Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Angela Cardinali

    Onion skins, actually recycled as organic fertilizers, could be used as a substrate in environmental-friendly bioprocesses to recover high-value bioactive compounds and food ingredients.In this work, a bioprospecting method was carried... more
    Onion skins, actually recycled as organic fertilizers, could be used as a substrate in environmental-friendly bioprocesses to recover high-value bioactive compounds and food ingredients.In this work, a bioprospecting method was carried out including 94 bacterial and 45 yeast strains from several agri-food and environmental niches to verify their ability to grow on onion skins as unique nutrients source.Red and yellow onion skins were assessed by newly selected starter-driven liquid submerged fermentation assays mainly aimed at the release and modification of polyphenols through microbial activities. Fermented onion skins were also investigated as a inexpensive favourable source of microbial enzymes (amylases, proteases, lipases, esterases, cellulases, xylanases).In red onion skins, the treatment with Lactiplantibacillus plantarum TB 11–32 produced a slight increase of bioactive compounds in terms of total phenolics, whereas with the yeast strain Zygosaccharomyces mrakii CL 30 − 29 t...
    In this study, the effects of pure olive phenolic compounds and olive mill wastewater (OMWW) (after membrane filtration treatments) on Aspergillus flavus growth and aflatoxin B1 (AFB1) production, were investigated. Five OMWWs coming from... more
    In this study, the effects of pure olive phenolic compounds and olive mill wastewater (OMWW) (after membrane filtration treatments) on Aspergillus flavus growth and aflatoxin B1 (AFB1) production, were investigated. Five OMWWs coming from Greek (Lianolia, Koroneiki and Asprolia) and Italian (Cellina di Nardò and Coratina) olive oil cultivars, opportunely filtered using a membrane system, were added at two concentrations (5 and 15%) to growth medium, in order to evaluate their effect on A. flavus growth and AFB1 production. The OMWW fractions treatment, after 6 days of incubation, did not inhibit the fungal growth rate, but at 15% concentration significantly reduced the AFB1 production (ranging from 88 to 100%). A similar approach was used for caffeic acid, hydroxytyrosol, tyrosol and verbascoside, the major pure phenolic compounds identified in OMWW fractions. They were evaluated at increasing doses (10, 50 and 100 µg/ml) following both AFB1 production and fungal growth. At the high...
    The purpose of this study was to evaluate the dietary use of novel silage that was created by combining three agro-industrial wastes produced in bulk, i.e., olive mill wastewater, grape pomace, and deproteinized feta cheese whey, in the... more
    The purpose of this study was to evaluate the dietary use of novel silage that was created by combining three agro-industrial wastes produced in bulk, i.e., olive mill wastewater, grape pomace, and deproteinized feta cheese whey, in the diets of broiler chickens. A total of 216 one-day-old male Ross-308 chicks were randomly allocated to three treatment groups with six replications (12 chicks per pen). Three isocaloric and isonitrogenous diets were formulated to include the examined silage at 0%, 5%, or 10%. Commercial breeding and management procedures were employed throughout the trial. At the end of the trial (day 35), tissue samples were collected for analysis. Feeding 10% silage resulted in increased (p ≤ 0.001) final body weight (p ≤ 0.001) and feed intake. Jejunum and cecum microflora, as well as breast and thigh meat microflora, were modified (p ≤ 0.05) by the dietary inclusion. Thigh meat oxidative stability was improved (p < 0.01) by the silage supplementation. In additi...
    Abstract: In this study, the quali-quantitative composition of hydrophilic (phenolic acids) and lipophilic (isoprenoids) extracts from whole-meal flour of five elite Italian durum wheat cultivars was determined. Significant differences in... more
    Abstract: In this study, the quali-quantitative composition of hydrophilic (phenolic acids) and lipophilic (isoprenoids) extracts from whole-meal flour of five elite Italian durum wheat cultivars was determined. Significant differences in the content of bioactive compounds were observed among the wheat extracts, in particular concerning the content of bound phenolic acids, lutein and β-tocotrienols. The cultivars Duilio and Svevo showed the highest amount of phenolic acids and isoprenoids, respectively. Extracts were evaluated for their anti-inflammatory activity on HT-29 human colon cells by measuring the levels of interleukin 8 (IL-8) and transforming growth factor β1 (TGF-β1). Durum wheat extracts significantly inhibited the secretion of the pro-inflammatory IL-8 mediator at 66 µg/mL of phenolic acids and at 0.2 µg/mL of isoprenoids. Conversely, the secretion of the anti-inflammatory mediator TGF-β1 was not modified by neither hydrophilic nor lipophilic extracts. These results pr...
