Chromosome addition lines have often been used to map the genes on donor chromosomes based on the presence/absence of the genes on the chromosomes added to the recipient genome. In this study a set of wheat-rye [Chinese spring-Imperial... more
Chromosome addition lines have often been used to map the genes on donor chromosomes based on the presence/absence of the genes on the chromosomes added to the recipient genome. In this study a set of wheat-rye [Chinese spring-Imperial (CS-IMP)] disomic addition lines (DALs) was used to locate the genes controlling yield stability on specific chromosome(s) in rye. Experiments were conducted using a randomized complete block design with three replications under both rainfed and irrigated conditions for three cropping seasons. The GGE [genotype plus genotype x environment (GE)] biplot methodology was used to analyze the grain yield data. The results of combined ANOVA showed significant (P<0.01) environment, genotype and GE interaction indicating remarkable changes in ranking of genetic materials over the environments. According to GGE biplot analysis, two parents (Chinese spring vs. Imperial) were different in their yield adaptation. The results also verified that it would be possible to determine contrasting DALs based on the stability and integrating yield with stability performance for improving wheat genetic materials. Ranking of the DALs based on the ideal genotype (high yield and stability) revealed that most of the genes involved in controlling high yield and stability are located on two chromosomes 7R and 5R in rye.
Oryza sativa L. F2 population and F2:3 derived from a cross between salt tolerance cv. Tarommahali and salt sensitive cv. Khazar were used in this study. A linkage map based on F2 population was constructed (74 SSR markers on 192... more
Oryza sativa L. F2 population and F2:3 derived from a cross between salt tolerance cv. Tarommahali and salt sensitive cv. Khazar were used in this study. A linkage map based on F2 population was constructed (74 SSR markers on 192 individuals), which covered a total of 1231.50 cM with an average two locus interval of 19.83 cM. Two QTLs related to Na+/K+ ratio were found on chromosome 3 and 6. qDM-3 and qDM-8 (for dry mass of shoot) are major QTLs with very large effects explained 20.90 and 17.72 % of the total phenotypic variance, respectively. Major locus for DM (qDM-3) was bracketed by RM1022 — RM6283 spread over 13.6 cM on chromosome 3. Major part of the variability for standard tolerance ranking (STR) was explained by the qSTR-6 flanked by RM3727 — RM340 on chromosome 6, which exhibited phenotypic variance of 17.25 % and peak likelihood ratio (LR) of 17.51. The length of this QTL is 8.8 cM and identification of any tightly linked markers in this region will serve as a candidate gene for fine-mapping. qSTR-3 overlapped with qNA-3 and qNAK-3. The qSTR-3 may contain a new major gene for salt stress tolerance at seedling stage in rice. Major QTLs identified in this paper, after fine-mapping, could be used for marker assisted selection.
The Anemone genus is a tuberous geophyte which undergoes a dormancy period during unfavorable environmental conditions for growth. Five species of the Anemone genus naturally grow in several regions of Iran. The diverse uses of Anemone in... more
The Anemone genus is a tuberous geophyte which undergoes a dormancy period during unfavorable environmental conditions for growth. Five species of the Anemone genus naturally grow in several regions of Iran. The diverse uses of Anemone in gardens for landscaping, cut flowers, and potted plants indicate its high ornamental potential. Its dormancy and flowering are influenced by various factors. The present paper was conducted to explore the flowering behavior of Anemone accessions in response to different pre-treatments. For this purpose, tubers of 18 Anemone accessions (A. coronaria and A. biflora) were collected from natural regions of six provinces in Iran. These tubers were subjected to different conditions of non-chilling (20 °C, 90 days), chilling (4 °C, 90 days), GA3 (150 mgL-1; 24 h), and 5-azaCitidine (5-azaC; 40 µM; 24 h) prior to the cultivation. Most of the accessions were able to enter the flowering stage without chilling. The shortest period for the sprouting of tubers ...