Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Tissue engineering strategies aim at characterizing and at optimizing the cellular component that is combined with biomaterials, for improved tissue regeneration. Here, we present the immunoMap of apical papilla, the native tissue from... more
Tissue engineering strategies aim at characterizing and at optimizing the cellular component that is combined with biomaterials, for improved tissue regeneration. Here, we present the immunoMap of apical papilla, the native tissue from which SCAPs are derived. We characterized stem cell niches that correspond to a minority population of cells expressing Mesenchymal stromal/Stem Cell (CD90, CD105, CD146) and stemness (SSEA4 and CD49f) markers as well as endothelial cell markers (VWF, CD31). Based on the colocalization of TKS5 and cortactin markers, we detected migration-associated organelles, podosomes-like structures, in specific regions and, for the first time, in association with stem cell niches in normal tissue. From six healthy teenager volunteers, each with two teeth, we derived twelve cell banks, isolated and amplified under 21 or 3% O2. We confirmed a proliferative advantage of all banks when cultured under 3% versus 21% O2. Interestingly, telomerase activity was similar to ...
Faecalibacterium prausnitzii is abundant in the healthy human intestinal microbiota, and the absence or scarcity of this bacterium has been linked with inflammatory diseases and metabolic disorders. F. prausnitzii thus shows promise as a... more
Faecalibacterium prausnitzii is abundant in the healthy human intestinal microbiota, and the absence or scarcity of this bacterium has been linked with inflammatory diseases and metabolic disorders. F. prausnitzii thus shows promise as a next-generation probiotic for use in restoring the balance of the gut microbial flora and, due to its strong anti-inflammatory properties, for the treatment of certain pathological conditions. However, very little information is available about gene function and regulation in this species. Here, we utilized a systems biology approach - weighted gene co-expression network analysis (WGCNA) – to analyze gene expression in three publicly available RNAseq datasets from F. prausnitzii strain A2-165, all obtained in different laboratory conditions. The co-expression network was then subdivided into 24 co-expression gene modules. A subsequent enrichment analysis revealed that these modules are associated with different kinds of biological processes, such as...
5′RACE reveals the presence of a novel exon 1. (a, b) Two sequences found several times by 5′RACE PCR on RNA from hiPSCs 1 three days after BMP4 treatment. In black are represented the nucleotides found to be spliced to the DMD gene exon... more
5′RACE reveals the presence of a novel exon 1. (a, b) Two sequences found several times by 5′RACE PCR on RNA from hiPSCs 1 three days after BMP4 treatment. In black are represented the nucleotides found to be spliced to the DMD gene exon 2 by 5′RACE PCR, with in (a), the 164 last nucleotides of Dp427c exon 1 and in (b), the new exon 1. In red are the parts of the RACE sequence corresponding to DMD gene exon 2. The black box in Dp427c sequence points out a nucleotide that does not match with Dp427c exon 1 reference sequence. The BLAT analyses were done on the web site https://genome.ucsc.edu .
Human embryonic and induced pluripotent stem cell line list. Details concerning the stem cell lines used in the present study.
The new DMD exon 1 belongs to a retrovirus-like sequence. (a) Alignment of the new exon 1 region (highlighted in light blue) among 100 vertebrate species with the conserved upstream/downstream sequence marked by red arrows (... more
The new DMD exon 1 belongs to a retrovirus-like sequence. (a) Alignment of the new exon 1 region (highlighted in light blue) among 100 vertebrate species with the conserved upstream/downstream sequence marked by red arrows ( https://genome.ucsc.edu ). (b) Schematic representation of the approximately 8 kb region in the DMD gene that is conserved among a sub-group of anthropoids. It is composed of simple repeats, Alu sequences and the whole human endogenous retrovirus-like sequence HuERS-P1 ( http://www.dfam.org/entry/DF0000214 ) flanked by two LTR8 elements.
Primer list. Primers used in the present study.