    The use of peroxidase (POD) from artichoke (Cynara cardunculus L. subsp. scolymus (L.) Hayek) leaves to remove phenols present in olive mill waste water (OMWW) was studied. The enzyme extraction was performed using an aqueous two phase... more
    The use of peroxidase (POD) from artichoke (Cynara cardunculus L. subsp. scolymus (L.) Hayek) leaves to remove phenols present in olive mill waste water (OMWW) was studied. The enzyme extraction was performed using an aqueous two phase polymer system. The phenol concentration was assayed using the Folin-Ciocalteu method. The optimal reaction conditions were evaluated. The highest phenol removal was obtained using 4 mM H2O2 and an incubation of 24 hours. The enzyme showed a good activity in a broad range of pH (from 4 to 7) and temperature (from 5 to 50 °C). In optimal enzymatic conditions, a reduction of more than 60% of initial phenol concentration was observed. High pressure liquid chromatography (HPLC) analysis of OMWW untreated and treated with POD extracts revealed that enzyme treatment brought about changes in the original OMWW polyphenolic profile. In particular the removal of verbascoside, hydroxytyrosol, and two caffeic acid derivatives was noticed. The results showed that ...
    A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive... more
    A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive compounds, such as olive mill wastewater (OMWW), the by-product of olive-oil processing, can be considered an economic source of bioactive polyphenols, with a range of biological activities, useful as chemotherapeutic or cosmeceutical agents. Green strategies, such as the process based on membrane technologies, allow to recover active polyphenols from this complex matrix. This study aims to evaluate the antioxidant, pro-oxidant, and photoprotective effects, including the underlying action mechanism(s), of the ultra-filtered (UF) OMWW fractions, in order to substantiate their use as natural cosmeceutical ingredient. Six chemically characterized UF-OMWW fractions, from Italian and Greek olive cultivar processing, were investigated for their antioxidant a...
    Artichoke is a characteristic crop of the Mediterranean area, recognized for its nutritional value and therapeutic properties due to the presence of bioactive components such as polyphenols, inulin, vitamins and minerals. Artichoke is... more
    Artichoke is a characteristic crop of the Mediterranean area, recognized for its nutritional value and therapeutic properties due to the presence of bioactive components such as polyphenols, inulin, vitamins and minerals. Artichoke is mainly consumed after home and/or industrial processing, and the undersized heads, not suitable for the market, can be used for the recovery of bioactive compounds, such as polyphenols, for cosmetic applications. In this paper, the potential skin anti-age effect of a polyphenolic artichoke extract on endothelial cells was investigated. The methodology used was addressed to evaluate the antioxidant and anti-inflammatory activities and the improvement of gene expression of some youth markers. The results showed that the artichoke extract was constituted by 87% of chlorogenic, 3,5-O-dicaffeoylquinic, and 1,5-O-dicaffeoylquinic acids. The extract induced important molecular markers responsible for the microcirculation and vasodilatation of endothelial cell...
    The effects of fermentation by autochthonous microbial starters on phenolics composition of Apulian table olives, Bella di Cerignola (BDC), Termite di Bitetto (TDB) and Cellina di Nardò (CEL) were studied, highlighting also the cultivars... more
    The effects of fermentation by autochthonous microbial starters on phenolics composition of Apulian table olives, Bella di Cerignola (BDC), Termite di Bitetto (TDB) and Cellina di Nardò (CEL) were studied, highlighting also the cultivars influence. In BDC with starter, polyphenols amount doubled compared with commercial sample, while in TDB and CEL, phenolics remain almost unchanged. The main phenolics were hydroxytyrosol, tyrosol, verbascoside and luteolin, followed by hydroxytyrosol-acetate detected in BDC and cyanidine-3-glucoside and quercetin in CEL. Scavenger capacity in both DPPH and CAA assays, assessed the highest antioxidant effect for CEL with starters (21.7 mg Trolox eq/g FW; 8.5 μmol hydroxytyrosol eq/100 g FW). The polyphenols were highly in vitro bioaccessible (>60%), although modifications in their profile, probably for combined effect of environment and microorganisms, were noted. Finally, fermented table olives are excellent source of health promoting compounds,...
