ספירלת אולם
ספירלת אולם (Ulam spiral), או ספירלת המספרים הראשוניים, היא הצגה גרפית, ספירלית, של המספרים הטבעיים, שבה מודגשים המספרים הראשוניים. אופן הצגה זה מדגיש את הראשוניים המופיעים בסדרות ריבועיות, כמו . את הספירלה גילה המתמטיקאי ומדען האטום סטניסלב אולם.
ההצגה הספירלית של המספרים הטבעיים מסדרת אותם על הסריג הריבועי באופן המתואר בתרשים משמאל. על התרשים מסמנים את המספרים הראשוניים בלבד, במטרה לבודד את התכונות של המספרים האלה (ראו תרשים שני). המספר הפותח את ההקפה ה-n-ית, בפינה הימנית-תחתונה, הוא (המספרים הפותחים הם: 2, 10, 26, 50). בדומה לזה, כל קרן היוצאת מן הראשית פוגשת בדרכה סדרה ריבועית מן הצורה עבור מקדמים b, a ו-c מתאימים, וכך היא מתרגמת תכונות ריבועיות של המספרים הראשוניים למידע גרפי שאפשר לאתר לאורך קו ישר.
בספירלת אולם המספרים הזוגיים והאי-זוגיים מכסים אלכסונים נפרדים, והמספרים הראשוניים (מלבד 2) שייכים כמובן לאלכסונים האי-זוגיים. השכיחות הגבוהה של ראשוניים לאורך אלכסונים מסוימים (הנתונים בזווית של 45 מעלות מן הצירים), או על ישרים אנכיים ואופקיים, אינה אלא הצגה גרפית של סדרות מהצורה , המאכלסות עבור קבועים b ו- c מתאימים, יותר ראשונים מן הצפוי ביחס לגודלם של הערכים המתקבלים. משפט דיריכלה מראה שהשכיחות של ראשוניים לאורך סדרות חשבוניות זהה לזו שאפשר לצפות לה משיקולים הסתברותיים פשוטים (היינו, תכונות קונגרואנציה). תוצאות אמפיריות, כמו אלו המודגמות בספירלה של אולם, מראות שאותם שיקולים תקפים כנראה גם לסדרות ריבועיות, אבל כאן הרבה יותר קשה לספק הוכחות מוצקות, ועדיין לא ידוע אפילו האם קיימים אינסוף ראשוניים מהצורה .
הספירלה הופיעה על שער הירחון סיינטיפיק אמריקן במרץ 1964.
ראו גם
[עריכת קוד מקור | עריכה]- גרסאות שונות של ספירלת אולם, כמו Sacks spiral שבתמונה משמאל, חושפות דפוסים אחרים בין המספרים הראשוניים.
קישורים חיצוניים
[עריכת קוד מקור | עריכה]- מאמרם של M.L. Stein, אולם ו-M.B. Wells ב- American Mathematical Monthly 1964: עמוד 1, עמוד 2
- ספירלת אולם, באתר MathWorld (באנגלית)