Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                



Dates are inconsistent

Dates are inconsistent

30 results sorted by ID

Possible spell-corrected query: web
2024/1593 (PDF) Last updated: 2024-10-08
Stateful Communication with Malicious Parties
Chen-Da Liu-Zhang, Christopher Portmann, Guilherme Rito
Foundations

Cryptography's most common use is secure communication---e.g. Alice can use encryption to hide the contents of the messages she sends to Bob (confidentiality) and can use signatures to assure Bob she sent these messages (authenticity). While one typically considers stateless security guarantees---for example a channel that Alice can use to send messages securely to Bob---one can also consider stateful ones---e.g. an interactive conversation between Alice, Bob and their friends where...

2024/1523 (PDF) Last updated: 2024-09-27
Functional Adaptor Signatures: Beyond All-or-Nothing Blockchain-based Payments
Nikhil Vanjani, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Cryptographic protocols

In scenarios where a seller holds sensitive data $x$, like employee / patient records or ecological data, and a buyer seeks to obtain an evaluation of specific function $f$ on this data, solutions in trustless digital environments like blockchain-based Web3 systems typically fall into two categories: (1) Smart contract-powered solutions and (2) cryptographic solutions leveraging tools such as adaptor signatures. The former approach offers atomic transactions where the buyer learns the...

2024/1501 (PDF) Last updated: 2024-09-25
Exploring User Perceptions of Security Auditing in the Web3 Ecosystem
Molly Zhuangtong Huang, Rui Jiang, Tanusree Sharma, Kanye Ye Wang
Applications

In the rapidly evolving Web3 ecosystem, transparent auditing has emerged as a critical component for both applications and users. However, there is a significant gap in understanding how users perceive this new form of auditing and its implications for Web3 security. Utilizing a mixed-methods approach that incorporates a case study, user interviews, and social media data analysis, our study leverages a risk perception model to comprehensively explore Web3 users' perceptions regarding...

2024/1268 (PDF) Last updated: 2024-08-15
Improved YOSO Randomness Generation with Worst-Case Corruptions
Chen-Da Liu-Zhang, Elisaweta Masserova, João Ribeiro, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Cryptographic protocols

We study the problem of generating public unbiased randomness in a distributed manner within the recent You Only Speak Once (YOSO) framework for stateless multiparty computation, introduced by Gentry et al. in CRYPTO 2021. Such protocols are resilient to adaptive denial-of-service attacks and are, by their stateless nature, especially attractive in permissionless environments. While most works in the YOSO setting focus on independent random corruptions, we consider YOSO protocols with...

2024/961 (PDF) Last updated: 2024-06-14
Efficient Execution Auditing for Blockchains under Byzantine Assumptions
Jeff Burdges, Alfonso Cevallos, Handan Kılınç Alper, Chen-Da Liu-Zhang, Fatemeh Shirazi, Alistair Stewart, Rob Habermeier, Robert Klotzner, Andronik Ordian
Cryptographic protocols

Security of blockchain technologies primarily relies on decentralization making them resilient against a subset of entities being taken down or corrupt. Blockchain scaling, crucial to decentralisation, has been addressed by architectural changes: i.e., the load of the nodes is reduced by parallelisation, called sharding or by taking computation load off the main blockchain via rollups. Both sharding and rollups have limitations in terms of decentralization and security. A crucial component...

2024/957 (PDF) Last updated: 2024-06-18
VRaaS: Verifiable Randomness as a Service on Blockchains
Jacob Gorman, Lucjan Hanzlik, Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Pratik Sarkar, Sri AravindaKrishnan Thyagarajan
Foundations

Web3 applications, such as on-chain games, NFT minting, and leader elections necessitate access to unbiased, unpredictable, and publicly verifiable randomness. Despite its broad use cases and huge demand, there is a notable absence of comprehensive treatments of on-chain verifiable randomness services. To bridge this, we offer an extensive formal analysis of on-chain verifiable randomness services. We present the $first$ formalization of on-chain verifiable randomness in the...

2024/486 (PDF) Last updated: 2024-03-25
Anamorphic Encryption: New Constructions and Homomorphic Realizations
Dario Catalano, Emanuele Giunta, Francesco Migliaro
Public-key cryptography

The elegant paradigm of Anamorphic Encryption (Persiano et al., Eurocrypt 2022) considers the question of establishing a private communication in a world controlled by a dictator. The challenge is to allow two users, sharing some secret anamorphic key, to exchange covert messages without the dictator noticing, even when the latter has full access to the regular secret keys. Over the last year several works considered this question and proposed constructions, novel extensions and...