    Olive quick decline syndrome (OQDS) causes severe damages to the olive trees in Salento (Apulia, Italy) and poses a severe threat for the agriculture of Mediterranean countries. DNA-based typing methods have pointed out that OQDS is... more
    Olive quick decline syndrome (OQDS) causes severe damages to the olive trees in Salento (Apulia, Italy) and poses a severe threat for the agriculture of Mediterranean countries. DNA-based typing methods have pointed out that OQDS is caused by a single outbreak strain of Xylella fastidiosa subsp. pauca referred to as CoDiRO or ST53. Since no effective control measures are currently available, the objective of this study was to evaluate in vitro antimicrobial activities of different classes of compounds against Salento-1 isolated by an OQDS affected plant and classified as ST53. A bioassay based on agar disk diffusion method revealed that 17 out of the 32 tested antibiotics did not affect bacterial growth at a dose of 5 μg disk-1. When we assayed micro-, ultra- and nano-filtered fractions of olive mill wastewaters, we found that the micro-filtered fraction resulted to be the most effective against the bacterium. Moreover, some phenolics (4-methylcathecol, cathecol, veratric acid, caff...
    During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. The goal of the study was to optimize, from both sensory and... more
    During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. The goal of the study was to optimize, from both sensory and nutritional points of view, the formulation of durum wheat spaghetti enriched with an olive oil industrial by-product, indicated as olive paste. Three consecutive steps were carried out. In the first one, the olive paste was air-dried at low temperature, milled to record olive paste flour and properly analyzed for its biochemical composition. In the second step, the olive paste flour was added to the pasta dough at 10% and 15% (/). In the last step, different concentrations of transglutaminase were added to enriched pasta (10% olive paste) to further improve the quality. Sensory properties and nutritional content of enriched and control pasta were properly measured. Spaghetti with 10% olive paste flour and 0.6% transglutaminase were considered acceptabl...
    Research Interests:
    The gastrointestinal tract is the main target of exposure to mycotoxin fumonisin B1 (FB1), common natural contaminant in food. Previous studies reported that proliferating cells are more sensitive than confluent cells to the toxic effect... more
    The gastrointestinal tract is the main target of exposure to mycotoxin fumonisin B1 (FB1), common natural contaminant in food. Previous studies reported that proliferating cells are more sensitive than confluent cells to the toxic effect of FB1. This study aims to investigate, by dose- and time-dependent experiments on human colon proliferating intestinal cell line (HT-29), the modifications induced by FB1 at concentrations ranging from 0.25 to 69 μM. The choice of highest FB1 concentration considered the low toxicity previously reported on intestinal cell lines, whereas the lowest one corresponded to the lower FBs levels permitted by European Commission Regulation. Different functional parameters were tested such as cell proliferation, oxidative status, immunomodulatory effect and changes in membrane microviscosity. In addition FB1-FITC localization in this cell line was assessed by using confocal laser scanning microscopy. Lipid peroxidation induction was the main and early (12 h) effect induced by FB1 at concentrations ranging from 0.5 to 69 μM, followed by inhibition of cell proliferation (up to 8.6 μM), the immunomodulatory effect (up to 17.2 μM), by assessing IL-8 secretion, and increase in membrane microviscosity (up to 34.5 μM). The toxic effects observed in different functional parameters were not dose-dependent and could be the consequence of the FB1 intracytoplasmatic localization as confirmed by confocal microscopy results. The different timescales and concentrations active of different functional parameters could suggest different cellular targets of FB1.
