Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Merfat Algethami

    Merfat Algethami

    Tungsten oxide (WOx) thin films were synthesized through the RF magnetron sputtering method by varying the sputtering power from 30 W to 80 W. Different investigations have been conducted to evaluate the variation in different... more
    Tungsten oxide (WOx) thin films were synthesized through the RF magnetron sputtering method by varying the sputtering power from 30 W to 80 W. Different investigations have been conducted to evaluate the variation in different morphological, optical, and dielectric properties with the sputtering power and prove the possibility of using WOx in optoelectronic applications. An Energy Dispersive X-ray (EDX), stylus profilometer, and atomic force microscope (AFM) have been used to investigate the dependency of morphological properties on sputtering power. Transmittance, absorbance, and reflectance of the films, investigated by Ultraviolet-Visible (UV-Vis) spectroscopy, have allowed for further determination of some necessary parameters, such as absorption coefficient, penetration depth, optical band energy gap, refractive index, extinction coefficient, dielectric parameters, a few types of loss parameters, etc. Variations in these parameters with the incident light spectrum have been clo...
    Lithium-ion batteries are the most used technology in portable electronic devices. High energy density and high power per mass battery unit make it preferable over other batteries. The existing constant-temperature and constant-voltage... more
    Lithium-ion batteries are the most used technology in portable electronic devices. High energy density and high power per mass battery unit make it preferable over other batteries. The existing constant-temperature and constant-voltage charging technique (CT–CV), with a closed loop, lacks a detailed design of control circuits, which can increase charging speed. This article addresses this research gap in a novel way by implementing a simpler feedback proportional integral and differential (PID) control to a closed-loop CT–CV charging circuit. Voltage-mode control (VMC) and average current-mode control (ACM) methods were implemented to maintain the battery voltage, current, and temperature at safe limits. As per simulation results, 23% faster charging is achieved by implementing VMC and almost 50% faster charging is attained by employing the ACM technique in the PID controller. Our proposed control strategy is validated experimentally, which yields up to 25% faster charging of a batt...
    Introduction: Nanoparticles (NPs) have been proven to enhance radiotherapy doses as radiosensitizers. The introduction of coating materials such as polyethylene glycol (PEG) to NPs could impact the NPs’ biocompatibility and their... more
    Introduction: Nanoparticles (NPs) have been proven to enhance radiotherapy doses as radiosensitizers. The introduction of coating materials such as polyethylene glycol (PEG) to NPs could impact the NPs’ biocompatibility and their effectiveness as radiosensitizers. Optimization of surface coating is a crucial element to ensure the successful application of NPs as a radiosensitizer in radiotherapy. This study aims to investigate the influence of bismuth oxide NPs (BiONPs) coated with PEG on reactive oxygen species (ROS) generation on HeLa cervical cancer cell line. Material and methods: Different PEG concentrations (0.05, 0.10, 0.15 and 0.20 mM) were used in the synthesis of the NPs. The treated cells were irradiated with 6 and 12 MeV electron beams with a delivered dose of 3 Gy. The reactive oxygen species (ROS) generation was measured immediately after and 3 hours after irradiation. Results: The intracellular ROS generation was found to be slightly influenced by electron beam energy...
    In the recent digital age, information and communication technologies are rapidly contributing to remodel the media and journalism. Numerous technologies can be utilized by the media industry to capture news or events, taking footage and... more
    In the recent digital age, information and communication technologies are rapidly contributing to remodel the media and journalism. Numerous technologies can be utilized by the media industry to capture news or events, taking footage and pictures of a breaking news. Technology and the media are interwoven, and neither can be detached from contemporary society in most nations. Unsurprisingly, technology has affected how and where information is shared. Nowadays, it is impractical to discuss media and the methods in which societies communicate without addressing the rapidity of technology change. Thus, the aerial journalism term has emerged, which refers to the ability of creating and conveying media content in a timely and efficient fashion. This work aims to integrate a drone with AI to empower aerial journalism via training a neural network to obtain an accurate channel using the NN-RBFN approach. The proposed work can enhance aerial media missions including investigative reporting...