2024/435 (PDF) Last updated: 2024-03-13
Unbiasable Verifiable Random Functions
Emanuele Giunta, Alistair Stewart
Public-key cryptography

Verifiable Random Functions (VRFs) play a pivotal role in Proof of Stake (PoS) blockchain due to their applications in secret leader election protocols. However, the original definition by Micali, Rabin and Vadhan is by itself insufficient for such applications. The primary concern is that adversaries may craft VRF key pairs with skewed output distribution, allowing them to unfairly increase their winning chances. To address this issue David, Gaži, Kiayias and Russel (2017/573) proposed a...

2024/379 (PDF) Last updated: 2024-06-04
SyRA: Sybil-Resilient Anonymous Signatures with Applications to Decentralized Identity
Elizabeth Crites, Aggelos Kiayias, Markulf Kohlweiss, Amirreza Sarencheh
Cryptographic protocols

We introduce a new cryptographic primitive, called Sybil-Resilient Anonymous (SyRA) signatures, which enable users to generate, on demand, unlinkable pseudonyms tied to any given context, and issue signatures on behalf of these pseudonyms. Concretely, given a personhood relation, an issuer (who may be a distributed entity) enables users to prove their personhood and extract an associated long-term key, which can then be used to issue signatures for any given context and message....

2024/271 (PDF) Last updated: 2024-02-19
Understanding User-Perceived Security Risks and Mitigation Strategies in the Web3 Ecosystem
Janice Jianing Si, Tanusree Sharma, Kanye Ye Wang
Applications

The advent of Web3 technologies promises unprecedented levels of user control and autonomy. However, this decentralization shifts the burden of security onto the users, making it crucial to understand their security behaviors and perceptions. To address this, our study introduces a comprehensive framework that identifies four core components of user interaction within the Web3 ecosystem: blockchain infrastructures, Web3-based Decentralized Applications (DApps), online communities, and...

2024/251 (PDF) Last updated: 2024-02-16
Communication-Optimal Convex Agreement
Diana Ghinea, Chen-Da Liu-Zhang, Roger Wattenhofer
Cryptographic protocols

Byzantine Agreement (BA) allows a set of $n$ parties to agree on a value even when up to $t$ of the parties involved are corrupted. While previous works have shown that, for $\ell$-bit inputs, BA can be achieved with the optimal communication complexity $\mathcal{O}(\ell n)$ for sufficiently large $\ell$, BA only ensures that honest parties agree on a meaningful output when they hold the same input, rendering the primitive inadequate for many real-world applications. This gave rise to...

2024/243 (PDF) Last updated: 2024-07-10
Towards Achieving Asynchronous MPC with Linear Communication and Optimal Resilience
Vipul Goyal, Chen-Da Liu-Zhang, Yifan Song
Cryptographic protocols

Secure multi-party computation (MPC) allows a set of $n$ parties to jointly compute a function over their private inputs. The seminal works of Ben-Or, Canetti and Goldreich [STOC '93] and Ben-Or, Kelmer and Rabin [PODC '94] settled the feasibility of MPC over asynchronous networks. Despite the significant line of work devoted to improving the communication complexity, current protocols with information-theoretic security and optimal resilience $t<n/3$ communicate $\Omega(n^4C)$ field...

2023/1575 (PDF) Last updated: 2023-10-12
SoK: Web3 Recovery Mechanisms
Panagiotis Chatzigiannis, Konstantinos Chalkias, Aniket Kate, Easwar Vivek Mangipudi, Mohsen Minaei, Mainack Mondal
Applications

Account recovery enables users to regain access to their accounts when they lose their authentication credentials. While account recovery is well established and extensively studied in the Web2 (traditional web) context, Web3 account recovery presents unique challenges. In Web3, accounts rely on a (cryptographically secure) private-public key pair as their credential, which is not expected to be shared with a single entity like a server owing to security concerns. This makes account recovery...

2023/1473 (PDF) Last updated: 2024-03-14
Cicada: A framework for private non-interactive on-chain auctions and voting
Noemi Glaeser, István András Seres, Michael Zhu, Joseph Bonneau
Cryptographic protocols

Auction and voting schemes play a crucial role in the Web3 ecosystem. Yet currently deployed implementations either lack privacy or require at least two rounds, hindering usability and security. We introduce Cicada, a general framework for using linearly homomorphic time-lock puzzles (HTLPs) to enable provably secure, non-interactive private auction and voting protocols. We instantiate our framework with an efficient new HTLP construction and novel packing techniques that enable succinct...

2023/1339 (PDF) Last updated: 2023-12-30
FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains
Aniket Kate, Easwar Vivek Mangipudi, Siva Mardana, Pratyay Mukherjee
Cryptographic protocols

Web3 applications based on blockchains regularly need access to randomness that is unbiased, unpredictable, and publicly verifiable. For Web3 gaming applications, this becomes a crucial selling point to attract more users by providing credibility to the "random reward" distribution feature. A verifiable random function (VRF) protocol satisfies these requirements naturally, and there is a tremendous rise in the use of VRF services. As most blockchains cannot maintain the secret keys required...