    The Opuntia ficus indica (L.) (OFI) is used as a nutritional and pharmaceutical agent in various dietary and value added products. This study underlines the possible use of native prickly pear cladode powder as a functional ingredient for... more
    The Opuntia ficus indica (L.) (OFI) is used as a nutritional and pharmaceutical agent in various dietary and value added products. This study underlines the possible use of native prickly pear cladode powder as a functional ingredient for health-promoting food production. To summarise, chemical characterization of polyphenols, minerals and soluble dietary fibre was performed; furthermore, the antioxidant activity and bioaccessibility of polyphenols and minerals were assessed. Eleven compounds between phenolic acids and flavonoids were identified, with piscidic acid and isorhamnetin derivatives being the most abundant. Opuntia’s dietary fibre was mainly constituted of mucilage and pectin, and was composed of arabinose, galactose, glucose, mannose, rhamnose, and xylose sugars. The polyphenols’ bioaccessibility was very high: piscidic acid at 200%, eucomic and ferulic acids >110% and flavonoids from 89% to 100%. The prickly pear cladode powder is also a source of minerals, as cation...
    Food industries are increasingly oriented toward new foods to improve nutritional status and/or to combat nutritional deficiency diseases. In this context, silicon biofortification could be an innovative tool for obtaining new foods with... more
    Food industries are increasingly oriented toward new foods to improve nutritional status and/or to combat nutritional deficiency diseases. In this context, silicon biofortification could be an innovative tool for obtaining new foods with possible positive effects on bone mineralization. In this paper, an alternative and quick in vitro approach was applied in order to evaluate the potential health-promoting effects of five silicon-biofortified leafy vegetables (tatsoi, mizuna, purslane, Swiss chard and chicory) on bone mineralization compared with a commercial silicon supplement. The silicon bioaccessibility and bioavailability of the five leafy vegetables (biofortified or not) and of the supplement were assessed by applying a protocol consisting of in vitro gastrointestinal digestion coupled with a Caco-2 cell model. Silicon bioaccessibility ranged from 0.89 to 8.18 mg/L and bioavailability ranged from 111 to 206 μg/L of Si for both vegetables and supplement. Furthermore, the bioavailable fractions were tested on a human osteoblast cell model following the expression of type 1 collagen and alkaline phosphatase. The results obtained highlighted that the bioavailable fraction of biofortified purslane and Swiss chard improved the expression of both osteoblast markers compared with the supplement and other vegetables. These results underline the potentially beneficial effect of biofortified leafy vegetables and also indicate the usefulness of in vitro approaches for selecting the best vegetable with positive bone effects for further in vivo research.
    In this study, the naturally debittered table olives cv Bella di Cerignola were studied in order to (i) characterize their phenolic composition; (ii) evaluate the polyphenols bioaccessibility; (iii) assess their absorption and transport,... more
    In this study, the naturally debittered table olives cv Bella di Cerignola were studied in order to (i) characterize their phenolic composition; (ii) evaluate the polyphenols bioaccessibility; (iii) assess their absorption and transport, across Caco2/TC7. LC-MS/MS analysis has confirmed the presence of hydroxytyrosol acetate, caffeoyl-6'-secologanoside, and comselogoside. In vitro bioaccessibility ranged from 7% of luteolin to 100% of tyrosol, highlighting the flavonoids sensitivity to the digestive conditions. The Caco2/TC7 polyphenols accumulation was rapid (60 min) with an efficiency of 0.89%; the overall bioavailability was 1.86% (120 min), with hydroxytyrosol and tyrosol the highest bioavailables, followed by verbascoside and luteolin. In the cells and basolateral side, caffeic and coumaric acids metabolites, probably derived from esterase activities, were detected. In conclusion, the naturally debittered table olives cv Bella di Cerignola can be considered as a source of bioaccessible, absorbable, and bioavailable polyphenols that, for their potential health promoting effect, permit inclusion of table olives as a functional food suitable for a balanced diet.
    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the... more
    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the beneficial element content in plant tissues. Silicon (Si), which proper intake is recently recommended for its beneficial effects on bone health, presents good absorption in intestinal tract from green bean, a high-value vegetable crop. In this study we aimed to obtain Si biofortified green bean pods by using a Si-enriched nutrient solution in soilless system conditions, and to assess the influence of boiling and steaming cooking methods on Si content, color parameters and Si bioaccessibility (by using an in vitro digestion process) of pods. The Si concentration of pods was almost tripled as a result of the biofortification process, while the overall crop performance was not negatively influenced. The Si content of biofortified pods was higher than unbiofortified also after cooking, despite the cooking method used. Silicon bioaccessibility in cooked pods was more than tripled as a result of biofortification, while the process did not affect the visual quality of the product. Our results demonstrated that soilless cultivation can be successfully used for green bean Si biofortification.