BMP4-treated hiPSCs/hESCs express dystrophin protein. (a) Western blot in six pluripotent stem cell lines (hiPSCs 1, 3 and 4, DMD hiPSCs 1 and 3, hESCs 2) at day 4 either without or after BMP4 treatment. (b) Western blot in hiPSCs 1 from... more
BMP4-treated hiPSCs/hESCs express dystrophin protein. (a) Western blot in six pluripotent stem cell lines (hiPSCs 1, 3 and 4, DMD hiPSCs 1 and 3, hESCs 2) at day 4 either without or after BMP4 treatment. (b) Western blot in hiPSCs 1 from days 0 through 4 after a single BMP4 treatment. (Dystrophin antibody: DYS1; Muscle biopsy protein extract from a healthy individual serves as a control, α-tubulin was used as loading control).
Dystrophin protein expression. (a) Western blot analyses of protein extracts from hiPSCs 1 at day 4 either without or after BMP4 treatment using antibodies directed against different regions of dystrophin. (Dystrophin antibodies: Manex6... more
Dystrophin protein expression. (a) Western blot analyses of protein extracts from hiPSCs 1 at day 4 either without or after BMP4 treatment using antibodies directed against different regions of dystrophin. (Dystrophin antibodies: Manex6 (exon 6); Mandys19 (exon 21), Mandys101 (exon 40–41), Manhinge4A (exon 62), Manex7374A (exon 73–74), Mandra1 (exon 77). (b) Western blot with DYS1 antibody in three pluripotent stem cell lines (hiPSCs 2 and 4, hESCs 2) from days 3 through 7 following BMP4 treatment. (c) Quantification of dystrophin protein levels from the Western blots (b) in Fig. 3 and (b) in Fig. S6 (Muscle biopsy protein extract from a healthy individual serves as a control and α-tubulin was used as loading control).
Dp412e expression study. Fold change obtained by quantitative RT-PCR using primers specific for Dp427m, Dp427c and Dp412e on RNAs from either human adult tissues, 7–11 weeks old fetuses or human 25–40 weeks old fetal tissues. Gene... more
Dp412e expression study. Fold change obtained by quantitative RT-PCR using primers specific for Dp427m, Dp427c and Dp412e on RNAs from either human adult tissues, 7–11 weeks old fetuses or human 25–40 weeks old fetal tissues. Gene expression was normalized to UBC and relative to BMP4-treated hiPSCs 1 at day 3.
In silico translation of the novel DMD transcript. Representation of the open reading frame (ORF) resulting in translation of the novel DMD transcript. Possible translated proteins from this ORF are represented in red. The largest... more
In silico translation of the novel DMD transcript. Representation of the open reading frame (ORF) resulting in translation of the novel DMD transcript. Possible translated proteins from this ORF are represented in red. The largest predicted protein is composed of 3562 amino acids (≈412 kDa) ( http://web.expasy.org/translate ).
# The Author(s) 2011. This article is published with open access at Springerlink.com Abstract LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell... more
# The Author(s) 2011. This article is published with open access at Springerlink.com Abstract LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem
Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo.... more
Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Using engineered murine leukemia virus-like particles loaded with Cas9/sgRNA ribonucleoproteins (“Nanoblades”), we were able to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades were also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.
Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo.... more
Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Here, we use engineered murine leukemia virus-like particles loaded with Cas9-sgRNA ribonucleoproteins (Nanoblades) to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades are also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.