2023/1316 (PDF) Last updated: 2023-09-04
Communication Lower Bounds for Cryptographic Broadcast Protocols
Erica Blum, Elette Boyle, Ran Cohen, Chen-Da Liu-Zhang
Cryptographic protocols

Broadcast protocols enable a set of $n$ parties to agree on the input of a designated sender, even facing attacks by malicious parties. In the honest-majority setting, a fruitful line of work harnessed randomization and cryptography to achieve low-communication broadcast protocols with sub-quadratic total communication and with "balanced" sub-linear communication cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most...

2023/939 (PDF) Last updated: 2023-08-23
Speeding up elliptic computations for Ethereum Account Abstraction
Renaud Dubois
Implementation

Account Abstraction is a powerful feature that will transform today Web3 onboarding UX. This notes describes an EVM (Ethereum Virtual Machine) implementation of the well known secp256r1 and ed25519 curves optimized for the specificities of the EVM environment. Our optimizations rely on EVM dedicated XYZZ elliptic coordinates system, hacked precomputations, and assembly tricks to cut from more than 1M to 200K/62K (with or withoutprecomputations)

2023/616 (PDF) Last updated: 2023-04-30
vetKeys: How a Blockchain Can Keep Many Secrets
Andrea Cerulli, Aisling Connolly, Gregory Neven, Franz-Stefan Preiss, Victor Shoup
Cryptographic protocols

We propose a new cryptographic primitive called "verifiably encrypted threshold key derivation" (vetKD) that extends identity-based encryption with a decentralized way of deriving decryption keys. We show how vetKD can be leveraged on modern blockchains to build scalable decentralized applications (or "dapps") for a variety of purposes, including preventing front-running attacks on decentralized finance (DeFi) platforms, end-to-end encryption for decentralized messaging and social networks...

2023/445 (PDF) Last updated: 2024-05-27
Fully Adaptive Schnorr Threshold Signatures
Elizabeth Crites, Chelsea Komlo, Mary Maller
Public-key cryptography

We prove adaptive security of a simple three-round threshold Schnorr signature scheme, which we call Sparkle+. The standard notion of security for threshold signatures considers a static adversary – one who must declare which parties are corrupt at the beginning of the protocol. The stronger adaptive adversary can at any time corrupt parties and learn their state. This notion is natural and practical, yet not proven to be met by most schemes in the literature. In this paper, we...

2023/410 (PDF) Last updated: 2023-10-24
Unbounded Leakage-Resilience and Intrusion-Detection in a Quantum World
Alper Cakan, Vipul Goyal, Chen-Da Liu-Zhang, João Ribeiro
Foundations

Can an adversary hack into our computer and steal sensitive data such as cryptographic keys? This question is almost as old as the Internet and significant effort has been spent on designing mechanisms to prevent and detect hacking attacks. Once quantum computers arrive, will the situation remain the same or can we hope to live in a better world? We first consider ubiquitous side-channel attacks, which aim to leak side information on secret system components, studied in the...

2023/315 (PDF) Last updated: 2023-03-04
SoK on Blockchain Evolution and a Taxonomy for Public Blockchain Generations
Thuat Do
Foundations

Blockchain has been broadly recognized as a breakthrough technology of the world. Web3, recently, is emerging as a buzzword, indicating the next generation of Internet based on Blockchain, envisioning the Internet of Money to store and transfer value. However, when people want a comprehensive view throughout advancements in the Blockchain space, there is a missing in the academic domain and scientific publications regarding distributed ledger technology (DLT) classification and taxonomy for...

2023/191 (PDF) Last updated: 2023-06-20
Beyond the Blockchain Address: Zero-Knowledge Address Abstraction
Sanghyeon Park, Jeong Hyuk Lee, Seunghwa Lee, Jung Hyun Chun, Hyeonmyeong Cho, MinGi Kim, Hyun Ki Cho, Soo-Mook Moon
Applications

Integrating traditional Internet (web2) identities with blockchain (web3) identities presents considerable obstacles. Conventional solutions typically employ a mapping strategy, linking web2 identities directly to specific blockchain addresses. However, this method can lead to complications such as fragmentation of identifiers across disparate networks. To address these challenges, we propose a novel scheme, Address Abstraction (AA), that circumvents the need for direct mapping. AA scheme...