    The effects of verbascoside (VB), added at nanomolar concentrations during in vitro maturation (IVM) of juvenile sheep oocytes, on in vitro embryo development and its mechanisms of action at the oocyte level were analyzed. Developmental... more
    The effects of verbascoside (VB), added at nanomolar concentrations during in vitro maturation (IVM) of juvenile sheep oocytes, on in vitro embryo development and its mechanisms of action at the oocyte level were analyzed. Developmental rates, after IVM in the presence/absence of VB (1nM for 24h; 1nM for 2h; 10nM for 2h), were evaluated. The bioenergetic/oxidative status of oocytes matured after IVM in the presence/absence of 1nM VB for 24h was assessed by confocal analysis of mitochondria and reactive oxygen species (ROS), lipid peroxidation (LPO) assay, and quantitative PCR of bioenergy/redox-related genes. The addition of 1nM VB during 24h IVM significantly increased blastocyst formation and quality. Verbascoside reduced oocyte ROS and LPO and increased mitochondria/ROS colocalization while keeping mitochondria activity and gene expression unchanged. In conclusion, supplementation with nanomolar concentrations of VB during IVM, in the juvenile sheep model, promotes embryo development by protecting the oocyte against oxidative stress.
    Calcium is an essential nutrient for human health, because it is a structural component and takes part in a variety of biological processes. The aim of this study was to increase Ca content of baby leaf vegetables (BLV: basil, mizuna,... more
    Calcium is an essential nutrient for human health, because it is a structural component and takes part in a variety of biological processes. The aim of this study was to increase Ca content of baby leaf vegetables (BLV: basil, mizuna, tatsoi and endive), as fresh-cut products. For the production of biofortified BLV, a floating system with two level of Ca (100 and 200mgL(-1)) in the nutrient solution was used. In addition, the assessment of bioaccessibility of Ca, by in vitro digestion process, was performed. In all vegetables, the Ca biofortification (200mgL(-1)) caused a significant Ca enrichment (9.5% on average) without affecting vegetables growth, oxalate contents and marketable quality. Calcium bioaccessibility ranged from 25% (basil) to 40% (endive) but the biofortified vegetables showed more bioaccessible Ca. These results underline the possibility to obtain Ca biofortified BLV by using agronomic approaches.
    ... This is referred to as 'heads', 'buds' or 'choke' and are commonly used fresh or processed (Bianco, 1990). ... When water is used to blanch vegetables,... more
    ... This is referred to as 'heads', 'buds' or 'choke' and are commonly used fresh or processed (Bianco, 1990). ... When water is used to blanch vegetables, leaching of vitamins, mineral salts, carbohydrates and other water soluble components occurs (Paulsen, 1986; Selman, 1994). ...
    Plant phenolics are secondary metabolites that encompass several classes structurally diverse of natural products biogenetically arising from the shikimate-phenylpropanoids-flavonoids pathways. Plants need phenolic compounds for... more
    Plant phenolics are secondary metabolites that encompass several classes structurally diverse of natural products biogenetically arising from the shikimate-phenylpropanoids-flavonoids pathways. Plants need phenolic compounds for pigmentation, growth, reproduction, resistance to pathogens and for many other functions. Therefore, they represent adaptive characters that have been subjected to natural Correspondence/Reprint request: Prof.
    Artichoke, Cynara cardunculus L. subsp. scolymus (L.) Hayek, is widely used in processed food industry. Leaves and external bud bracts discarded as refuse represent about 70% of the total biomass and could be utilized to extract important... more
    Artichoke, Cynara cardunculus L. subsp. scolymus (L.) Hayek, is widely used in processed food industry. Leaves and external bud bracts discarded as refuse represent about 70% of the total biomass and could be utilized to extract important compounds as phenols and enzymes (Le. polyphenoloxidase and peroxidase) very abundant in this vegetable. Peroxidases (PODs) are part of a large group of enzymes associated with cell wall biosynthesis, response to injury, disease, resistance and wound repair. In this study the separation and distribution of soluble peroxidase (SP), ionically bound (B P) and covalently bound (CBP) peroxidases from artichoke leaves was performed. The POD forms were analyzed by SDS-PAGE and stained for peroxidase activity using o-dianisidine as substrate. ' The SP and IBP electrophoretic patterns were very similar. They showed three different molecular weight 0 zones: 100 KD, 60 KD and 35 KD. The CBP pattern was different; it showed a group of high MW bands. The SP...
