Abstract The use of model output statistics (MOS) in operational weather element prediction has b... more Abstract The use of model output statistics (MOS) in operational weather element prediction has been hindered since the mid-1980s by frequent changes in the operational numerical weather prediction models that supply the predictors for the weather element forecasts. Once the model changes, a new archive of model output must be collected for a long enough period that statistically stable equations can be developed. This paper describes a new statistical interpretation system that addresses this problem and permits the rapid adaptation of the statistical forecast to changes in the formulation of the driving model. In comparison with traditional MOS development, the new system incorporates two main features. First, the data are stored in the form of the cross-products matrices used in multivariate statistical techniques rather than as raw observations and forecasts. It is these matrices that are updated regularly with new output from the model. Second, equations are developed by a weighted blending of the ne...
Page 1. Met Apps 1, 247-265 (1994) The Canadian operational procedure for forecasting total ozone... more Page 1. Met Apps 1, 247-265 (1994) The Canadian operational procedure for forecasting total ozone and UV radiation William R Burrows, Marcel VallCe, David I Wardle, James B Kerr, Laurence J Wilson and David W Tarasick ...
Since November 2014, the Meteorological Services of Canada (MSC) has been running a real-time num... more Since November 2014, the Meteorological Services of Canada (MSC) has been running a real-time numerical weather prediction system that provides deterministic forecasts on a regional domain with a 2.5-km horizontal grid spacing covering a large portion of Canada using the Global Environmental Multiscale (GEM) forecast model. This system, referred to as the High Resolution Deterministic Prediction System (HRDPS), is currently downscaled from MSC’s operational 10-km GEM-based regional system but uses initial surface fields from a high-resolution (2.5 km) land data assimilation system coupled to the HRDPS and initial hydrometeor fields from the forecast of a 2.5-km cycle, which reduces the spinup time for clouds and precipitation. Forecast runs of 48 h are provided four times daily. The HRDPS was tested and compared to the operational 10-km system. Model runs from the two systems were evaluated against surface observations for common weather elements (temperature, humidity, winds, and p...
Abstract The use of model output statistics (MOS) in operational weather element prediction has b... more Abstract The use of model output statistics (MOS) in operational weather element prediction has been hindered since the mid-1980s by frequent changes in the operational numerical weather prediction models that supply the predictors for the weather element forecasts. Once the model changes, a new archive of model output must be collected for a long enough period that statistically stable equations can be developed. This paper describes a new statistical interpretation system that addresses this problem and permits the rapid adaptation of the statistical forecast to changes in the formulation of the driving model. In comparison with traditional MOS development, the new system incorporates two main features. First, the data are stored in the form of the cross-products matrices used in multivariate statistical techniques rather than as raw observations and forecasts. It is these matrices that are updated regularly with new output from the model. Second, equations are developed by a weighted blending of the ne...
Page 1. Met Apps 1, 247-265 (1994) The Canadian operational procedure for forecasting total ozone... more Page 1. Met Apps 1, 247-265 (1994) The Canadian operational procedure for forecasting total ozone and UV radiation William R Burrows, Marcel VallCe, David I Wardle, James B Kerr, Laurence J Wilson and David W Tarasick ...
Since November 2014, the Meteorological Services of Canada (MSC) has been running a real-time num... more Since November 2014, the Meteorological Services of Canada (MSC) has been running a real-time numerical weather prediction system that provides deterministic forecasts on a regional domain with a 2.5-km horizontal grid spacing covering a large portion of Canada using the Global Environmental Multiscale (GEM) forecast model. This system, referred to as the High Resolution Deterministic Prediction System (HRDPS), is currently downscaled from MSC’s operational 10-km GEM-based regional system but uses initial surface fields from a high-resolution (2.5 km) land data assimilation system coupled to the HRDPS and initial hydrometeor fields from the forecast of a 2.5-km cycle, which reduces the spinup time for clouds and precipitation. Forecast runs of 48 h are provided four times daily. The HRDPS was tested and compared to the operational 10-km system. Model runs from the two systems were evaluated against surface observations for common weather elements (temperature, humidity, winds, and p...
Uploads
Papers by Marcel Vallée