Isoproterenol and 8-bromo-cyclic adenosine monophosphate stimulate the expression of the angioten... more Isoproterenol and 8-bromo-cyclic adenosine monophosphate stimulate the expression of the angiotensinogen gene in opossum kidney cells. To investigate whether the expression of the renal angiotensinogen (ANG) gene is regulated by β-adrenoceptors and the cAMP-dependent protein kinase A pathway, we introduced stably the fusion gene containing the 5′-flanking regulatory sequence of the ANG gene with a human growth hormone (hGH) gene
Osteoarthritis (OA) is characterized by articular cartilage degradation and hypertrophic bone cha... more Osteoarthritis (OA) is characterized by articular cartilage degradation and hypertrophic bone changes with osteophyte formation and abnormal bone remodeling. Two groups of OA patients were identified via the production of variable and opposite levels of prostaglandin E2 (PGE2) or leukotriene B4 (LTB4) by subchondral osteoblasts, PGE2 levels discriminating between low and high subgroups. We studied whether the expression of 5-lipoxygenase
The Wnt signaling pathway is crucial for osteogenesis and regulates terminal osteoblast different... more The Wnt signaling pathway is crucial for osteogenesis and regulates terminal osteoblast differentiation. Although osteoarthritic (OA) osteoblasts show an abnormal phenotype and poor in vitro mineralization, the mechanism leading to this situation still remains unknow. Recent evidence indicates that Wnt signaling may be altered in OA osteoblasts. In this study we determined whether an alteration of the Wnt/β-catenin signaling pathway is responsible for the abnormal phenotype of OA osteoblasts. Expression of the Wnt signaling antagonist Dickkopf-1 (DKK1) was similar in normal and OA osteoblasts, whereas DKK2 expression was higher in OA osteoblasts than in normal osteoblasts. OA osteoblasts showed a decrease of Wnt3a-dependent Wnt/β-catenin signaling, measured by the TOPflash reporter assay and by Western blot analysis, compared with normal osteoblasts. Correcting DKK2 levels in OA osteoblasts by siRNA techniques enhanced Wnt/β-catenin signaling. Elevated DKK2 levels could be explained by elevated transforming growth factor β1 (TGF-β1) in OA osteoblasts, and exogenous TGF-β1 increased DKK2 expression in normal osteoblasts, whereas ablating TGF-β1 expression in OA osteoblasts reduced DKK2 expression. Inhibiting TGF-β1 or DKK2 expression corrected the abnormal phenotype of OA osteoblasts. In vitro mineralization of OA osteoblasts also was increased by DKK2 siRNA. We conclude that elevated TGF-β1 levels in OA osteoblasts can stimulate DKK2 expression, which, in turn, is responsible, at least in part, for their abnormal phenotype.
Besides their natriuretic and calciuretic effect, thiazide diuretics have been shown to decrease ... more Besides their natriuretic and calciuretic effect, thiazide diuretics have been shown to decrease bone loss rate and improve bone mineral density. Clinical evidence suggests a specific role of thiazides on osteoblasts, because it reduces serum osteocalcin (OC), an osteoblast-specific protein, yet the mechanisms implicated are unknown. We therefore investigated the role of hydrochlorothiazide (HCTZ) on OC production by the human osteoblast-like cell line MG-63. HCTZ dose-dependently (1-100 microM) inhibited 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-induced OC release by these cells (maximal effect, -40-50% and p < 0.005 by analysis of variance [ANOVA]) as measured by ELISA. This effect of HCTZ on OC release was caused by a direct effect on OC gene expression because Northern blot analysis revealed that OC messenger RNA (mRNA) levels were reduced in the presence of increasing doses of the diuretic (-47.2+/-4.0%; p < 0.0001 by paired ANOVA with 100 microM 13.6+/-0.49 pmol/mg protein/15 minutes; p < 0.05) in MG-63 cells. Reducing extracellular Ca2+ concentration with 0.5 mM EDTA or 0.5 mM ethylene glycol-bis(beta-amino ethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) only partly prevented the inhibitory effect of the diuretic on OC secretion (maximal effect, -22.5+/-6.9%), suggesting that thiazide-dependent Ca2+ influx is not sufficient to elicit the inhibition of OC secretion. Because OC production is strictly dependent on the presence of 1,25(OH)2D3 in human osteoblasts, we next evaluated the possible role of HCTZ on vitamin D3 receptors (VDR) at the mRNA and protein levels. Both Northern and Western blot analyses showed no effect of HCTZ (1-100 microM) on VDR levels. The presence of EGTA in the culture media reduced slightly the VDR mRNA levels under basal condition but this was not modified in the presence of increasing levels of HCTZ. The OC gene promoter also is under the control of transcription factors such as Yin Yang 1 (YY1) and cFOS. Western blot analysis revealed no changes in YY1 levels in response to HCTZ either in the presence or in the absence of 0.5 mM EGTA in the culture media. In contrast, HCTZ induced a dose-dependent increase in cFOS levels (p < 0.002 by ANOVA), a situation prevented by incubation with EGTA. These studies indicate that HCTZ inhibits OC mRNA expression independently of an effect on VDR, YY1, or extracellular Ca2+ levels but involves changes in cFOS levels. As OC retards bone formation/mineralization, the inhibition of OC production by HCTZ could explain its preventive role in bone loss rate.