    The mineral silicon (Si) is an essential element for humans and a general component of the diet found mainly in plant-based foods. The aim of this study was to obtain Si biofortificated leafy vegetables (tatsoi, mizuna, purslane, basil,... more
    The mineral silicon (Si) is an essential element for humans and a general component of the diet found mainly in plant-based foods. The aim of this study was to obtain Si biofortificated leafy vegetables (tatsoi, mizuna, purslane, basil, Swiss chard, and chicory) to use for the fresh-cut products (ready to use). For the production of biofortified plants, a floating system with 0, 50 and 100 mg L(-1) of Si in nutrient solution, was used. In addition, the assessment of bioaccessibility of biofortified plants, by in vitro gastro-digestion process, was performed. The added silicon in nutrient solution did not influence yield and colour of vegetables but a species-related accumulation of Si was found: from 18 to 69 mg kg(-1) fresh weight (FW) in tatsoi, from 19 to 106 mg kg(-1) FW in mizuna, from 15 to 93 mg kg(-1) FW in purslane, from 41 to 294 mg kg(-1) FW in basil, from 17 to 76 mg kg(-1) FW in Swiss chard, and from 23 to 76 mg kg(-1) FW in chicory. The Si became bioaccessible in all s...
    INTRODUZIONE La refrigerazione passiva (rP) si basa sulla capacità del sistema di accumulare freddo mediante il congelamento di una soluzione eutettica, presente nelle pareti, che consente di mantenere le condizioni impostate per il... more
    INTRODUZIONE La refrigerazione passiva (rP) si basa sulla capacità del sistema di accumulare freddo mediante il congelamento di una soluzione eutettica, presente nelle pareti, che consente di mantenere le condizioni impostate per il periodo specificato senza necessità di fare ricorso a fonti estere di energia. Per migliorare la qualità dell'uva da tavola nel corso della conservazione, nell' ambito del Progetto di Ricerca PROINNO_BIT si è valutata l'efficacia di un prototipo di ThermoPallet a rP e rilascio controllato di ozono (Figura 1). Attività svolta nell'ambito del Progetto PON Ricerca e Competitività 2007-2013, PROINNO-BIT (Sviluppo di prodotti alimentari innovativi mediante soluzioni biotecnologiche, impiantistiche e tecnologiche) con ozonizzatore, impostata a circa 3 °C e un flusso di O3 pari a 1 ppm/h/giorno; c)Cella a rC, impostata a circa 3°C. Per ciascuna modalità di conservazione sono state previste 3 repliche ciascuna delle quali era costituita da una ca...
    A cationic soluble peroxidase isoenzyme (CysPrx) has been purified and characterized from artichoke (Cynara cardunculus subsp. scolymus (L.) Hegi) leaves by combination of aqueous two phase extraction, ion exchange chromatography, and gel... more
    A cationic soluble peroxidase isoenzyme (CysPrx) has been purified and characterized from artichoke (Cynara cardunculus subsp. scolymus (L.) Hegi) leaves by combination of aqueous two phase extraction, ion exchange chromatography, and gel filtration. The purification fold was 149 and the activity recovery 5.5%. CysPrx was stable from 5 to 45 °C with a pH optimum around 5.5; the pI was 8.3 and the MW of 37.7 ± 1.5 kDa. MALDI-TOF MS analysis provided partial peptide sequences and resolved CysPrx isoenzyme into two putative isoforms. The presence of these isoforms was confirmed by the isolation of full-length cDNA encoding CysPrx that generate two slightly different sequences coding for two putative CysPrx: CysPrx1 and CysPrx2. The obtained MS peptides showed a 35% coverage with 100% identity with the two CysPrx deduced protein sequences. A molecular modeling analysis was carried out to predict in silico the protein structure and compare it with other plant Prx structures. Considering ...
    Research Interests:

    And 23 more