Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Adrian Sakr

    Adrian Sakr

    Corals access inorganic seawater nutrients through their autotrophic endosymbiotic dinoflagellates, but also capture planktonic prey through heterotrophic feeding. Correlating NanoSIMS and TEM imaging, we visualize and quantify the... more
    Corals access inorganic seawater nutrients through their autotrophic endosymbiotic dinoflagellates, but also capture planktonic prey through heterotrophic feeding. Correlating NanoSIMS and TEM imaging, we visualize and quantify the subcellular fate of autotrophic and heterotrophic C and N in the coral Stylophora pistillata using stable isotopes. Six scenarios were compared after 6h: autotrophic pulse (13C-bicarbonate, 15N-nitrate) in either unfed or regularly fed corals, and heterotrophic pulse (13C-, 15N-labelled brine shrimps) in regularly fed corals; each at ambient and elevated temperature. Host assimilation of photosynthates was similar under fed and unfed conditions, but symbionts assimilated 10% more C in fed corals. Photoautotrophic C was primarily channelled into host lipid bodies, whereas heterotrophic C and N were generally co-allocated to the tissue. Food-derived label was detected in some subcellular structures associated with the remobilisation of host lipid stores. Wh...
    Corals access inorganic seawater nutrients through their autotrophic endosymbiotic dinoflagellates, but also capture planktonic prey through heterotrophic feeding. Correlating NanoSIMS and TEM imaging, we visualized and quantified the... more
    Corals access inorganic seawater nutrients through their autotrophic endosymbiotic dinoflagellates, but also capture planktonic prey through heterotrophic feeding. Correlating NanoSIMS and TEM imaging, we visualized and quantified the subcellular fate of autotrophic and heterotrophic C and N in the coral Stylophora pistillata using stable isotopes. Six scenarios were compared after 6 h: autotrophic pulse (C-bicarbonate, N-nitrate) in either unfed or regularly fed corals, and heterotrophic pulse (C-, N-labelled brine shrimps) in regularly fed corals; each at ambient and elevated temperature. Host assimilation of photosynthates was similar under fed and unfed conditions, but symbionts assimilated 10% more C in fed corals. Photoautotrophic C was primarily channelled into host lipid bodies, whereas heterotrophic C and N were generally co-allocated to the tissue. Food-derived label was detected in some subcellular structures associated with the remobilisation of host lipid stores. While ...
    Corals access inorganic seawater nutrients through their autotrophic endosymbiotic dinoflagellates, but also capture planktonic prey through heterotrophic feeding. Correlating NanoSIMS and TEM imaging, we visualize and quantify the... more
    Corals access inorganic seawater nutrients through their autotrophic endosymbiotic dinoflagellates, but also capture planktonic prey through heterotrophic feeding. Correlating NanoSIMS and TEM imaging, we visualize and quantify the subcellular fate of autotrophic and heterotrophic C and N in the coral Stylophora pistillata using stable isotopes. Six scenarios were compared after 6h: autotrophic pulse (13C-bicarbonate, 15N-nitrate) in either unfed or regularly fed corals, and heterotrophic pulse (13C-, 15N-labelled brine shrimps) in regularly fed corals; each at ambient and elevated temperature. Host assimilation of photosynthates was similar under fed and unfed conditions, but symbionts assimilated 10% more C in fed corals. Photoautotrophic C was primarily channelled into host lipid bodies, whereas heterotrophic C and N were generally co-allocated to the tissue. Food-derived label was detected in some subcellular structures associated with the remobilisation of host lipid stores. Wh...