The underlying mechanisms responsible for both cartilage loss and subchondral bone changes in ost... more The underlying mechanisms responsible for both cartilage loss and subchondral bone changes in osteoarthritis (OA) remain unknown. It is becoming recognized that the extracellular matrix influences the metabolism of cells both in vivo and in vitro and can modify their responses to external stimuli. Indeed, the glycosaminoglycan/proteoglycan matrix is of major importance for the proliferation and/or differentiation of a number of cells. Here, we determined the potential role of hyaluronic acid (HA) of increasing molecular weight (MW) to alter the expression of metabolic markers and cytokine production by human osteoarthritic (OA) subchondral osteoblasts (Ob). Both 1,25(OH)(2)D(3)-induced alkaline phosphatase activity (ALPase) and osteocalcin release were increased in OA Ob when compared to normal. HA reduced osteocalcin release in OA Ob at MW of 300 and above, whereas HA failed to significantly modify ALPase. Parathyroid hormone (PTH) stimulated cyclic AMP (cAMP) formation by OA Ob. HA had a biphasic effect on this PTH-dependent activity, totally inhibiting cAMP formation at MW of 300 and 800. HA of increasing MW progressively reduced the levels of Prostaglandin E(2) (PGE(2)) and interleukin-6 (IL-6) produced by OA Ob. Interestingly, urokinase plasminogen activator (uPA) and and PA inhibitor-1 (PAI-1) levels were not significantly affected by HA of increasing MW; however, the PAI-1 to uPA ratio showed a slight, yet nonsignificant increase. Surprisingly, uPA activity was increased in OA Ob under the same conditions. Last, HA had no effect on the production of insulin-like growth factor-1 by these cells. Our data suggest that high MW HA can modify cellular parameters in OA Ob that are increased when compared to normal. The effect of HA on inflammatory mediators, such as PGE(2) and IL-6, and on uPA activity is more striking at higher MW as well. Taken together, these results could suggest that HA of increasing MW has positive effects on OA Ob by modifying their biological synthetic capacities.
Isoproterenol and 8-bromo-cyclic adenosine monophosphate stimulate the expression of the angioten... more Isoproterenol and 8-bromo-cyclic adenosine monophosphate stimulate the expression of the angiotensinogen gene in opossum kidney cells. To investigate whether the expression of the renal angiotensinogen (ANG) gene is regulated by β-adrenoceptors and the cAMP-dependent protein kinase A pathway, we introduced stably the fusion gene containing the 5′-flanking regulatory sequence of the ANG gene with a human growth hormone (hGH) gene
Osteoarthritis (OA) is characterized by articular cartilage degradation and hypertrophic bone cha... more Osteoarthritis (OA) is characterized by articular cartilage degradation and hypertrophic bone changes with osteophyte formation and abnormal bone remodeling. Two groups of OA patients were identified via the production of variable and opposite levels of prostaglandin E2 (PGE2) or leukotriene B4 (LTB4) by subchondral osteoblasts, PGE2 levels discriminating between low and high subgroups. We studied whether the expression of 5-lipoxygenase
The Wnt signaling pathway is crucial for osteogenesis and regulates terminal osteoblast different... more The Wnt signaling pathway is crucial for osteogenesis and regulates terminal osteoblast differentiation. Although osteoarthritic (OA) osteoblasts show an abnormal phenotype and poor in vitro mineralization, the mechanism leading to this situation still remains unknow. Recent evidence indicates that Wnt signaling may be altered in OA osteoblasts. In this study we determined whether an alteration of the Wnt/β-catenin signaling pathway is responsible for the abnormal phenotype of OA osteoblasts. Expression of the Wnt signaling antagonist Dickkopf-1 (DKK1) was similar in normal and OA osteoblasts, whereas DKK2 expression was higher in OA osteoblasts than in normal osteoblasts. OA osteoblasts showed a decrease of Wnt3a-dependent Wnt/β-catenin signaling, measured by the TOPflash reporter assay and by Western blot analysis, compared with normal osteoblasts. Correcting DKK2 levels in OA osteoblasts by siRNA techniques enhanced Wnt/β-catenin signaling. Elevated DKK2 levels could be explained by elevated transforming growth factor β1 (TGF-β1) in OA osteoblasts, and exogenous TGF-β1 increased DKK2 expression in normal osteoblasts, whereas ablating TGF-β1 expression in OA osteoblasts reduced DKK2 expression. Inhibiting TGF-β1 or DKK2 expression corrected the abnormal phenotype of OA osteoblasts. In vitro mineralization of OA osteoblasts also was increased by DKK2 siRNA. We conclude that elevated TGF-β1 levels in OA osteoblasts can stimulate DKK2 expression, which, in turn, is responsible, at least in part, for their abnormal phenotype.