    Lifetime lung cancer risks were computed using EPA/BEIR-VI models employing recent North Cyprus statistics (4-year averages from 2012 to 2016) to address public concerns about radon risk. The excess relative risk, the lifetime risk of... more
    Lifetime lung cancer risks were computed using EPA/BEIR-VI models employing recent North Cyprus statistics (4-year averages from 2012 to 2016) to address public concerns about radon risk. The excess relative risk, the lifetime risk of lung cancer (Re), and lifetime relative risk were estimated in the Nicosia population for both genders of non-smoker and smokers. The excess relative risk average value for age < 55 y, 55 y ≤ age ≤ 64 y, 65 y ≤ age ≤ 74 y, and age ≥ 75 y groups were 0.38, 0.23, 0.13, and 0.04, respectively.
    TDOS and PDOS of ternary TlLF3 (L = Ca, Cd) fluoroperovskites.
    Abstract Purpose This study aimed to assess the radiological risk of natural radionuclides (226Ra, 232Th, and 40K) to marine ecosystem biota. Materials and methods The study site in this was the Mediterranean Sea, Cyprus. With the use of... more
    Abstract Purpose This study aimed to assess the radiological risk of natural radionuclides (226Ra, 232Th, and 40K) to marine ecosystem biota. Materials and methods The study site in this was the Mediterranean Sea, Cyprus. With the use of the RESRAD-BIOTA (RESidual RADioactivity BIOTA) code, the tissue concentration, external and internal dose rate of aquatic animals and riparian animals were estimated. Results The total tissue concentrations of the aquatic animals and riparian animals were simulated at 1.14 × 106 Bq/kg (water media) to 0 Bq/kg (sediment media), and 1.33 × 106 Bq/kg (water media) to 9.79 × 101 Bq/kg (sediment media), respectively. The total dose rate for aquatic animals and riparian animals was ranged from 1.94 × 10−2 to 0 Gray per day (Gy/d) and 1.46 × 10−2 to 7.40 × 10−7 Gy/d, respectively. Conclusions Based on the risk assessment of this study, there is no significant impact due to organisms' exposure to natural radioactivity. Although, further consideration of the exposure levels is required due to the potential effects of protracted low-level ionizing radiation.
    The direct influence of La3+ ions on the gamma-ray shielding properties of cobalt-doped heavy metal borate glasses with the chemical formula 0.3CoO-(80-x)B2O3-19.7PbO-xLa2O3: x = 0, 0.5, 1, 1.5, and 2 mol% was examined herein. Several... more
    The direct influence of La3+ ions on the gamma-ray shielding properties of cobalt-doped heavy metal borate glasses with the chemical formula 0.3CoO-(80-x)B2O3-19.7PbO-xLa2O3: x = 0, 0.5, 1, 1.5, and 2 mol% was examined herein. Several significant radiation shielding parameters were evaluated. The glass density was increased from 3.11 to 3.36 g/cm3 with increasing La3+ ion content from 0 to 2 mol%. The S5 glass sample, which contained the highest concentration of La3+ ions (2 mol%), had the maximum linear (μ) and mass (μm) attenuation coefficients for all photon energies entering, while the S1 glass sample free of La3+ ions possessed the minimum values of μ and μm. Both the half value layer (T1/2) and tenth value layer (TVL) of all investigated glasses showed a similar trend of (T1/2, TVL)S1 > (T1/2, TVL)S2 > (T1/2, TVL)S3 > (T1/2, TVL)S4 > (T1/2, TVL)S5. Our results revealed that the S5 sample had the highest effective atomic number (Zeff) values over the whole range of ...
    Radon-based radiation is a significant issue that can affect resident health as a contributory source of natural radiation from soil construction materials. This study investigates the effect of windcatchers on radon activity... more
    Radon-based radiation is a significant issue that can affect resident health as a contributory source of natural radiation from soil construction materials. This study investigates the effect of windcatchers on radon activity concentrations and radon exhalation rate from the soil surface in traditional adobe houses of Yazd, Iran. Radon concentrations were measured by passive detectors in 16 adobe houses. Computational fluid dynamics simulations were performed for different wind speed to calculate ventilation rate. The concentrations of 222Rn were in the ranges of 22 ± 1–117 ± 8 Bq m−3 with an average value of 50 ± 3 Bq m−3. The radon exhalation rates values were in the range of 8.3 ± 0.1 to 47.2 ± 0.5 Bq m−2 h−1. Radon concentration results in only one dwelling site were higher than the level recommended by the World Health Organization. The annual radon inhalation dose was found in seven sites higher than the worldwide average.