2023/122 (PDF) Last updated: 2023-06-16
SoK: Privacy-Enhancing Technologies in Finance
Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen
Applications

Recent years have seen the emergence of practical advanced cryptographic tools that not only protect data privacy and authenticity, but also allow for jointly processing data from different institutions without sacrificing privacy. The ability to do so has enabled implementations a number of traditional and decentralized financial applications that would have required sacrificing privacy or trusting a third party. The main catalyst of this revolution was the advent of decentralized...

2023/031 (PDF) Last updated: 2023-01-10
Sassafras and Semi-Anonymous Single Leader Election
Jeffrey Burdges, Handan Kılınç Alper, Alistair Stewart, Sergey Vasilyev
Cryptographic protocols

A single-leader election (SLE) is a way to elect one leader randomly among the parties in a distributed system. If the leader is secret (i.e., unpredictable) then it is called a secret single leader election (SSLE). In this paper, we model the security of SLE in the universally composable (UC) model. Our model is adaptable to various unpredictability levels for leaders that an SLE aims to provide. We construct an SLE protocol that we call semi-anonymous single leader election (SASLE). We...

2022/1723 (PDF) Last updated: 2024-03-07
Asymptotically Optimal Message Dissemination with Applications to Blockchains
Chen-Da Liu-Zhang, Christian Matt, Søren Eller Thomsen
Cryptographic protocols

Messages in large-scale networks such as blockchain systems are typically disseminated using flooding protocols, in which parties send the message to a random set of peers until it reaches all parties. Optimizing the communication complexity of such protocols and, in particular, the per-party communication complexity is of primary interest since nodes in a network are often subject to bandwidth constraints. Previous flooding protocols incur a per-party communication complexity of...

2022/1611 (PDF) Last updated: 2023-09-19
Efficient Aggregatable BLS Signatures with Chaum-Pedersen Proofs
Jeff Burdges, Oana Ciobotaru, Syed Lavasani, Alistair Stewart
Cryptographic protocols

BLS signatures have fast aggregated signature verification but slow individual signature verification. We propose a three part optimisation that dramatically reduces CPU time in large distributed system using BLS signatures: First, public keys should be given on both source groups $\mathbb{G}_1$ and $\mathbb{G}_2$, with a proof-of-possession check for correctness. Second, aggregated BLS signatures should carry their particular aggregate public key in $\mathbb{G}_2$, so that verifiers can do...

2022/1581 (PDF) Last updated: 2024-05-01
Truncator: Time-space Tradeoff of Cryptographic Primitives
Foteini Baldimtsi, Konstantinos Chalkias, Panagiotis Chatzigiannis, Mahimna Kelkar
Applications

We present mining-based techniques to reduce the size of various cryptographic outputs without loss of security. Our approach can be generalized for multiple primitives, such as cryptographic key generation, signing, hashing and encryption schemes, by introducing a brute-forcing step to provers/senders aiming at compressing submitted cryptographic material. Interestingly, mining can result in record-size cryptographic outputs, and we show that 5%-12% shorter hash digests and signatures...

2022/1369 (PDF) Last updated: 2023-09-26
Network-Agnostic Security Comes (Almost) for Free in DKG and MPC
Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, Julian Loss
Cryptographic protocols

Distributed key generation (DKG) protocols are an essential building block for threshold cryptosystems. Many DKG protocols tolerate up to $t_s<n/2$ corruptions assuming a well-behaved synchronous network, but become insecure as soon as the network delay becomes unstable. On the other hand, solutions in the asynchronous model operate under arbitrary network conditions, but only tolerate $t_a<n/3$ corruptions, even when the network is well-behaved. In this work, we ask whether one can...

2022/1309 (PDF) Last updated: 2022-11-06
MPC as a service using Ethereum Registry Smart Contracts - dCommon CIP
Matt Shams(Anis), Bingsheng Zhang, Justinas Zaliaduonis
Cryptographic protocols

In this paper we introduce dCommon - auditable and programmable MPC as a service for solving multichain governance coordination problems throughout DeFi and Web3; Along with its on-chain part Common Interest Protocol (CIP) - an autonomous and immutable registry smart contract suite. CIP enables arbitrary business logic for off-chain computations using dCommon’s network/subnetworks with Ethereum smart contracts. In Stakehouse, CIP facilitates a trustless recovery of signing keys and key...

2022/1205 (PDF) Last updated: 2023-01-12
Accountable Light Client Systems for PoS Blockchains
Oana Ciobotaru, Fatemeh Shirazi, Alistair Stewart, Sergey Vasilyev
Applications

A major challenge for blockchain interoperability is having an on-chain light client protocol that is both efficient and secure. We present a protocol that provides short proofs about the state of a decentralised consensus protocol while being able to detect misbehaving parties. To do this naively, a verifier would need to maintain an updated list of all participants' public keys which makes the corresponding proofs long. In general, existing solutions either lack accountability or are not...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.