Besides their natriuretic and calciuretic effect, thiazide diuretics have been shown to decrease ... more Besides their natriuretic and calciuretic effect, thiazide diuretics have been shown to decrease bone loss rate and improve bone mineral density. Clinical evidence suggests a specific role of thiazides on osteoblasts, because it reduces serum osteocalcin (OC), an osteoblast-specific protein, yet the mechanisms implicated are unknown. We therefore investigated the role of hydrochlorothiazide (HCTZ) on OC production by the human osteoblast-like cell line MG-63. HCTZ dose-dependently (1-100 microM) inhibited 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-induced OC release by these cells (maximal effect, -40-50% and p < 0.005 by analysis of variance [ANOVA]) as measured by ELISA. This effect of HCTZ on OC release was caused by a direct effect on OC gene expression because Northern blot analysis revealed that OC messenger RNA (mRNA) levels were reduced in the presence of increasing doses of the diuretic (-47.2+/-4.0%; p < 0.0001 by paired ANOVA with 100 microM 13.6+/-0.49 pmol/mg protein/15 minutes; p < 0.05) in MG-63 cells. Reducing extracellular Ca2+ concentration with 0.5 mM EDTA or 0.5 mM ethylene glycol-bis(beta-amino ethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) only partly prevented the inhibitory effect of the diuretic on OC secretion (maximal effect, -22.5+/-6.9%), suggesting that thiazide-dependent Ca2+ influx is not sufficient to elicit the inhibition of OC secretion. Because OC production is strictly dependent on the presence of 1,25(OH)2D3 in human osteoblasts, we next evaluated the possible role of HCTZ on vitamin D3 receptors (VDR) at the mRNA and protein levels. Both Northern and Western blot analyses showed no effect of HCTZ (1-100 microM) on VDR levels. The presence of EGTA in the culture media reduced slightly the VDR mRNA levels under basal condition but this was not modified in the presence of increasing levels of HCTZ. The OC gene promoter also is under the control of transcription factors such as Yin Yang 1 (YY1) and cFOS. Western blot analysis revealed no changes in YY1 levels in response to HCTZ either in the presence or in the absence of 0.5 mM EGTA in the culture media. In contrast, HCTZ induced a dose-dependent increase in cFOS levels (p < 0.002 by ANOVA), a situation prevented by incubation with EGTA. These studies indicate that HCTZ inhibits OC mRNA expression independently of an effect on VDR, YY1, or extracellular Ca2+ levels but involves changes in cFOS levels. As OC retards bone formation/mineralization, the inhibition of OC production by HCTZ could explain its preventive role in bone loss rate.
The underlying mechanisms responsible for both cartilage loss and subchondral bone changes in ost... more The underlying mechanisms responsible for both cartilage loss and subchondral bone changes in osteoarthritis (OA) remain unknown. It is becoming recognized that the extracellular matrix influences the metabolism of cells both in vivo and in vitro and can modify their responses to external stimuli. Indeed, the glycosaminoglycan/proteoglycan matrix is of major importance for the proliferation and/or differentiation of a number of cells. Here, we determined the potential role of hyaluronic acid (HA) of increasing molecular weight (MW) to alter the expression of metabolic markers and cytokine production by human osteoarthritic (OA) subchondral osteoblasts (Ob). Both 1,25(OH)(2)D(3)-induced alkaline phosphatase activity (ALPase) and osteocalcin release were increased in OA Ob when compared to normal. HA reduced osteocalcin release in OA Ob at MW of 300 and above, whereas HA failed to significantly modify ALPase. Parathyroid hormone (PTH) stimulated cyclic AMP (cAMP) formation by OA Ob. HA had a biphasic effect on this PTH-dependent activity, totally inhibiting cAMP formation at MW of 300 and 800. HA of increasing MW progressively reduced the levels of Prostaglandin E(2) (PGE(2)) and interleukin-6 (IL-6) produced by OA Ob. Interestingly, urokinase plasminogen activator (uPA) and and PA inhibitor-1 (PAI-1) levels were not significantly affected by HA of increasing MW; however, the PAI-1 to uPA ratio showed a slight, yet nonsignificant increase. Surprisingly, uPA activity was increased in OA Ob under the same conditions. Last, HA had no effect on the production of insulin-like growth factor-1 by these cells. Our data suggest that high MW HA can modify cellular parameters in OA Ob that are increased when compared to normal. The effect of HA on inflammatory mediators, such as PGE(2) and IL-6, and on uPA activity is more striking at higher MW as well. Taken together, these results could suggest that HA of increasing MW has positive effects on OA Ob by modifying their biological synthetic capacities.
Uploads
Papers by Aline Delalandre