    Characteristics of tellurite-tungstate-antimonate glasses containing heavy metal oxide were investigated in detail using two methods: the MCNPX Monte Carlo code and the Phy-X/PSD platform. The influence of Sm2O3, translocating with TeO2... more
    Characteristics of tellurite-tungstate-antimonate glasses containing heavy metal oxide were investigated in detail using two methods: the MCNPX Monte Carlo code and the Phy-X/PSD platform. The influence of Sm2O3, translocating with TeO2 at ratios of 0.2, 0.5, 0.8, 1, and 1.5 mol% on radiation shielding properties of glasses, was set forth with five glass structures determined according to the (75-x)TeO2-15Sb2O3-10WO3-xSm2O3 glass composition. Densities of the glasses were prepared by doping a low ratio of Sm2O3 that varied between 5.834 and 5.898 g/cm3. Sample densities, which have an important role in determining radiation shielding character, increased depending on the increase in Sm2O3 concentration. Effective removal cross-section (∑R) values against fast neutrons, as well as linear and mass attenuation coefficients, half-value layer, mean free path, variation of effective atomic number against photon energy, exposure, and energy built-up factors, were simulated with the help of...
    We aimed to determine the contribution of various trivalent ions like Al and rare-earths (Y, Nd, Sm, Eu) on resistance behaviors of different types of bismo-borate glasses. Accordingly, eight different bismuth borate glasses from the... more
    We aimed to determine the contribution of various trivalent ions like Al and rare-earths (Y, Nd, Sm, Eu) on resistance behaviors of different types of bismo-borate glasses. Accordingly, eight different bismuth borate glasses from the system: 40Bi2O3–59B2O3–1Tv2O3 (where Tv = Al, Y, Nd, Sm, and Eu) and three glasses of (40Bi2O3–60B2O3; 37.5Bi2O3–62.5B2O3; and 38Bi2O3–60B2O3–2Al2O3) compositions were extensively investigated in terms of their nuclear attenuation shielding properties, along with effective conductivity and buildup factors. The Py-MLBUF online platform was also utilized for determination of some essential parameters. Next, attenuation coefficients, along with half and tenth value layers, have been determined in the 0.015 MeV–15 MeV photon energy range. Moreover, effective atomic numbers and effective atomic weight, along with exposure and energy absorption buildup factors, were determined in the same energy range. The result showed that the type of trivalent ion has a di...
    This study loaded Bi/Bi2O3 on the surface of reduced graphene oxide (rGO) to perform a two-step facile synthesis of rGO@Bi/Bi2O3 as a bismuth-based nanocomposite. First, Bi/Bi2O3 nanocomposites were synthesised via a solvothermal process... more
    This study loaded Bi/Bi2O3 on the surface of reduced graphene oxide (rGO) to perform a two-step facile synthesis of rGO@Bi/Bi2O3 as a bismuth-based nanocomposite. First, Bi/Bi2O3 nanocomposites were synthesised via a solvothermal process using Bi(NO3)3 5H2O as the Bi3+ precursor and dimethyl sulfoxide (DMSO) as the solvent. Second, we exfoliated rGO in water to functionalise Bi/Bi2O3 with a few layers of rGO. Obtained nanocomposites were characterised with scanning electron microscopy and X-ray diffraction. We also measured the nanocomposites’ photocatalytic activity using cationic dyes, specifically methylene blue (MB) and rhodamine B (RhB). Additionally, ultraviolet-visible spectroscopy was used to determine the optical properties of rGO@Bi/Bi2O3. Photodegradation was recorded under differing durations of exposure to visible light. Reaction rates were recorded at 14.6 × 10–4 min−1 and 22.2 × 10–3 min−1 for MB and RhB, respectively, while photodegradation efficiency was logged at 1...