efficiency of all...

2021/898 (PDF) Last updated: 2021-07-01
On Extremal Expanding Algebraic Graphs and post-quantum secure delivery of passwords, encryption maps and tools for multivariate digital signatures.
Vasyl Ustimenko
Cryptographic protocols

Expanding graphs are known due to their remarkable applications to Computer Science. We are looking for their applications to Post Quantum Cryptography. One of them is postquantum analog of Diffie-Hellman protocol in the area of intersection of Noncommutative and Multivariate Cryptographies .This graph based protocol allows correspondents to elaborate collision cubic transformations of affine space Kn defined over finite commutative ring K. Security of this protocol rests on the...

2021/651 (PDF) Last updated: 2021-05-20
Leo: A Programming Language for Formally Verified, Zero-Knowledge Applications
Collin Chin, Howard Wu, Raymond Chu, Alessandro Coglio, Eric McCarthy, Eric Smith
Implementation

Decentralized ledgers that support rich applications suffer from three limitations. First, applications are provisioned tiny execution environments with limited running time, minimal stack size, and restrictive instruction sets. Second, applications must reveal their state transition, enabling miner frontrunning attacks and consensus instability. Third, applications offer weak guarantees of correctness and safety. We design, implement, and evaluate Leo, a new programming language designed...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.