The cellular microenvironment plays an important role in the regulation of homoeostasis and is a source of potential biomarkers and drug targets. In a genome-wide analysis the extracellular proteins that bind to heparin (HBPs) have been... more
The cellular microenvironment plays an important role in the regulation of homoeostasis and is a source of potential biomarkers and drug targets. In a genome-wide analysis the extracellular proteins that bind to heparin (HBPs) have been shown to form highly modular and interconnected extracellular protein regulatory networks. Using a systems biology approach, we have investigated the role of HBP networks in the normal pancreas and pancreatic digestive diseases. Lists of mRNAs encoding for HBPs associated with the normal pancreas (NP), acute pancreatitis (AP), chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) were obtained using public databases and publications. Networks of the putative protein interactomes derived from mRNA expression data of HBPs were built and analysed using cluster analysis, gene ontology term enrichment and canonical pathways analysis. The extracellular heparin-binding putative protein interactomes in the pancreas were better connected than their non heparin-binding counterparts, having higher clustering coefficients in the normal pancreas (0.273), acute pancreatitis (0.457), chronic pancreatitis (0.329) and pancreatic ductal adenocarcinoma (0.269). 'Hepatic Fibrosis/Hepatic Stellate Cell Activation' appears to be a significant canonical pathway in pancreatic homoeostasis in health and disease with a large number of important HBPs. Our analyses clearly demonstrate that HBPs form disease-specific and highly connected networks that can be explored for potential biomarkers and as collective drug targets via the modification of heparin binding properties.
Gene silencing techniques, including RNA interference methodologies, are widely used in reverse genetics to study the role of specific genes in biological processes. RNA interference has become easier to implement thanks to the RNAi... more
Gene silencing techniques, including RNA interference methodologies, are widely used in reverse genetics to study the role of specific genes in biological processes. RNA interference has become easier to implement thanks to the RNAi Consortium (TRC), which has developed libraries of short hairpin RNA (shRNA) sequences in pseudotyped lentiviral particles capable of targeting most genes in the human and mouse genomes. However, a problem is the lack of a simple method to titrate the homemade lentiviral particle product, making it difficult to optimise and standardise shRNA experiments. Here we provide a guide describing a quick, non-laborious and reliable method for the titration of TRC pseudotyped lentiviral particles that is based on the detection and measurement of viral RNA using quantitative PCR. Our data demonstrate that purified linearised shRNA plasmids represent more suitable standards than circular or unpurified linearised plasmids. We also show that for precise absolute quan...
Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which dis-plays pleiotropic functions, depending on both cell maturity... more
Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which dis-plays pleiotropic functions, depending on both cell maturity and cell type. LIF withdrawal leads to heterogeneous differentiation of mESCs with a proportion of the differentiated cells apoptosising. During LIF withdrawal, cells sequentially enter a reversible and irreversible phase of differentiation during which LIF addition induces different effects. However the reg-ulators and effectors of LIF–mediated reprogramming are poorly understood. By employing a LIF-dependent ‘plasticity ’ test, that we set up, we show that Klf5, but not JunB is a key LIF effector. Furthermore PI3K signaling, required for the maintenance of mESC pluripotency, has no effect on mESC plasticity while displaying a major role in committed cells by stimulat-ing expression of the mesodermal marker Brachyury at the expense of endoderm and ...
Human embryonic stem cells (hESCs) are undifferentiated cells arising from the inner cell mass of the blastocyst, which are able to self-renew or differentiate in vitro into specialised cell types. These pluripotent cells are a powerful... more
Human embryonic stem cells (hESCs) are undifferentiated cells arising from the inner cell mass of the blastocyst, which are able to self-renew or differentiate in vitro into specialised cell types. These pluripotent cells are a powerful tool to study human embryonic development and have great potential in the field of regenerative medicine. Human ESC pluripotency is governed by an intrinsic transcriptional network composed of the three well-known transcription factors OCT4, SOX2 and NANOG, whereas the role of extrinsic cell/microenvironment interactions in the maintenance of hESC stemness has been neglected to some extent. The aim of this work was to develop a systems biology approach oriented on these extrinsic factors and their links with the transcriptional network, in order to uncover some of the fundamental mechanisms underlying the stemness state. The thesis is divided into two complementary approaches: a top-down in silico study and a bottom-up in vitro study. The top-down in...
Background Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease that leads to severe disability and death in young men. DMD is caused by out-of-frame mutations in the largest known gene, which encodes dystrophin.... more
Background Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease that leads to severe disability and death in young men. DMD is caused by out-of-frame mutations in the largest known gene, which encodes dystrophin. The loss of DMD gene expression manifests in progressive degeneration and wasting of striated muscles aggravated by sterile inflammation. Current conventional treatments are palliative only, whereas experimental therapeutic approaches focus on the re-expression of dystrophin in myofibers. However, recent studies established that DMD pathology begins already in prenatal development prior to myofiber formation while, in adult muscle, it affects satellite (stem) cells and the proper development of myofibers. Regeneration defects that exacerbate muscle degeneration appear to be a good therapeutic target, as maintaining regeneration would counteract muscle wasting. It is also the only feasible treatment in advanced stages of the disease. Yet, it is unkno...
Gene silencing techniques, including RNA interference methodologies, are widely used in reverse genetics to study the role of specific genes in biological processes. RNA interference has become easier to implement thanks to the RNAi... more
Gene silencing techniques, including RNA interference methodologies, are widely used in reverse genetics to study the role of specific genes in biological processes. RNA interference has become easier to implement thanks to the RNAi Consortium (TRC), which has developed libraries of short hairpin RNA (shRNA) sequences in pseudotyped lentiviral particles capable of targeting most genes in the human and mouse genomes. However, a problem is the lack of a simple method to titrate the homemade lentiviral particle product, making it difficult to optimise and standardise shRNA experiments. Here we provide a guide describing a quick, non-laborious and reliable method for the titration of TRC pseudotyped lentiviral particles that is based on the detection and measurement of viral RNA using quantitative PCR. Our data demonstrate that purified linearised shRNA plasmids represent more suitable standards than circular or unpurified linearised plasmids. We also show that for precise absolute quantification, it is important to determine suitable plasmid and viral cDNA concentrations in order to find the linear range for quantification, as well as to reduce inhibition and primer dimer amplification. Finally, we show that the lentivirus concentration impacts the level of knockdown in transduced cells. Primers utilised in this non-functional titration can potentially be applied to functional titration of proviral DNA copies or transgene expression, overcoming problems arising from the absence of fluorescent reporter genes in TRC plasmids.
Research Interests:
Duchenne muscular dystrophy (DMD) is a devastating X-linked recessive genetic myopathy. DMD physiopathology is still not fully understood and a prenatal onset is suspected but difficult to address. The bone morphogenetic protein 4 (BMP4)... more
Duchenne muscular dystrophy (DMD) is a devastating X-linked recessive genetic myopathy. DMD physiopathology is still not fully understood and a prenatal onset is suspected but difficult to address. The bone morphogenetic protein 4 (BMP4) is a critical signaling molecule involved in mesoderm commitment. Human induced pluripotent stem cells (hiPSCs) from DMD and healthy individuals and human embryonic stem cells (hESCs) treated with BMP4 allowed us to model the early steps of myogenesis in normal and DMD contexts. Unexpectedly, 72h following BMP4 treatment, a new long DMD transcript was detected in all tested hiPSCs and hESCs, at levels similar to that found in adult skeletal muscle. This novel transcript named "Dp412e" has a specific untranslated first exon which is conserved only in a sub-group of anthropoids including human. The corresponding novel dystrophin protein of 412-kiloDalton (kDa), characterized by an N-terminal-truncated actin-binding domain, was detected in normal BMP4-treated hiPSCs/hESCs and in embryoid bodies. Finally, using a phosphorodiamidate morpholino oligomer (PMO) targeting the DMD exon 53, we demonstrated the feasibility of exon skipping validation with this BMP4-inducible hiPSCs model. In this study, the use of hiPSCs to analyze early phases of human development in normal and DMD contexts has led to the discovery of an embryonic 412 kDa dystrophin isoform. Deciphering the regulation process(es) and the function(s) associated to this new isoform can contribute to a better understanding of the DMD physiopathology and potential developmental defects. Moreover, the simple and robust BMP4-inducible model highlighted here, providing large amount of a long DMD transcript and the corresponding protein in only 3 days, is already well-adapted to high-throughput and high-content screening approaches. Therefore, availability of this powerful cell platform can accelerate the development, validation and improvement of DMD genetic therapies.
Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which displays pleiotropic functions, depending on both cell maturity... more
Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which displays pleiotropic functions, depending on both cell maturity and cell type. LIF withdrawal leads to heterogeneous differentiation of mESCs with a proportion of the differentiated cells apoptosising. During LIF withdrawal, cells sequentially enter a reversible and irreversible phase of differentiation during which LIF addition induces different effects. However the regulators and effectors of LIF–mediated reprogramming are poorly understood. By employing a LIF-dependent ‘plasticity’ test, that we set up, we show that Klf5, but not JunB is a key LIF effector. Furthermore PI3K signaling, required for the maintenance of mESC pluripotency, has no effect on mESC plasticity while displaying a major role in committed cells by stimulating expression of the mesodermal marker Brachyury at the expense of endoderm and neuroectoderm lineage markers. We also show that the MMP1 metalloproteinase, which can replace LIF for maintenance of pluripotency, mimics LIF in the plasticity window, but less efficiently. Finally, we demonstrate that mESCs maintain plasticity and pluripotency potentials in vitro under hypoxic/physioxic growth conditions at 3% O2 despite lower levels of Pluri and Master gene expression in comparison to 20% O2.
Research Interests:
Background. Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass of in vitro fertilised blastocysts, which can either be maintained in an undifferentiated state or committed into lineages under... more
Background. Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass of in vitro fertilised blastocysts, which can either be maintained in an undifferentiated state or committed into lineages under determined culture conditions. These cells offer great potential for regenerative medicine, but at present, little is known about the mechanisms that regulate hESC stemness; in particular, the role of cell–cell and cell-extracellular matrix interactions remain relatively unexplored.

Methods and Results. In this study we have performed an in silico analysis of cell-microenvironment interactions to identify novel proteins that may be responsible for the maintenance of hESC stemness. A hESC transcriptome of 8,934 mRNAs was assembled using a meta-analysis approach combining the analysis of microarrays and the use of databases for annotation. The STRING database was utilised to construct a protein–protein interaction network focused on extracellular and transcription factor components contained within the assembled transcriptome. This interactome was structurally studied and filtered to identify a short list of 92 candidate proteins, which may regulate hESC stemness.

Conclusion. We hypothesise that this list of proteins, either connecting extracellular components with transcriptional networks, or with hub or bottleneck properties, may contain proteins likely to be involved in determining stemness.
Research Interests:
The cellular microenvironment plays an important role in the regulation of homoeostasis and is a source of potential biomarkers and drug targets. In a genome-wide analysis the extracellular proteins that bind to heparin (HBPs) have been... more
The cellular microenvironment plays an important role in the regulation of homoeostasis and is a source of potential biomarkers and drug targets. In a genome-wide analysis the extracellular proteins that bind to heparin (HBPs) have been shown to form highly modular and interconnected extracellular protein regulatory networks. Using a systems biology approach, we have investigated the role of HBP networks in the normal pancreas and pancreatic digestive diseases.

Lists of mRNAs encoding for HBPs associated with the normal pancreas (NP), acute pancreatitis (AP), chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) were obtained using public databases and publications. Networks of the putative protein interactomes derived from mRNA expression data of HBPs were built and analysed using cluster analysis, gene ontology term enrichment and canonical pathways analysis.

The extracellular heparin-binding putative protein interactomes in the pancreas were better connected than their non heparin-binding counterparts, having higher clustering coefficients in the normal pancreas (0.273), acute pancreatitis (0.457), chronic pancreatitis (0.329) and pancreatic ductal adenocarcinoma (0.269). ‘Hepatic Fibrosis/Hepatic Stellate Cell Activation’ appears to be a significant canonical pathway in pancreatic homoeostasis in health and disease with a large number of important HBPs.

Our analyses clearly demonstrate that HBPs form disease-specific and highly connected networks that can be explored for potential biomarkers and as collective drug targets via the modification of heparin binding properties.
LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during... more
LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine.